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Abstract

Rankings are the primary interface through which
many online platforms match users to items (e.g.,
news, products, music, video). In these two-sided
markets, not only do the users draw utility from the
rankings, but the rankings also determine the util-
ity (e.g., exposure, revenue) for the item providers
(e.g., publishers, sellers, artists, studios). It has al-
ready been noted that myopically optimizing util-
ity to the users — as done by virtually all learning-
to-rank algorithms — can be unfair to the item
providers. We, therefore, present a learning-to-rank
approach for explicitly enforcing merit-based fair-
ness guarantees to groups of items (e.g., articles
by the same publisher, tracks by the same artist).
In particular, we propose a learning algorithm that
ensures notions of amortized group fairness while
simultaneously learning the ranking function from
implicit feedback data. The algorithm takes the
form of a controller that integrates unbiased estima-
tors for both fairness and utility, dynamically adapt-
ing both as more data becomes available. In addi-
tion to its rigorous theoretical foundation and con-
vergence guarantees, we find empirically that the
algorithm is highly practical and robust.

1 Introduction

We consider the problem of dynamic Learning-to-Rank
(LTR), where the ranking function dynamically adapts based
on the feedback that users provide. Such dynamic LTR prob-
lems are ubiquitous in online systems — news-feed rankings
that adapt to the number of “likes” an article receives, online
stores that adapt to the number of positive reviews for a prod-
uct, or movie-recommendation systems that adapt to who has
watched a movie. In all of these systems, learning and pre-
diction are dynamically intertwined, where past feedback in-
fluences future rankings in a specific form of online learning
with partial information feedback.

While dynamic LTR systems are in widespread use and un-
questionably useful, there are at least two issues that require
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careful design considerations. First, the ranking system in-
duces a bias through the rankings it presents. In particular,
items ranked highly are more likely to collect additional feed-
back, which in turn can influence future rankings and pro-
mote misleading rich-get-richer dynamics [Adamic and Hu-
berman, 2000; Salganik et al., 2006; Joachims et al., 2007,
Joachims er al., 2017]. Second, the ranking system is the
arbiter of how much exposure each item receives, where ex-
posure directly influences opinion (e.g., the ideological orien-
tation of presented news articles) or economic gain (e.g., rev-
enue from product sales or streaming) for the provider of the
item. This raises fairness considerations about how exposure
should be allocated based on the merit of the items [Singh
and Joachims, 2018; Biega et al., 2018]. We argue that naive
dynamic LTR methods that are oblivious to these issues can
lead to economic disparity, unfairness, and polarization.

In this paper, we present the first dynamic LTR algo-
rithm — called FairCo — that overcomes rich-get-richer dy-
namics while enforcing a configurable allocation-of-exposure
scheme. Unlike existing fair LTR algorithms [Singh and
Joachims, 2019; Biega et al., 2018; Yadav er al, 2019],
FairCo explicitly addresses the dynamic nature of the learning
problem, where the system is unbiased and fair even though
the relevance and the merit of items are still being learned.
At the core of our approach lies a merit-based exposure-
allocation criterion that is amortized over the learning pro-
cess. We view the enforcement of this merit-based exposure
criterion as a control problem and derive a P-controller that
optimizes both the fairness of exposure as well as the qual-
ity of the rankings. A crucial component of the controller
is the ability to estimate merit (i.e. relevance) accurately,
even though the feedback is only revealed incrementally as
the system operates, and the feedback is biased by the rank-
ings shown in the process [Joachims et al., 2007]. To this
effect, FairCo includes a new unbiased cardinal relevance es-
timator — as opposed to existing ordinal methods [Joachims
et al., 2017; Agarwal et al., 2019] —, which can be used both
as an unbiased merit estimator for fairness and as a ranking
criterion. In addition to the theoretical justification of FairCo,
we provide empirical results on both synthetic news-feed data
and real-world movie recommendation data. We find that
FairCo is effective at enforcing fairness while providing good
ranking performance. Furthermore, FairCo is efficient, ro-
bust, and easy to implement.
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2 Motivation

Consider the following illustrative example of a dynamic
LTR problem. An online news-aggregation platform wants
to present a ranking of the top news articles on its front
page. Through some external mechanism, it identifies a set
D = {d,...,dy} of 20 articles at the beginning of each day,
but it is left with the learning problem of how to rank these
20 articles on its front page. As users start coming to the
platform, consider a platform that uses the following naive
algorithm: maintain a counter C(d) for the number of clicks
on each article, and then always sort the articles by the current
state of the counts (breaking ties randomly). Unfortunately,
this naive algorithm has at least two deficiencies that make it
sub-optimal or unsuitable for many ranking applications.

The first deficiency lies in the choice of C(d) as an estimate
of average relevance for each article — namely, the fraction of
users that want to read the article. Unfortunately, even with
infinite amounts of user feedback, the counters C(d) are not
consistent estimators of average relevance [Joachims et al.,
2007; Joachims et al., 2017]. In particular, items that hap-
pened to get more reads in early iterations get ranked highly,
where more users find them and thus have the opportunity
to provide more positive feedback for them. This perpetu-
ates a rich-get-richer dynamic, where the feedback count C(d)
recorded for each article does not reflect how many users ac-
tually wanted to read the article.

The second deficiency of the naive algorithm lies in the
ranking policy itself, creating a source of unfairness even
if the true average relevance of each article was accurately
known. Consider the following omniscient variant of the
naive algorithm that ranks the articles by their true average
relevance (i.e., the true fraction of users who want to read
each article). How can this ranking be unfair? Let us as-
sume that we have two groups of articles, Giign and Giefi, with
10 items each (i.e., articles from politically right-leaning and
left-leaning sources). 51% of the users (right-leaning) want to
read the articles in group Gyigne, but not the articles in group
Giefi. Inreverse, the remaining 49% of the users (left-leaning)
like only the articles in Gy Ranking articles solely by their
true average relevance puts items from Gyigp into positions 1-
10 and the items from G in positions 11-20. This means the
platform gives the articles in Gy vastly less exposure than
those in Gyigy. We argue that this can be considered unfair
since the two groups receive disproportionately different out-
comes despite having similar merit (i.e., relevance). Here,
a 2% difference in average relevance leads to a much larger
difference in exposure between the groups.

We argue that these two deficiencies — namely bias and
unfairness — are not just undesirable in themselves but that
they have undesirable consequences. For example, biased es-
timates lead to poor ranking quality, and unfairness is likely
to alienate the left-leaning users in our example, driving them
off the platform and encouraging polarization. Furthermore,
note that these two deficiencies are not specific to the news
example, but that the naive algorithm leads to analogous
problems in many other domains, for example, a ranking sys-
tem for job applicants or an online marketplace, where rich-
get-richer dynamics can encourage gender and race disparity
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and monopolies, respectively.
These examples illustrate the following two desiderata that
a dynamic LTR algorithm should fulfill.

Unbiasedness: The algorithm should not be biased or sub-
ject to rich-get-richer dynamics.

Fairness: The algorithm should enforce a fair allocation of
exposure based on merit (e.g., relevance).

With these two desiderata in mind, this paper formalizes
the dynamic learning-to-rank setup and an amortized notion
of merit-based fairness. Finally, we propose a control-based
algorithm that is designed to optimize ranking quality while
dynamically enforcing fairness.

3 Dynamic Learning-to-Rank

Given is a set of items 9D that needs to be ranked in re-
sponse to incoming requests. At each time step ¢, a request
x;, 1, ~ P(x,r) arrives i.i.d. at the ranking system. Each re-
quest consists of a feature vector describing the user’s infor-
mation need x, (e.g., query, user profile), and the user’s vector
of true relevance ratings r; for all items in the collection D.
Only the feature vector x; is visible to the system, while the
true relevance ratings r, are hidden. Based on the information
in x,, a ranking policy m,(x) presents a ranking o, of items in
D to the user.

After presenting the ranking o7, the system receives a feed-
back vector ¢, (e.g., clicks) from the user with a non-negative
value ¢,(d) > 0 for every d € D.

After the feedback ¢, was received, the dynamic LTR al-
gorithm A now updates the ranking policy and produces the
policy ;4 that is used for the next time step.

Tyl € ﬂ((xl’ oy, Cl), ceey (xt» 0, ct))

An instance of such a dynamic LTR algorithm is the naive
algorithm outlined in Section 2. It merely computes }’ ¢, to
produce a new ranking policy for 7 + 1 (here, a global ranking
independent of x).

Optimizing Ranking Performance. Virtually all ranking
metrics used in information retrieval define the utility U(o|r)
of a ranking o as a function of the relevances of the individ-
ual items r. A commonly used utility measure U(n) is the
DCG [Jarvelin and Kekildinen, 2002] or the NDCG when
normalized by the DCG of the optimal ranking. The user-
facing goal of dynamic LTR is to converge to the policy
n* = argmax, U(r) that maximizes utility. Instead of ¢,(d),
if A had the knowledge of the relevance vector r, the policy
that sorts d is optimal for virtually all U(o| r) commonly used
in IR (e.g., DCG) as also suggested by the Probability Rank-
ing Principle [Robertson, 1977]. So, the problem of finding a
ranking that optimizes user utility can be solved by estimat-
ing the expected relevance r,(d) of each item d conditioned
on x using training data comprised of c;.

3.1 Partial and Biased Feedback

The first key challenge of dynamic LTR lies in the fact that
the feedback ¢, provides meaningful feedback only for the
items that the user examined. Following a large body of work
on click models [Chuklin et al., 2015], we model this as a
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censoring process using a binary vector e, indicating which
items were examined by the user, and hence the relationship
between ¢, and r; is as follows.

¢,(d) = {rt(d)

A second challenge lies in the fact that the examination
vector e, cannot be observed. We model the position bias as a
probability distribution on the examination vector drawn from
a click model as e, ~ P(e|o, x;,x;) [Chuklin et al., 2015].
For the simplicity of this paper, we merely use the Position-
Based Model (PBM) [Craswell et al., 2008]. It assumes that
the marginal probability of examination p,(d) for each item
d depends only on the rank rank(d|o) of d in the presented
ranking o

ife,(d) =1
otherwise

ey

3.2 Unbiased Estimation of Conditional Relevance

To overcome this problem of unobserved examination vector,
we take an approach inspired by [Joachims et al., 2017] and
extend it to the dynamic ranking setting. The key idea is to
correct for the selection bias with which relevance labels are
observed in ¢, using techniques from survey sampling and
causal inference [Horvitz and Thompson, 1952]. However,
unlike the ordinal estimators proposed in [Joachims et al.,
2017], we need cardinal relevance estimates since our fair-
ness disparities are based on cardinal relevance values. We,
therefore, propose the following estimator for the regression
loss

LWw) = —2R"dlx,)) (2)

c(d)
wdt2 td
IZd: (dx,)? + (d)(c()

based on a regressor R%(d|x;) (e.g., a neural network) with
model parameters w. The key idea behind this estimator is
that it only uses ¢,, but in expectation is equivalent to a least-
squares objective that has access to r; of the previous 7 time
steps. This objective corrects for the position bias using In-
verse Propensity Score (IPS) weighting [Horvitz and Thomp-
son, 1952; Imbens and Rubin, 2015], where the position bias
(pys ---» P;) takes the role of the missingness model. See the
full paper [Morik et al., 2020] for a detailed proof for the
unbiasedness property.

Similarly, average relevances can be estimated using the
estimator R™(d) = 1 317, ;’((Z;

4 Fairness in Dynamic LTR

While sorting by unbiased estimates of R(d|x) (or R(d) for
global rankings) may provide optimal utility to the user, the
motivating example in Section 2 illustrates that this ranking
can be unfair. There is a growing body of literature to address
this unfairness in ranking, and we now extend merit-based
fairness [Singh and Joachims, 2018; Biega et al., 2018] to the
dynamic LTR setting.

The key scarce resource that a ranking policy allocates
among the items is exposure. Based on the position-based
model (PBM), exposure of an item d can be defined as
the marginal probability of examination p,(d) = P(e,(d) =
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1l o4, x,,1,). It is the probability that the user will see d and
thus have the opportunity to read that article, buy that prod-
uct, or interview that candidate. For group-based notions of
fairness, we aggregate these item-wise examination probabil-
ities into exposure by groups G = {Gl yeeos Gl

@ ) (3)

deG;

Exp,(Gy)

These groups can be legally protected groups (e.g., gender,
race), reflect some other structure (e.g., items sold by a par-
ticular seller), or simply put each item in its own group (i.e.,
individual fairness).

In order to formulate fairness criteria that relate exposure
to merit, we define the merit of an item as its expected av-
erage relevance R(d) and again aggregate over groups, i.e,
Merit(G) = &1 Yaec, R().

We extend the Disparity of Treatment criterion of [Singh
and Joachims, 2018] to the dynamic ranking problem, using
an amortized notion of fairness as in [Biega et al., 2018]. In
particular, for any two groups G; and G| the disparity

DE(G,.G)) = % Y1 Exp(G)) _ % i1 Exp(G)) @)

e Merit(G;) Merit(G;)
measures in how far amortized exposure over 7 time steps was
fulfilled. This exposure-based fairness disparity expresses
how far, averaged over all time steps, each group of items got
exposure proportional to its relevance. We can quantify by
how much fairness between all groups is violated using the
following overall disparity metric.

m(m 5 Z Z DG, G )

i=0 j=i+1

Since optimal fairness is achieved for D. = 0, we seek
to minimize D,. Note that other allocation strategies can be
implemented as well by using alternate definitions of dispar-
ity [Singh and Joachims, 2018] as discussed in the full paper
[Morik et al., 2020].

S Dynamically Controlling Fairness

Given the formalization of the dynamic LTR problem, our
definition of fairness, and our derivation of estimators for
all relevant parameters, we formulate the following control
problem that is robust to the uncertainty in the estimates
R(d|x) and R(d) at the beginning of the learning process. Our
method, called FairCo, takes the form of a Proportional Con-
troller (a.k.a. P-Controller) [Bequette, 2003]. P-controllers
are a widely used control-loop mechanism that applies feed-
back through a correction term that is proportional to the er-
ror. In our application, the error corresponds to the violation
of our amortized fairness disparity from Equation (4). Specif-
ically, for any set of disjoint groups G = {G1,...,G}, the
error term of the controller for any item d is defined as

VG eGYdeG err(d)=(r—1)- mGax( T_I(G,,G))

The error term err.(G) is zero for the group that already has
the maximum exposure w.r.t. its merit. For items in the other
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Figure 1: Convergence of NDCG (left) and Unfairness (right) as the
number of users increases.

groups, the error term grows with increasing disparity. Using
this error term, we can state the FairCo ranking policy as

FairCo: o, = argsort (I?(dlx) +A errT(d)). (6)
deD

For the exposure-based disparity ﬁfﬁ 1(Gi, G), we refer to this
policy as FairCo(Exp), and note that the disparity D._;(G;, G)
in the error term uses the estimated Merit(G) from Equa-
tion (3.2), which converges to Merit(G) as the T increases.

Similar to the naive ranking policy, FairCo is a sort-based
policy. However, the sorting criterion is a combination of rel-
evance R(d|x) and an error term representing the fairness vi-
olation. The idea behind FairCo is that the error term pushes
the items from the underexposed groups upwards in the rank-
ing. The parameter A can be chosen to be any positive con-
stant, but a suitable choice of A can have an influence on the
finite-sample behavior of FairCo: a higher A can lead to an os-
cillating behavior, while a smaller 4 makes the convergence
smoother but slower. We explore the role of A in the ex-
periments but find that keeping it fixed at 4 = 0.01 works
well across all of our experiments. Another key quality of
FairCo is that it is agnostic to the choice of error metric, and
we conjecture that it can easily be adapted to other types of
fairness disparities.

6 Experimental Evaluation

We conducted an empirical evaluation on a semi-synthetic
news dataset to investigate different aspects of the proposed
methods under controlled conditions. In the news dataset,
each news article either belongs to group Gies Or Grigh; (Same
as the example in Section 2) and the users have a polarity
score specifying their preferences. The users sequentially ar-
rive to the system and provide clicks which we use to measure
NDCG (user utility) and the amortized unfairness under the
following ranking policies.

Naive: Rank by the sum of the observed feedback c;.
D-ULTR(Glob): Rank by unbiased R™(d) from Eq. (3.2).
FairCo(Exp): Fairness controller from Eq. (6).

6.1 Can FairCo Reduce Unfairness While
Maintaining Good Ranking Quality?
This is the key question in evaluating FairCo, and Figure 1

shows how NDCG and Unfairness converge for Naive, D-
ULTR(Glob), and FairCo(Exp). The plots show that Naive

4807

o
o

é —— Naive
£ D-ULTR(Glob)
ug 0.4 —}— FairCo(Exp)
=)
2 TN I
50.2
1%}
o
&
& o Rttt .
: 50 100 150 200 250 300 350 400

Number of right-leaning users in the beginning

Figure 2: The effect of an initial block of right-leaning users on the
Unfairness of Exposure.

achieves the lowest NDCG and that its unfairness remains
high as the number of user interactions increases. D-
ULTR(Glob) achieves the best NDCG, as predicted by the
theory, but its unfairness is only marginally better than that
of Naive. Only FairCo manages to substantially reduce un-
fairness, and this comes only at a small decrease in NDCG
compared to D-ULTR(Glob).

6.2 Does FairCo Overcome the Rich-Get-Richer
Dynamic?

We argue that naively ranking items is highly sensitive to the
initial conditions (e.g. which items get the first clicks), lead-
ing to a rich-get-richer dynamic. The experiment shown in
Figure 2 tests whether FairCo overcomes this problem. In
particular, we adversarially modify the user distribution so
that the first x users are right-leaning, followed by x left-
leaning users, before we continue with a balanced user dis-
tribution, and measure the unfairness after 3000 user interac-
tions. As expected, Naive is the most sensitive to the head-
start that the right-leaning articles get. D-ULTR(Glob) fares
better and its unfairness remains constant but independent of
the initial user distribution because the unbiased estimator
R™(d) corrects for the presentation bias so that the estimates
still converge to the true relevances. FairCo inherits this ro-
bustness to initial conditions since it uses the same R™S(d) es-
timator, and its active control for unfairness makes it achieve
low unfairness across the whole range.

7 Conclusions

In this work, we identify how biased feedback and uncon-
trolled exposure allocation can lead to unfairness and un-
desirable behavior in dynamic LTR. We propose FairCo to
address this problem, which adaptively enforces amortized
merit-based fairness constraints while the underlying rele-
vances are still being learned. The algorithm is robust to
presentation bias and thus does not exhibit rich-get-richer dy-
namics. FairCo is easy to implement and computationally
efficient making it well suited for practical applications.
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