Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)
Sister Conferences Best Papers Track

Politeness for the Theory of
Algebraic Datatypes (Extended Abstract) *

Ying Sheng!, Yoni Zohar', Christophe Ringeissen?, Jane Lange'*, Pascal
Fontaine?? and Clark Barrett!
!Stanford University
2Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France
3Université de Liege, Belgium
AMIT

yingl123 @stanford.edu, yoniz@cs.stanford.edu, Christophe.Ringeissen @loria.fr,
jlange20@stanford.edu, Pascal.Fontaine @uliege.be, barrett@cs.stanford.edu

Abstract

Algebraic datatypes, and among them lists and
trees, have attracted a lot of interest in auto-
mated reasoning and Satisfiability Modulo The-
ories (SMT). Since its latest stable version, the
SMT-LIB standard defines a theory of algebraic
datatypes, which is currently supported by several
mainstream SMT solvers. In this paper, we study
this particular theory of datatypes and prove that
it is strongly polite, showing also how it can be
combined with other arbitrary disjoint theories us-
ing polite combination. Our results cover both in-
ductive and finite datatypes, as well as their union.
Our proof uses a new, simple, and natural notion of
additivity, that enables deducing strong politeness
from (weak) politeness.

1 Introduction

Algebraic datatypes are extremely common in many pro-
gramming languages. Reasoning about them is therefore cru-
cial for modeling and verifying programs. Various decision
procedures for algebraic datatypes have been and continue to
be developed and employed by formal reasoning tools such
as theorem provers and Satisfiability Modulo Theories (SMT)
solvers [Barrett et al., 2007; Reynolds et al., 2018; Reynolds
and Blanchette, 2017; Kovacs et al., 2017; Gutiérrez and
Meseguer, 2017; Meseguer, 2018; Hojjat and Riimmer, 2017;
Bonacina and Echenim, 2007; Armando et al., 2009]. SMT
solvers employ a combination framework that derives a deci-
sion procedure for combined theories by using the decision
procedure for each theory as a black box. This is useful,
as many applications require reasoning about combined the-
ories. For example, the verification of a simple program may
require reasoning about arithmetic, bit-vectors, datatypes, etc.
To integrate a new theory into such a framework, it suffices to
focus on the decision procedure of the new theory, and its in-

*Originally published as Politeness for the Theory of Algebraic
Datatypes at the 10th edition of the International Joint Conference
on Automated Reasoning (IJCAR) in Paris, France.

4829

terface to the generic combination framework. The interface
is what we focus on in this paper.

The traditional combination method of Nelson and Oppen
[Nelson and Oppen, 1979] is applicable for the combina-
tion of the theory of datatypes with other theories, as long
as the other theories are stably infinite. Some theories of in-
terest, however, are not stably infinite, the most notable one
being the theory of fixed-width bit-vectors, which is com-
monly used for modeling and verifying both hardware and
software. To be able to perform combinations with such
theories, a more general combination method was designed
[Ranise er al., 2005], which relies on polite theories. This
notion was later strengthened to strongly polite theories [Jo-
vanovic and Barrett, 2010], which are needed to properly han-
dle variable arrangements in the theory combination mech-
anism. Strongly polite theories can be combined with any
other disjoint decidable theories. While strong politeness was
already proven for several useful theories (such as equality,
arrays, sets, multisets [Ranise er al., 2005]), strong politeness
of algebraic datatypes remained an unanswered question.

The main contribution of this paper is an affirmative an-
swer to this question. The main challenge in proving polite-
ness is producing a witness function that preserves equiva-
lence but allows for minimal satisfying models. We intro-
duce a witness function that essentially “guesses” the right
constructors of variables without an explicit constructor in
the formula. We show how to “shrink” any model of a for-
mula that is the output of this function to obtain a minimal
model. The witness function, as well as the model construc-
tion, can be used by any SMT solver that includes the theory
of datatypes and implements polite theory combination. We
introduce and use the notion of additive witnesses, which al-
lows us to prove politeness and conclude strong politeness.
We further study the theory of datatypes beyond politeness
and extend a decision procedure for a subset of this theory
presented in [Chocron ef al., 2020] to support the full theory.

2 Datatypes and Politeness

2.1 The Theory of Datatypes

We use the definition of the theory of algebraic datatypes as it
appears in the SMT-LIB 2 standard [Barrett ez al., 2010]. Our

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)
Sister Conferences Best Papers Track

formalization is based on [Barrett er al., 2007], but adjusted
to suit our investigation of politeness. For formal definitions,
we refer the reader to [Sheng et al., 2020]. Here we provide
only a summary of the definitions.

A signature X consists of sort, function and predicate sym-
bols. We use vars, (¢) to denote the set of variables with sort
o in formula ¢. Fy, denotes the set of function symbols of
and Sy, denotes the set of sorts in X. A datatypes signature
further splits the set of sorts into a set of element sorts denoted
Elem, and a set of struct sorts denoted Struct, with finitely
many constructors (used in formulas like y = ¢(wq, ..., wg))
and selectors (used in formulas like y = s, ;(x)) as function
symbols, and testers (used in formulas like is.(x)) as predi-
cate symbols. In what follows, CO stands for the constructors
in ¥ and S€ for its selectors.

Interpretations and satisfaction are defined as usual. For
a Y-interpretation A, v denotes the interpretation of 7 in
A, where 7 can be a sort, a variable, or a function/predicate
symbol, or a set of these. A X-theory is a class of X-
interpretations.

Intuitively, the interpretations in the theory of datatypes
correspond to term models generated by the constructors. The
interpretation of testers is as expected, and the interpretation
of selectors is also as expected for terms that were built with
the corresponding constructor (otherwise, selectors are freely
interpreted). We use 7Ty to denote the theory of datatypes
based on the datatypes signature 2.

Example 1. The signature ¥;5; has sorts elem and list. Its
function symbols are cons of arity (elem x list) — list,
nil of arity list, car of arity list — elem and cdr of
arity list — list. [Its predicate symbols are is,; and
iScons, both of arity list. It is a datatypes signature, with
Elem = {elem}, Struct = {list}, CO = {nil, cons} and
SE = {car, cdr}. car represents the head of the list and cdr
represents its tail. nil represents the empty list.

In the theory of datatypes, a sort o is inductive if for any
natural number k, there is a term with sort o that applies k
nested constructors. We call such a term a struct term with
depth k. For example, cons(a, cons(a, cons(a,nil))) has
depth 3. A non-inductive sort is called finite.

2.2 Politeness

Given two theories 17 and 75, polite theory combination re-
quires that 77 and 75 agree on the cardinality of their respec-
tive models, and also there must be an agreement between T}
and 7% on the interpretation of formulas built over the equal-
ity symbol. The following definition will be useful.

Definition 1 (Arrangement). Let V be a finite set of variables
whose sorts are in S and {V,, | o € S} a partition of V such
that V,, is the set of variables of sort o in V. We say that a for-
mula 6 is an arrangement of V if 6 = A\, c5(A . yyep, (z =
Y) A Nayyer, (@ # y)), where E; is some equivalence re-
lation over V,, for each o € S.

Definition 2 (Smoothness). Let X be a signature, S a subset
of sorts in X, and T a X-theory. T is smooth w.r.t. S if for
every quantifier-free formula ¢, T-interpretation A |= ¢, and
Sunction k from S to the class of cardinals such that k(o) >

‘O"A‘ Jor every o € S, there exists a X-interpretation A’ that
satisfies ¢ with ‘O"AI‘ = k(o) for every o € S.

Let ¢ be a quantifier-free (QF) X-formula. We say that a
function win : QF(X) — QF(X) is a strong witness for T
w.rt. S if for every ¢ € QF (X) we have that:

1. ¢ and 3. win(¢) are T-equivalent for W =
vars(wtn(¢)) \ vars(¢); and

2. if wtn(p) A dy is T-satisfiable, for an arrangement Jy,
where V is a set of variables whose sorts are in .S, then
there exists a T-interpretation A satisfying win(¢) A oy
such that 04 = wars, (wtn(¢) A 6y)*A, forall o € S.
We also say I' = win(¢) A dy is finitely witnessed for
T w.rt. S and A is a finite witness of I" for 7' w.r.t. S.

Correspondingly, the definition of a witness for T w.rt. S
is obtained by dismissing V" and §y, and then replacing every
occurrence of win(¢) A oy with win(¢).

Definition 3 (Finitely Witnessable). The theory T s
(strongly) finitely witnessable w.r.t. S if there exists a (strong)
witness for T w.r.t. S which is computable.

Definition 4 (Polite). T is called (strongly) polite w.r.t. S if
it is smooth and (strongly) finitely witnessable w.r.t. S.

3 Additive Witnesses

It was shown in [Jovanovic and Barrett, 2010] that polite-
ness is not sufficient for the proof of the polite combination
method from [Ranise et al., 2005]. Strong politeness was in-
troduced to fix the problem. In this section we offer a simple
(yet useful) criterion for the equivalence of the two notions.
Let 3 and S denote an arbitrary signature and a subset of its
sorts, and let 7" denote an arbitrary Y-theory.

Definition 5 (Additivity). Ler f : QF(X) — QF(X). We
say that f is S-additive for T if f(f(¢) N\) and f(P) N ¢
are T-equivalent and have the same set of S-sorted variables
Jor every ¢, € QF(X), provided that ¢ is a conjunction of
flat literals such that every term in @ is a variable whose sort
is in S. When T is clear from the context, we say that f is

S-additive.
We show that additive witnesses are strong:

Proposition 1. Let win be a witness for T w.r.t. S. If win is
S-additive then it is a strong witness for T w.r.t. S.

The concept of additive witnesses will be useful in the fol-
lowing section, where we define a witness and instead of
proving that it is a strong witness, we only need to prove that
it is additive.

4 Politeness for the SMT-LIB 2 Theory of
Datatypes

Let ¥ be a datatypes signature with Sy, = Elem W Struct
and Fy = CO W SE. In this section, we prove that Ty is
strongly polite with respect to Elem. In Section 4.1, we con-
sider theories with only inductive sorts; we consider theories
with only finite sorts in Section 4.2. We combine them in
Section 4.3, where arbitrary theories of datatypes are consid-
ered. For smoothness, however, it is straightforward to show

4830

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)
Sister Conferences Best Papers Track

that the Elem domain of a given interpretation can always be
augmented without changing satisfiability of quantifier-free
formulas, for both finite and inductive sorts.

Lemma 1. 7s, is smooth w.r.t. Elem.

4.1 Inductive Datatypes

In this section, we assume that all sorts in Struct are in-
ductive. To prove finite witnessability, we now introduce an
additive witness function. Following arguments from [Ranise
et al., 20031, it suffices to define the witness only for conjunc-
tions of flat literals. Similarly, it suffices to show a function
wtn; () that is finitely witnessed for ¢ which is a conjunc-
tion of flat literals. Essentially, our witness guesses possible
constructors for variables whose constructors are not explicit
in the input formula.

Definition 6 (A Witness for 7). Let ¢ be a quantifier-free
conjunction of flat X-literals. witn;(¢) is obtained from ¢ by
performing the following steps:

1. For any literal of the form y = s.;(x) such that x =
(i, y, ub) does not occur in ¢ and = = d(uy)) does not
occur in ¢ for any i, b , Ug, we conjunctively add x =
C(TT{7 Y, 175) \ (Vd;éc T = d(@)) WithfreSh 171>a 1757 17?1’
where ¢ and d range over CO.

2. For any literal of the form is.(x) such that x = ¢()
does not occur in ¢ for any U, we conjunctively add
@ = c(W) with fresh .

3. For any literal of the form —is,(z) such that = = d ()
does not occur in ¢ for any d # c and ug, we conjunc-
tively add \/ 5, © = d(wy), with fresh .

4. For any sort 0 € Elem such that ¢ does not include a
variable of sort o we conjunctively add a literal x = x
for a fresh variable x of sort o.

The requirement for absence of literals before adding liter-
als or disjunctions to ¢ is used to ensure additivity of win,.
And indeed:

Lemma 2. wtn,; is Elem-additive.
Further, it can be verified that:

Lemma 3. Let ¢ be a conjunction of flat literals. ¢ and JW.I
are Ts;-equivalent, where T' = witn;(¢) and W = vars(T) \

vars ().

The remainder of this section is dedicated to the proof of
the following lemma:

Lemma 4 (Finite Witnessability). Let ¢ be a conjunction of
flat literals. Then, T' = win;(¢) is finitely witnessed for Ts
with respect to Elem.

Suppose that I' is Ty -satisfiable, and let A be a satisfy-
ing Ty -interpretation. We define a Ty;-interpretation B as fol-
lows, and then show that /3 is a finite witness of I" for 7T, w.r.t.
Elem. First, for every o € Elem, we set 0% = vars,, (I‘)A,
and for every variable e € vars,(T), we set €8 = e, The
interpretations of Struct-sorts, testers, and constructors are
uniquely determined by the theory. It is left to define the in-
terpretation of Struct-variables in B, as well as the interpre-
tation of the selectors (the interpretation of selectors is fixed

4831

by the theory only when applied to the “right” constructor).
We do this in several steps:

Step 1 — Simplifying I': since ¢ is a conjunction of flat liter-
als, I' is a conjunction whose conjuncts are either flat literals
or disjunctions of flat literals (introduced in Items 1 and 3
of Definition 6). Since A = T', A satisfies exactly one dis-
junct of each such disjunction. We can thus obtain a formula
I’y from T' by replacing every disjunction with the disjunct
that is satisfied by .A. Notice that A |= T'y and that it is a
conjunction of flat literals. Let I's be obtained from I'; by
removing any literal of the form is.(x) and any literal of the
form —is.(x). Let I's be obtained from I's by removing any
literal of the form # = s, ;(y). For convenience, we denote
I'; by I'". Obviously, A = T7, and I is a conjunction of flat
literals without selectors and testers.

Step 2 — Working with Equivalence Classes: We would like
to preserve equalities between Struct-variables from 4. To
this end, we group all variables in vars(I") into equivalence
classes according to their interpretation in A. Let =4 denote
an equivalence relation over vars(I") such that © =4 y iff
x4 = y*. We denote by [z] the equivalence class of =. Let
o be an equivalence class; then, ! = {2z |z €a}isa
singleton. Identifying this singleton with its only element,
we have that o* denotes a** for an arbitrary element a of the
equivalence class a.

Step 3 — Ordering Equivalence Classes: We would also like
to preserve disequalities between Struct-variables from A.
Thus, we introduce a relation < over the equivalence classes,
such that & < S if y = ¢(wy,...,w,) occurs as one of the
conjuncts in IV for some wy,...,wy, y € B, wy € « and
¢ € CO. Call an equivalence class « nullary if A |= is.(x)
for some x € « and nullary constructor ¢. Call an equiva-
lence class « minimal if § 4 « for every 3. Notice that each
nullary equivalence class is minimal. The relation < induces
a directed acyclic graph (DAG), denoted G. The vertices are
the equivalence classes. Whenever @ < (3, we draw an edge
from vertex o to 3.

Step 4 — Interpretation of Equivalence Classes: We define
o for every equivalence class «. Then, z% is simply defined
as [z]®, for every Struct-variable z. Let m be the num-
ber of equivalence classes, ! the number of minimal equiv-
alence classes, r the number of nullary equivalence classes,
and aq, ..., q,, a topological sort of G, such that all mini-
mal classes occur before all others, and the first r classes are
nullary. Let d be the length of the longest path in G. We
define oZ by induction on i.

1. If 0 < rand ¢ < r then «; is a nullary class and so we
set af” = ag“.

2. If r < ¢ < [then «; is minimal and not nullary. Let
o be the sort of variables in «;. If o € Elem, then all
variables in the class have already been defined. Oth-
erwise, o € Struct. In this case, we define o to be
the interpretation of an arbitrary struct term with depth
strictly greater than max { depth(a5) | 0 < j < i} +d
(here max () = 0).

3. If i > [then we set of = ¢(B5, ..., 35) for the unique
equivalence classes f1,...,8, C {a1,...,a;—1} and

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)
Sister Conferences Best Papers Track

¢ such that y = ¢(z1,...,2,) occurs in IV for some
Yy € a; and a1 € B1y..., Ty € Bn.

Since X is a datatypes signature in which all Struct-sorts are
inductive, the second case of the definition is well-defined.
Further, the topological sort ensures (31, . . ., 3, exist, and the
partition into equivalence classes ensures that they are unique.

Step 5 — Interpretation of Selectors: Let s,; € SE for
c:o1X...xo, 0,1 <i<nanda € oB. Ifa € is?, we
must have a = c(ay,...,a,) for some a; € of,... a, €
oB. We then set sgi(a) = a;. Otherwise, we consider two
cases. If 28 = a for some = € vars(T') such that y = s, ; ()

occurs in 'y for some y, we set s5,(a) = y®. Otherwise,

sg ;(a) is set arbitrarily.

Now that B is defined, it is left to show that it is a fi-
nite witness of I" for 7y, w.art. Elem. By construction,
0B = wars,(I')B for every ¢ € Elem. B also preserves
the equalities and disequalities in .4, and by considering ev-
ery shape of a literal in IV we can prove that B = I". Our

interpretation of the selectors then ensures that:
Lemma 5. B =T.

Lemma 5, together with the definition of the domains of B,
gives us that B is a finite witness of I" for 7y, w.r.t. Elem, and
so Lemma 4 is proven. As a corollary of Lemmas 1, 2 and 4,
strong politeness is obtained.

Theorem 1. If ¥ is a datatypes signature and all sorts
in Structy, are inductive, then Ts; is strongly polite w.r.t.
Elemsy.

4.2 Finite Datatypes

In this section, we assume that all sorts in Struct are finite.

For finite witnessability, we define the following witness,
that guesses the construction of each Struct-variables until
a fixpoint is reached. For every quantifier-free conjunction
of flat X-literals ¢, define the sequence ¢q, ¢1, . . ., such that
oo = ¢, and for every ¢ > 0, ¢;41 is obtained from ¢; by
conjoining it with a disjunction \/ .o = c(wf, ..., wy,)
for fresh wf,...,wy, , where x is some arbitrary Struct-
variable in ¢; such that there is no literal of the form
x = ¢(y1,---,Yn) in ¢; for any constructor ¢ and variables
Y1, --.,Yn, if such x exists. Since Struct only has finite
sorts, this sequence becomes constant at some ¢y.

Definition 7 (A Witness for 7x). wtng (@) is ¢i for the min-
imal k such that ¢, = Pi41.

As in Section 4.1, we have that witny is a strong witness for
Ts. w.r.t. Elem and hence:

Theorem 2. If ¥ is a datatypes signature and all sorts in
Structsy; are finite, then Ty, is strongly polite w.r.t. Elems,.

4.3 Combining Finite and Inductive Datatypes

For the general case, let ¥ be a datatypes signature. We prove
that 7y is strongly polite w.r.t. Elem by showing that there
are datatype signatures X1, X, C X such that Ty, = Tx, ©
Ts,, and then using Theorem 1 from [Jovanovic and Barrett,
2010] about the preservation of politeness when combining
polite theories.

Theorem 3. If X is a datatypes signature then Ty is strongly
polite w.r.t. Elemsy.

5 Axiomatizations

In this section, we show how to reduce any Ty -satisfiability
problem to a satisfiability problem modulo an axiomatized
theory of trees. The latter can be decided using syntactic uni-
fication [Baader et al., 2001].

Let X be a datatypes signature. The set TREET, of ax-
ioms contains all the axioms as follows for ¢, d € CO, ¢ # d:
(where free variables are implicitly universally quantified, ¢
is a non-variable term containing x that is selector-free, and
o € Struct).

Dis) c(z1,...,xn) #dY1,...,Ym)

Is1)isc(c (?))

E (Acyc) = # t[z]
EExtl 37 iSc(x) > x = 6(7)

(

(

(Is2) —isc((7

Exts) Veeco isc(w
Proj) sc,i(c(z1,..
Ing) c(z1, . ..

,xn)) = xhi € [1,7’L]
SYn) = Nisy T = Y

Let TREE+; be the set obtained from TREEST, by dismiss-
ing Fxti and Erty. TREFEY is a generalization of the theory
of Absolutely Free Data Structures (AFDS) from [Chocron
et al., 2020] to many-sorted signatures with selectors and
testers. In what follows we identify TREEs, (and TREEY;,)
with the class of structures that satisfy them when there is no
ambiguity.

1) = ey, -

Proposition 2. Every TREFES,-unsatisfiable formula is Ts-
unsatisfiable.

The following result shows that any 7x-satisfiability prob-
lem can be reduced to a TREFEy,-satisfiability problem. This
leads to a Tx-satisfiability procedure.

Proposition 3. Let X be a finite datatype signature and p any
conjunction of flat Y-literals including an arrangement over
the variables in . Then, there exists a Y-formula ¢’ such
that:

1. ¢ and Emas ¢ are Tg-equivalent, where W =
vars (') \vars(p).
2. ¢ is Tg-satisfiable iff ¢’ is TREEx-satisfiable.

Proposition 3 can be easily lifted to any conjunction of
Y-literals ¢ by flattening and then guessing all possible ar-
rangements over the variables. Further, 3 . ¢’ and ¢ are not
only Tx-equivalent but also TREFET,-equivalent. As a conse-
quence, Proposition 3 also holds when stated using TREES,
instead of 7.

6 Conclusion

In this paper, we have studied the theory of algebraic
datatypes, as it is defined by the SMT-LIB 2 standard. Our
investigation included both finite and inductive datatypes. We
have proved that this theory is strongly polite, making it
amenable for combination with other theories using the po-
lite combination method. Our proofs used the notion of ad-
ditive witnesses, also introduced in this paper. We concluded
by extending existing axiomatizations to support this theory
of datatypes.

4832

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)
Sister Conferences Best Papers Track

References

[Armando et al., 2009] Alessandro Armando, Maria Paola
Bonacina, Silvio Ranise, and Stephan Schulz. New results
on rewrite-based satisfiability procedures. ACM Trans.
Comput. Log., 10(1):4:1-4:51, 2009.

[Baader et al., 2001] Franz Baader, Wayne Snyder, Paliath
Narendran, Manfred Schmidt-Schaufl, and Klaus U.
Schulz. Unification theory. In John Alan Robinson and
Andrei Voronkov, editors, Handbook of Automated Rea-
soning (in 2 volumes), pages 445-532. Elsevier and MIT
Press, 2001.

[Barrett et al., 2007] Clark W. Barrett, Igor Shikanian, and
Cesare Tinelli. An abstract decision procedure for a theory
of inductive data types. Journal on Satisfiability, Boolean
Modeling and Computation, 3(1-2):21-46, 2007.

[Barrett e al., 2010] Clark Barrett, Aaron Stump, and Ce-
sare Tinelli. The SMT-LIB Standard: Version 2.0. In
A. Gupta and D. Kroening, editors, Proceedings of the 8th
International Workshop on Satisfiability Modulo Theories
(Edinburgh, UK), 2010.

[Bonacina and Echenim, 2007] Maria Paola Bonacina and
Mnacho Echenim. Rewrite-based satisfiability procedures
for recursive data structures. Electron. Notes Theor. Com-
put. Sci., 174(8):55-70, 2007.

[Chocron et al., 2020] Paula Chocron, Pascal Fontaine, and
Christophe Ringeissen. Politeness and combination meth-
ods for theories with bridging functions. J. Autom. Rea-
soning, 64(1):97-134, 2020.

[Gutiérrez and Meseguer, 2017] Radl Gutiérrez and José
Meseguer. Variant-based decidable satisfiability in initial
algebras with predicates. In Fabio Fioravanti and John P.
Gallagher, editors, Logic-Based Program Synthesis and
Transformation - 27th International Symposium, LOPSTR
2017, Namur, Belgium, October 10-12, 2017, Revised Se-
lected Papers, volume 10855 of Lecture Notes in Com-
puter Science, pages 306-322. Springer, 2017.

[Hojjat and Riimmer, 2017] Hossein Hojjat and Philipp
Riimmer. Deciding and interpolating algebraic data types
by reduction. In Tudor Jebelean, Viorel Negru, Dana
Petcu, Daniela Zaharie, Tetsuo Ida, and Stephen M. Watt,
editors, 19th International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing, SYNASC
2017, Timisoara, Romania, September 21-24, 2017, pages
145-152. IEEE Computer Society, 2017.

[Jovanovic and Barrett, 2010] Dejan Jovanovic and Clark W.
Barrett. Polite theories revisited. In Christian G. Fermiiller
and Andrei Voronkov, editors, Logic for Programming, Ar-
tificial Intelligence, and Reasoning - 17th International
Conference, LPAR-17, Yogyakarta, Indonesia, October
10-15, 2010. Proceedings, volume 6397 of Lecture Notes
in Computer Science, pages 402-416. Springer, 2010.
Extended technical report is available at http://theory.
stanford.edu/~barrett/pubs/JB10-TR.pdf.

[Kovécs et al., 2017] Laura Kovéics, Simon Robillard, and
Andrei Voronkov. Coming to terms with quantified rea-
soning. In Giuseppe Castagna and Andrew D. Gordon,

4833

editors, Proceedings of the 44th ACM SIGPLAN Sympo-
sium on Principles of Programming Languages, POPL
2017, Paris, France, January 18-20, 2017, pages 260-270.
ACM, 2017.

[Meseguer, 2018] José Meseguer. Variant-based satisfiabil-
ity in initial algebras. Sci. Comput. Program., 154:3—41,
2018.

[Nelson and Oppen, 1979] Greg Nelson and Derek C. Op-
pen. Simplification by cooperating decision procedures.
ACM Trans. Program. Lang. Syst., 1(2):245-257, 1979.

[Ranise et al., 2005] Silvio Ranise, Christophe Ringeissen,
and Calogero G. Zarba. Combining data structures with
nonstably infinite theories using many-sorted logic. In
Bernhard Gramlich, editor, Frontiers of Combining Sys-
tems, Sth International Workshop, FroCoS 2005, Vienna,
Austria, September 19-21, 2005, Proceedings, volume
3717 of Lecture Notes in Computer Science, pages 48—64.
Springer, 2005. Extended technical report is available at
https://hal.inria.fr/inria-00070335/.

[Reynolds and Blanchette, 2017] Andrew Reynolds and Jas-
min Christian Blanchette. A decision procedure for
(co)datatypes in SMT solvers. J. Autom. Reasoning,
58(3):341-362, 2017.

[Reynolds et al., 2018] Andrew Reynolds, Arjun
Viswanathan, Haniel Barbosa, Cesare Tinelli, and
Clark W. Barrett. Datatypes with shared selectors. In
Didier Galmiche, Stephan Schulz, and Roberto Sebastiani,
editors, Automated Reasoning - 9th International Joint
Conference, IJCAR 2018, Held as Part of the Federated
Logic Conference, FloC 2018, Oxford, UK, July 14-17,
2018, Proceedings, volume 10900 of Lecture Notes in
Computer Science, pages 591-608. Springer, 2018.

[Sheng er al., 2020] Ying Sheng, Yoni Zohar, Christophe
Ringeissen, Jane Lange, Pascal Fontaine, and Clark W.
Barrett. Politeness for the theory of algebraic datatypes.
In Nicolas Peltier and Viorica Sofronie-Stokkermans, edi-
tors, Automated Reasoning - 10th International Joint Con-
ference, IJCAR 2020, Paris, France, July 1-4, 2020, Pro-
ceedings, Part I, volume 12166 of Lecture Notes in Com-
puter Science, pages 238-255. Springer, 2020.

http://theory.stanford.edu/~barrett/pubs/JB10-TR.pdf
http://theory.stanford.edu/~barrett/pubs/JB10-TR.pdf
https://hal.inria.fr/inria-00070335/

	Introduction
	Datatypes and Politeness
	The Theory of Datatypes
	Politeness

	Additive Witnesses
	Politeness for the SMT-LIB 2 Theory of Datatypes
	Inductive Datatypes
	Finite Datatypes
	Combining Finite and Inductive Datatypes

	Axiomatizations
	Conclusion

