Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)
Sister Conferences Best Papers Track

Finding the Hardest Formulas for Resolution (Extended Abstract)*

Tomas Peitl' T, Stefan Szeider?

'Friedrich Schiller University Jena
>TU Wien
tomas.peitl @uni-jena.de, sz@ac.tuwien.ac.at

Abstract

A CNF formula is harder than another CNF for-
mula with the same number of clauses if it requires
a longer resolution proof. We introduce resolu-
tion hardness numbers; they give form = 1,2, ...
the length of a shortest proof of a hardest formula
on m clauses. We compute the first ten resolu-
tion hardness numbers, along with the correspond-
ing hardest formulas. To achieve this, we devise
a candidate filtering and symmetry breaking search
scheme for limiting the number of potential can-
didates for hardest formulas, and an efficient SAT
encoding for computing a shortest resolution proof
of a given candidate formula.

1 Introduction

Resolution is a fundamental proof system that can be used to
certify the unsatisfiability of a propositional formula in con-
junctive normal form (CNF) [Davis and Putnam, 1960]. What
makes resolution particularly interesting is that the length of
a shortest resolution proof of a given CNF formula (called
the resolution complexity of the formula) provides an uncon-
ditional lower bound on the running time of modern SAT
solvers [Pipatsrisawat and Darwiche, 2009]." Since we know
that there are classes of unsatisfiable CNF formulas (such as
the formulas based on the Pigeonhole Principle) with expo-
nential resolution complexity [Haken, 1985], we have an ex-
ponential lower bound on the running time. It is a natural
question to ask: which formulas are the hardest for resolu-
tion? i.e., which formulas have the highest resolution com-
plexity? This is an intriguing and surprisingly hard question,
which has been approached mainly in an asymptotic way, by
propositional proof complexity [Urquhart, 1995].

In this paper, following a recent trend in tackling com-
binatorial problems using SAT and CSP methods [Heule et
al., 2016; Heule, 2018; Codish et al., 2019], we consider

*The full version appeared in JAIR and at CP 2020 (preliminary).

fContact Author

"More precisely, resolution complexity provides a lower bound
on the running time of conflict-driven clause learning (CDCL), on
which modern SAT solvers are based. Supplemental solving tech-
niques may prevail against the resolution lower bound.

4814

the question of resolution complexity in exact, rather than
asymptotic terms. We define the resolution hardness num-
bers (hy,)$_,, which, for a given integer m, give the high-
est resolution complexity of a CNF formula with m clauses.
Results from proof complexity, such as Haken’s exponential
lower bound for the resolution complexity of the pigeonhole
formulas [Haken, 1985], translate into statements about the
asymptotics of the resolution hardness numbers h,,,—in par-
ticular, h,, cannot grow polynomially in m. We aim to look
beyond asymptotics and compute h,,, exactly.

For small values of m, we compute a set of formulas with
fewer than m variables and (exactly) m clauses that contain at
least one hardest formula for resolution. With these formulas,
we can compute the first 10 resolution hardness numbers.

We obtain our results by combining two techniques:

1. A candidate filtering and symmetry breaking search
scheme to limit the number of potential candidate for-
mulas with m variables and resolution complexity A, .

2. An efficient SAT encoding for computing the resolution
complexity of a given candidate formula.

In our search scheme, we reduce the candidate formulas to
a certain class of minimally unsatisfiable (MU) formulas that
obey additional structural constraints. We model these for-
mulas by suitable graphs, and generate these graphs modulo
isomorphisms by an adaptation of the Nauty graph symmetry
package [McKay and Piperno, 2014].

This still leaves us with a large number of formulas whose
resolution complexity we must determine algorithmically.
For this task, we devise an efficient SAT encoding that pro-
duces for a given candidate formula F' and an integer s a
CNF formula short(F), which is satisfiable if and only
if ' admits a resolution proof no longer than s. We deter-
mine the resolution complexity of F' by feeding short(F)
to a SAT solver with increasing values of s. While a SAT
encoding for this problem has been proposed before [Mencia
and Marques-Silva, 2019], and we do take some inspiration
from it, we make crucial adaptations tailored towards min-
imally unsatisfiable formulas. Furthermore, we introduce a
symmetry-breaking scheme that fully breaks all symmetries
resulting from permuting the clauses in a proof.

In addition to the resolution hardness numbers themselves,
we can draw a detailed map of the hardest formulas with a
particular number of variables and clauses. Our results re-

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)
Sister Conferences Best Papers Track

veal the significance of regular saturated minimally unsat-
isfiable (RSMU) formulas, which are unsatisfiable formulas
that (i) become satisfiable by adding any further literal to
any clause, and (ii) where each literal appears in at least two
clauses. As a by-product of our computations, we obtain a
catalog of RSMU formulas with a small number of variables
and clauses, which may be of independent interest in the re-
search on minimal unsatisfiability. For instance, the com-
puted formulas’ structure could possibly be used to come up
with infinite sequences of hard formulas, inspiring general
proof-complexity results.

An alternative but not very interesting object of study
would be v,,, the highest resolution complexity among formu-
las with n variables. It is not hard to see by simple induction
on the number of variables that every unsatisfiable formula
on n variables has a resolution proof of length < 2"*1 — 1
and that indeed v,, = 2”71 — 1, witnessed by the formula
which contains all possible clauses of width n.

2 Preliminaries

We assume familiarity with standard notions of graph theory,
including those of (un)directed graphs, connectivity, acyclic-
ity, vertex degrees, etc. Any graphs we refer to, directed or
not, contain no loops or multiedges.

Formulas

We consider propositional formulas in conjunctive normal
form (CNF) represented as sets of clauses. We assume an
infinite set var of (propositional) variables. A literal { is a
variable z or a negated variable —x; we write lit :== { x, ~x |
2 € var }. For a literal { we put £ := -z if { = z,and { :=
if ¢ = —x. For a set of C literals we put C := {{ | £ € C'}.
C is tautological ift C N C # (). A finite non-tautological
set of literals is a clause; a finite set of clauses is a (CNF)
formula. The empty clause is denoted by [1. We write
CNF(n,m) for the class of all CNF formulas on n variables
and m clauses, and CNF(m) = |J;—,CNF(n,m). For a
clause C, we put var(C) = {var({) | £ € C}, and for
a formula F, var(F') = (Jgcpvar(C). Similarly, we put
lit(F) := var(F) U var(F). An assignment is a mapping
T 2 var(F) — {0,1}. A formula F' is satisfiable if there is
a satisfying assignment, i.e., a mapping 7 : var(F) — {0,1}
such that every clause of F' contains either a literal x with
7(z) = 1 or a literal -z with 7(z) = 0; otherwise it is un-
satisfiable. A formula is minimally unsatisfiable (MU) if it is
unsatisfiable, but every proper subset is satisfiable.

Resolution

If Cy N Cy = {¢} for clauses C;,C5 and a literal ¢, then
the resolution rule allows the derivation of the clause D =
(CLUC) \ {4, £}; D is the resolvent of the premises Cy and
Cs, and we say that D is obtained by resolving on ¢. Let F
be a formula and C' a clause. A sequence P = L, ..., Ls of
clauses (proof lines) is a resolution derivation of Ls from F
if foreach i € {1,..., s} at least one of the following holds.

1. L; € F (“L; is an axiom”);
2. L, is the resolvent of L; and L;/ for some 1 < j,j’ < i.

We write |P| := s and call s the length of P. If L; is the
empty clause, then P is a resolution refutation or resolution
proof of F. A line L; in a resolution derivation may have
different possible “histories;” i.e., L; may be the resolvent
of more than one pair of clauses preceding L;, or L; may
be both an axiom and obtained from preceding clauses by
resolution, etc. In the sequel, however, we assume that an
arbitrary but fixed history is associated with each considered
resolution derivation. Thus, with a proof P we can associate
the directed acyclic graph (DAG) G(P) whose vertices are
the proof lines, and which has an arc from L; to L; if there is
Ly, i,k < j, such that L; is the resolvent of L; and Ly.

It is well known that resolution is a complete proof sys-
tem for unsatisfiable formulas; i.e., a formula F' is unsatis-
fiable if and only if there exists a resolution refutation of it.
The resolution complexity or resolution hardness h(F') of an
unsatisfiable formula F' is the length of a shortest resolution
refutation of F'. For a nonempty set C of formulas, we put
h(C) = maxpec h(F).

Isomorphisms of Formulas
Two formulas F' and F” are isomorphic if there exists a bijec-
tion ¢ : lit(F) — lit(F") such that for each literal ¢ € lit(F)

we have p(£) = ¢(¢) and for each C' C [it(F') we have
C € F if and only if ¢(C) € F’. For instance the formu-
las F = {{x,7}. {Z,y}, {y}}, and F' = {{Z,w}, {z,w},
{w}} are isomorphic.

A 2-graph is an undirected graph G = (V| E) together
with a partition of its vertex set into two subsets V' = V; W V5.
Two 2-graphs G = (V; W Vs, E) and G’ = (V/ W V3, E’) are
isomorphic if there exists a bijection ¢ : Vi W Vo — V] W VJ
such that v € V; if and only if p(v) € V/, i = 1,2, and
{u,v} € Eif and only if {¢(u), p(v}} € E'.

The clause-literal graph of a formula F' is the 2-graph
G(F) = V1 W Vo, FE) with Vi = lit(F), Vo = F, and
E={{z,z} |z evar(F)}U{{C,t} | C e F,t e C}.
We refer to the edges {x, T} as variable edges.

For instance, the formulas F' and F’ mentioned above give
rise to the following two isomorphic clause-literal graphs.

x T Y U Z oz w w
Vll E;Q fi ‘/1:
Va: Va: i: é z
{z,y} {Z,y} {y} {z, w} {z, wi{w}

Proposition 1. Two formulas are isomorphic if and only if
their clause-literal graphs are isomorphic (as 2-graphs).

3 Theoretical Framework

We define the m-th resolution hardness number as the highest
resolution complexity among formulas with m clauses:

B = h(F) = h(CNF(m)).

max
FEeCNF(m)

We also let H(m) := {F € CNF(m) : h(F) = hy, }.

In this section, we describe on a high level our approach to
computing h,,. Due to space constraints, we refer the reader
to the full version for proofs of the results [Peitl and Szeider,
2020; Peitl and Szeider, 2021a].

4815

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)
Sister Conferences Best Papers Track

We begin by establishing the unsurprising basic fact that
resolution hardness numbers form an increasing sequence.

Lemma 1. h,,01 > hyp + 2.

Our strategy for computing h,,, is to find and automatically
generate a set x(m) C CNF(m) with the following desired
properties:

1. x(m) contains at least one formula with hardness h,,;
2. x(m) is as small and easy to enumerate as possible.

Once we find a suitable x(m), we simply generate all its
formulas and for each compute its hardness; the largest value
gives the hardness number 7, .

3.1 Finding x(m)

The central role is played by saturated minimally unsatisfi-
able (SMU) formulas—minimally unsatisfiable formulas that
are rendered satisfiable by adding any literal to any clause.
Lemma 2 tells us that x(m) can be limited to SMU formulas.

Lemma 2. All formulas in H(m) are minimally unsatisfi-
able; moreover, at least one is saturated.

A simple lower bound for the hardness of minimally un-
satisfiable formulas follows from the need to ’connect’ all
axioms in the proof, reading each clause at least once.

Lemma 3. Let F' be a minimally unsatisfiable formula
with m clauses. Then h(F) > 2m — 1.

SMU formulas have two key properties that make them
suitable for our purpose: they are the hardest of MU formu-
las; and they have a well studied structure we can exploit.

In particular, SMU allows us to treat singular and regular
formulas separately. A formula is called singular if it con-
tains a singular literal—one that only appears once—and reg-
ular otherwise. Singular SMU (SSMU) formulas are well be-
haved with respect to Davis-Putnam (DP) reduction (variable
elimination by exhaustive resolution, [Kullmann and Zhao,
2013, Lemma 12]), which allows us to obtain all SSMU for-
mulas by a simple reverse process, which we term DP-lifting,
from smaller SMU formulas. Thanks to that, we can split
the generation phase in two, generating only regular formulas
first. In the first, expensive phase we get a speedup from prun-
ing via regularity—DP-lifting for SSMU formulas afterwards
turns out to be cheap.

Another important notion in the context of minimal unsat-
isfiability is the deficiency 6(F) of a formula F', defined as
§(F) = |F|— |var(F)|. By alemma attributed to Tarsi [Aha-
roni and Linial, 19861, §(F') is positive if F' is MU.

Lemma 4 ([Aharoni and Linial, 1986]). Letr F' be a minimally
unsatisfiable formula. Then log, |F'| < |var(F)| < |F)|.

We denote by MU(n, m)(SMU(n, m)) the class of (satu-
rated) minimally unsatisfiable formulas with n variables and
m clauses; RSMU(n, m) (SSMU(n,m)) is the subclass of
SMU(n, m) consisting of regular (singular) formulas.

The structure of SMU formulas of deficiencies 1 and 2 is
well understood [Kleine Biining and Kullmann, 2009]. It is
known that each deficiency-1 SMU formula with at least one
variable has a 1-singular literal (one whose negation is also
a singular literal). It is also known that, up to isomorphism,

4816

there is a unique deficiency-2 regular MU formula—we pick
JFZ,, which consists of the clauses

{TI7 x2}7) {xmffﬂwxmf?}a {xm727 I1}7
{1'17 s ;xm72}a {Tlv cee vxm72}~

This allows us to obtain resolution hardness of SMU(m —
1,m) and RSMU(m — 2, m) formulas in closed form.

Proposition 2. For m > 1, h(SMU(m — 1, m)) = 2m — 1.
Proposition 3. For m > 4, h(F2) = 3m — 5.

Propositions 2 and 3, together with Lemma 4, give us a
refined lower bound for h,,,.

Corollary 1. For m < 3, h,, = 2m — 1. For m > 4,
Ry, > 3m — 5.

In order to determine h,,, for m > 4, we will need to gen-
erate x(m), which, according to the results above, can be re-
stricted to SMU(n, m) formulas for n < m — 2, ignoring
deficiency 1, whose hardness we know. We can further facil-
itate this step by only generating regular formulas, which we
need only for n < m—3 because we know RSMU(m—2,m);
we get singular formulas afterwards by DP-lifting.

Naturally, we do not need to include two different iso-
morphic formulas in yx(m); their hardness properties are
identical. Hence, we want to enumerate an isomorph-free
subset of x(m), which we achieve through the correspon-
dence to 2-graphs (Proposition 1) and a tailor-made adapta-
tion of the genbg utility from the graph symmetry package
Nauty [McKay and Piperno, 2014] to enumerate such graphs.
Nauty allows us to specify constraints on the output graphs,
such as connectedness (necessary for MU), triangle-freeness
(triangles are tautological clauses), neighbourhood incompa-
rability (no subsumed clauses), or degree bounds (regularity),
which can enforce regularity and some necessary conditions
for minimal unsatisfiability. However, it is not possible to di-
rectly instruct Nauty to generate only SMU formulas, and so
we need to generate a superset and filter for saturated minimal
unsatisfiability. For that purpose, we proposed a streamlined
brute-force SMU testing algorithm, which we omit here due
to space constraints.

3.2 Computing Hardness

To compute shortest proofs of formulas, we devise a SAT en-
coding to answer the following decision problem, which we
call SHORT (F),s).

Given a formula F’ with the clauses (axioms) Ay, ..., Apn
and var(F) = {z1,...,x,}, does there exist a resolution
refutation L1, ..., Ly of F' of length s’ < s?

Itis easy to see that SHORT (F, s) is coNP-hard (s given in
binary): since each unsatisfiable formula F* with n variables
has a resolution refutation of length at most 2n+l_1 we have
UNSAT (F) = SHORT (F, 2"t — 1) ; using a SAT-based ap-
proach is thus justified. On the other hand, membership in
NEXPTIME is trivial: guess a refutation of length s and ver-
ify that it is correct. The precise complexity of SHORT (F), s)
is an open problem.

The basic idea of our encoding, called short(F), is to
have variables pos][i, v] and neg|[¢, v] that determine whether v
and T occur in L;, and variables arc|i, j|, which describe the

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)
Sister Conferences Best Papers Track

proof DAG G(P), together fully determining a candidate res-
olution proof sequence P. We additionally use auxiliary vari-
ables to express certain constraints more succinctly.

We draw inspiration from a similar recently proposed en-
coding (MSM, [Mencia and Marques-Silva, 2019]), but make
improvements focused on MU formulas. One of the strongest
points of MSM, enumerating minimal correction subsets
(MCSes, i.e., inclusion-minimal sets of clauses whose re-
moval makes the formula satisfiable) in preprocessing, be-
comes trivial for MU formulas: the MCSes are by definition
precisely all singletons. Instead, we require that all axioms
are used in the proof.

On the other hand, we extend the encoding with symmetry
breaking, inspired by an idea of Schidler and Szeider [2020].
The source of symmetries we aim to break are different topo-
logical sorts of a proof DAG G(P). We define a canoni-
cal topological sort, and introduce symmetry breaking con-
straints to ensure that no other topological sort is accepted.
The canonical sort is obtained by the topological sorting pro-
cedure where in each step the largest available vertex under
an arbitrary fixed total order of vertices is picked—in our
case a lexicographic ordering of clauses. Another novelty of
our encoding is the capacity to reject a partially constructed
proof early based on a counting argument involving the num-
ber of times each clause is used in resolution steps, similar
to Lemma 3. Space constraints prevent us from explaining
these ideas in detail here—we refer the reader to the full ver-
sion. Here we limit ourselves to a summary in Theorem 1.

Theorem 1. Let F' be a formula on n variables and m
clauses, s an integer. It holds that
1. the size of short(F) is polynomial in max(n,m, s) (s
can be exponential in the input length);

2. short,(F) is satisfiable if and only if F has a resolu-
tion refutation P of length s; any model can naturally
be interpreted as a canonically topologically sorted res-
olution refutation of F';

Theorem 1 gives rise to a simple algorithm. Start with s = 1
and increment while short,(F') is unsatisfiable. When
short,(F) becomes satisfiable, s equals h(F'), and a short-
est proof can be extracted from a model of short,(F'). For
MU formulas, we can start at s = 2m — 1, as per Lemma 3.
We implemented the encoding and this algorithm in Python
in the PySAT framework [Ignatiev et al., 2018].

4 Results

Finally, we review our most important results. See the full
version [Peitl and Szeider, 2021a] for a much deeper analysis.

Table 1 lists the maximum hardness of an SMU(n, m) for-
mula, and, by taking the maximum in each column (bold),
also values of h,,. In particular, we obtain the first ten reso-
lution hardness numbers:

(hm)o_y =1,3,5,7,10, 13,16, 19, 22, 26,
It is known that every MU(n, m) formula F' has a proof
of length at most 20(F) =1y 4+ m [Kleine Biining and Kull-
mann, 2009, Section 11.3]; along with the existence of for-

mulas with super-polynomial hardness, this implies that max-
imum hardness cannot forever be attained by formulas of

n=*1 2 3 4 5 6 7 8 9 10

1w - - . - - - - -
I 1€ R - - - - -
Y (X (. - - - - -
- - - 7@ 100 113 131 15(1) L -
- - .. 9(3) 13(1) 15(1) 19(1) 2p(1) 21(5)
110 160 18(3) 22(1) 25(1)
(

11) 19(1) 22(3) 26(3)

15(23) 22(1) 25(24)
17(46) 25(1)
1909%)

e k|

OO NI W —O
1
1
1
1
1

Table 1: Values of h(SMU(n,m)), and in parentheses the number
of hardest formulas in SMU(n, m). Forall 3 <n < 9andn+2 <
m < 10, we found that all hardest SMU(n, m) formulas are regular,
except for SMU(7, 10), which contains 5 regular and 19 singular
hardest formulas. Formulas are counted modulo isomorphism.

h(FG}lO’Q) =26

h(F6,10,3) =26

Figure 1: Clause-literal graphs of the hardest 10-clause formulas.

bounded deficiency. We discover m = 10 to be the first
point where no formula of deficiency 2 is among the hardest:
up to isomorphism, there are exactly three hardest 10-clause
SMU formulas, all of deficiency 4, shown as clause-literal
graphs in Figure 1. Notice the graphs are drawn vertically
symmetrically. Apart from J2,, these are the only hardest
formulas that can be drawn in such a way—symmetrically
and with a cycle containing all variable edges drawn as a
circle. We calculated these drawings (and non-existence
for other graphs) with MiniZinc [Nethercote er al., 2007;
Stuckey et al., 2014].

Our encoding [Peitl and Szeider, 2021c] and our catalog of
SMU formulas [Peitl and Szeider, 2021b], including the data
from our computation, are publicly available.

5 Conclusion

We conducted an extensive computational investigation into
resolution hardness, computing the first ten resolution hard-
ness numbers along with a catalog of the corresponding hard-
est formulas. Our results indicate that regular saturated min-
imally unsatisfiable formulas achieve the highest hardness.
It remains as an interesting theoretical question whether the
hardest formulas are always regular.

Acknowledgments

We thank Brendan McKay for adapting Nauty genbg for us.
We further acknowledge support by the FWF (projects
P32441 and J-4361) and by the WWTF (project ICT19-065).

4817

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)
Sister Conferences Best Papers Track

References

[Aharoni and Linial, 1986] Ron Aharoni and Nathan Linial.
Minimal non-two-colorable hypergraphs and minimal un-
satisfiable formulas. J. Combin. Theory Ser. A, 43:196—
204, 1986.

[Codish et al., 2019] Michael Codish, Alice Miller, Patrick
Prosser, and Peter J. Stuckey. Constraints for symmetry
breaking in graph representation. Constraints An Int. J.,
24(1):1-24, 2019.

[Davis and Putnam, 1960] M. Davis and H. Putnam. A com-
puting procedure for quantification theory. J. of the ACM,
7(3):201-215, 1960.

[Haken, 1985] Armin Haken. The intractability of resolu-
tion. Theoretical Computer Science, 39:297-308, 1985.

[Heule et al., 2016] Marijn J. H. Heule, Oliver Kullmann,
and Victor W. Marek. Solving and verifying the Boolean
Pythagorean Triples problem via cube-and-conquer. In
Nadia Creignou and Daniel Le Berre, editors, Theory and
Applications of Satisfiability Testing - SAT 2016 - 19th In-
ternational Conference, Bordeaux, France, July 5-8, 2016,
Proceedings, volume 9710 of Lecture Notes in Computer
Science, pages 228-245. Springer Verlag, 2016.

[Heule, 2018] Marijn J. H. Heule. Schur number five. In Pro-
ceedings of the Thirty-Second AAAI Conference on Artifi-
cial Intelligence, (AAAI-18), the 30th innovative Applica-
tions of Artificial Intelligence (IAAI-18), and the 8th AAAI
Symposium on Educational Advances in Artificial Intelli-
gence (EAAI-18), New Orleans, Louisiana, USA, February
2-7, 2018, pages 6598-6606, 2018.

[Tgnatiev ef al., 2018] Alexey Ignatiev, Antonio Morgado,
and Joao Marques-Silva. PySAT: A Python toolkit for pro-
totyping with SAT oracles. In SAT, pages 428—437, 2018.

[Kleine Biining and Kullmann, 2009] Hans Kleine Biining
and Oliver Kullmann. Minimal unsatisfiability and au-
tarkies. In A. Biere, M. J. H. Heule, H. van Maaren,
and T. Walsh, editors, Handbook of Satisfiability, volume
185 of Frontiers in Artificial Intelligence and Applications,
chapter 11, pages 339-401. IOS Press, 2009.

[Kullmann and Zhao, 2013] Oliver Kullmann and Xishun
Zhao. On Davis-Putnam reductions for minimally unsatis-
fiable clause-sets. Theoretical Computer Science, 492:70—
87, 2013.

[McKay and Piperno, 2014] Brendan D. McKay and Adolfo
Piperno. Practical graph isomorphism, {II}. Journal of
Symbolic Computation, 60(0):94 — 112, 2014.

[Mencia and Marques-Silva, 2019] Carlos Mencia and Joédo
Marques-Silva. Computing shortest resolution proofs. In
Paulo Moura Oliveira, Paulo Novais, and Luis Paulo Reis,
editors, Progress in Artificial Intelligence, 19th EPIA Con-
ference on Artificial Intelligence, EPIA 2019, Vila Real,
Portugal, September 3-6, 2019, Proceedings, Part 11, vol-
ume 11805 of Lecture Notes in Computer Science, pages
539-551. Springer, 2019.

[Nethercote et al., 2007] Nicholas Nethercote, Peter J.
Stuckey, Ralph Becket, Sebastian Brand, Gregory J.

4818

Duck, and Guido Tack. Minizinc: Towards a standard
cp modelling language. In Christian Bessiere, editor,
Principles and Practice of Constraint Programming — CP
2007, pages 529-543, Berlin, Heidelberg, 2007. Springer
Berlin Heidelberg.

[Peitl and Szeider, 2020] Tom4a§ Peitl and Stefan Szeider.
Finding the hardest formulas for resolution. In Helmut
Simonis, editor, Proceedings of CP 2020, the 26th Inter-
national Conference on Principles and Practice of Con-
straint Programming, volume 12333 of Lecture Notes in
Computer Science, pages 514-530. Springer Verlag, 2020.
Best Paper Award.

[Peitl and Szeider, 2021a] Tom4$ Peitl and Stefan Szeider.
Finding the hardest formulas for resolution. Journal of
Artificial Intelligence Research, 2021.

[Peitl and Szeider, 2021b] Tomas Peitl and Stefan Szeider.
Saturated minimally unsatisfiable formulas on up to ten
clauses. https://doi.org/10.5281/zenodo.3951545, 2021.
Accessed: 2021-01-14.

[Peitl and Szeider, 2021c] Tom4s Peitl and Stefan Szeider.
short.py: Encoding for the shortest resolution proof.
https://doi.org/10.5281/zenodo.3951549, 2021. Accessed:
2021-01-13.

[Pipatsrisawat and Darwiche, 2009] Knot Pipatsrisawat and
Adnan Darwiche. On the power of clause-learning SAT
solvers with restarts. In Ian P. Gent, editor, Princi-
ples and Practice of Constraint Programming - CP 2009,
15th International Conference, CP 2009, Lisbon, Portu-
gal, September 20-24, 2009, Proceedings, volume 5732
of Lecture Notes in Computer Science, pages 654—668.
Springer Verlag, 2009.

[Schidler and Szeider, 2020] André Schidler and Stefan
Szeider. Computing optimal hypertree decompositions.
In Guy Blelloch and Irene Finocchi, editors, Proceedings
of ALENEX 2020, the 22nd Workshop on Algorithm Engi-
neering and Experiments, pages 1-11. SIAM, 2020.

[Stuckey er al., 2014] Peter Stuckey, Thibaut Feydy, An-
dreas Schutt, Guido Tack, and Julien Fischer. The minizinc
challenge 2008-2013. Al Magazine, 35:55-60, 06 2014.

[Urquhart, 1995] Alasdair Urquhart. The complexity of
propositional proofs. Bull. of Symbolic Logic, 1(4):425—
467, December 1995.

https://doi.org/10.5281/zenodo.3951545
https://doi.org/10.5281/zenodo.3951549

	Introduction
	Preliminaries
	Formulas
	Resolution
	Isomorphisms of Formulas

	Theoretical Framework
	Finding x(m)
	Computing Hardness

	Results
	Conclusion

