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Abstract

This paper presents a radio-frequency (RF) based
assistive technology for voice impairments (i.e.,
dysphonia), which occurs in an estimated 1% of
the global population. We specifically focus on
acquired voice disorders where users continue to
be able to make facial and lip gestures associated
with speech. Despite the rich literature on assistive
technologies in this space, there remains a gap for
a solution that neither requires external infrastruc-
ture in the environment, battery-powered sensors
on skin or body-worn manual input devices. We
present RFTattoo, which to our knowledge is the
first wireless speech recognition system for voice
impairments using batteryless and flexible RFID
tattoos. We design specialized wafer-thin tattoos at-
tached around the user’s face and easily hidden by
makeup. We build models that process signal varia-
tions from these tattoos to a portable RFID reader to
recognize various facial gestures corresponding to
distinct classes of sounds. We then develop natural
language processing models that infer meaningful
words and sentences based on the observed series
of gestures. A detailed user study with 10 users re-
veals 86% accuracy in reconstructing the top-100
words in the English language, even without the
users making any sounds.

1 Introduction

This paper seeks to develop an RF-based assistive technology
for persons with voice impairments. In the US, more than 2
million people require digital Adaptive Alternative Commu-
nication (AAC) methods to help compensate for speech im-
pairments . While various classes of voice impairments exist,
we target acquired conditions where users continue to be able
to make facial and lip gestures associated with speech. We
aim to learn these gestures over time to produce speech in
real-time. Our approach applies to a wide range of temporary
and permanent acquired dysphonia (voice disorders) ranging

*Contact Author, jingxian@cmu.edu; The title of the original pa-
per is “RFID Tattoo: A Wireless Platform for Speech Recognition”
which appears in ACM UbiComp 2020.
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from hoarseness to complete loss of voice that occurs in about
1% of the global population.

While there is rich literature on assistive input-to-speech
technologies for speech impairments, state-of-the-art solu-
tions suffer important limitations. Camera-based [Hassanat,
2014; Delmas et al., 2002; Agrawal et al., 2016] visual solu-
tions for real-time lip-reading require users to constantly be
within line-of-sight of a camera, which may not be possible
when the user is on the move. Audio-based assistive solu-
tions [Muda et al., 2010] only apply to speech impairments
where users are able to produce sounds and struggle in noisy
environments. Past work has proposed a variety of face-worn
sensors for speech sensing, particularly in clinical settings,
such as magnets attached to the tongue [Bedri et al., 2015],
EEG helmets [Suppes et al., 1997] and EMG electrodes on
the face [Janke and Diener, 2017]. Assistive text-to-speech
innovations require users to provide constant manual input to
the system via keypads or various user interfaces that require
training and practice for proficiency. There remains a gap
for an everyday intuitive assistive technology for voice im-
pairments that does not require external infrastructure, bulky
sensors on the face or manual hand input.

We present RFTattoo, the first wireless speech recognition
platform for voice impairments through skin-friendly, wafer-
thin, battery-free and stretchable RFID tattoos. We fabricate
specialized light RFID tattoos attached to the skin surface of
face at known locations. Each tag is fabricated to be stretch-
able, flexible, wafer-thin, extremely light and made with hy-
poallergenic materials. The tags are designed to be hidden un-
der makeup and extremely skin-friendly. We track the strain
of individual tags over time as they deform in response to
motions generated by different intended sounds. However, it
is often the case that certain distinct sounds produce similar
facial movements. To this end, we build natural language pro-
cessing models that combine identified facial gestures in con-
text to construct meaningful words and sentences. A detailed
user study with 10 users reveals 86% accuracy in recognizing
the top-100 words in the English language.

RFTattoo’s first challenge is to process signals from RFID
tattoos to recognize distinct facial and lip gestures called
visemes' [Fisher, 1968], that correspond to sounds the user

'A viseme is a set of phonemes that look the same, for example,
when lip reading.
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intends to express. RFTattoo recognizes visemes by mod-
eling the pure stretch of the flexible tag antenna. An intu-
itive approach to model tag stretch to infer its impact on the
frequency at which it resonates. Specifically even a small
change, say one millimeter, in the electrical length of an an-
tenna lowers its resonant frequency by as much as 8§ MHz in
our experiments. Unfortunately, RFID tags in the U.S. oper-
ate in the FCC’s unlicensed 900 MHz band with an effective
bandwidth of 26 MHz. This makes it challenging to accu-
rately capture the large frequency shifts induced by stretch.
More importantly, requiring an RFID reader to hop through
all frequencies even within the unlicensed band would be
too time-consuming (~ few seconds) to recognize real-time
speech.

RFTattoo addresses this challenge by probing multiple spe-
cially tuned RFID tags instead of probing multiple frequen-
cies at the reader. In particular, we design an RFID tag that
advertises the bits of its own current stretch value even if it is
probed at one frequency (e.g. 915 MHz). Our approach to do
so attaches multiple RFID chips to a common antenna, each
tuned to multiple sets of specially chosen frequencies.

A second challenge RFTattoo must address is the dynamic
radio environment — changing orientation of the RFID tags,
multipath reflections as well as movement of the user’s body.
RFTattoo achieves this through a novel tag antenna design
that isolates the impact of stretch from other aspects pertain-
ing to the radio environment. Specifically we fabricate two
co-located RFID antennas with two materials — one stretch-
able and one non-stretchable. We then compare the signals
received across both RFID tags to isolate any effect from the
tag location, orientation and radio environment.

Finally, RFTattoo builds a natural language processing
framework to map stretch values of tattoos placed at differ-
ent points in the face to recognize words and sentences the
user intends to speak. A key challenge in this regard is the
fact that some sounds produce identical facial and lip gestures
(visemes) and therefore cause a high degree of ambiguity in
the recognized phonemes. RFTattoo addresses this through
two approaches. First, RFTattoo monitors subtle movements
of the user’s tongue through its impact on the magnitude and
phase of the RFID tags on the skin’s surface. We show how
this allows for disambiguation of certain phonemes that pro-
duce identical facial movement. Second, RFTattoo leverages
a useful property commonly exploited in natural language
processing — the fact that adjacent phonemes are not com-
pletely independent but must follow the English dictionary
and rules of grammar. Sec. 5 describes our approach to rec-
ognize common words and sentences at high accuracy, based
on these observations.

Limitations: We emphasize a few important limitations
of RFTattoo: (1) RFTattoo achieves highest accuracy when
the location of RFID tags on the face are known through a
light-weight calibration a priori. This means that for opti-
mal performance, one must re-calibrate should RFTattoo tags
be peeled off and on, or with natural wear. (2) RFTattoo
may miss visemes should specific tags be unresponsive ow-
ing to shadowing from the body relative to the reader. (3)
RFTattoo’s accuracy is poor in the face of unknown or un-
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trained words (e.g. less common words and proper nouns).
This is a common problem shared by voice recognition sys-
tems [Johnson, 2019] (e.g. Siri, Alexa, etc.) as well as visual
lip reading systems [Hassanat, 2014; Agrawal et al., 2016;
Assael et al., 2016].

We implement RFTattoo by building custom tag antennas
using stretchable Ag-PDMS conductors on PDMS substrates
connected to three RFID chips. We use a meander-line an-
tenna appropriately impedance tuned to respond at the 900
MHz ISM band. We use commodity Impinj RFID readers at-
tached to the user’s waist. Our system is attached to the user’s
face using hypoallergenic stickers and covered with makeup.
We conduct a detailed user study with 10 users including two
users with temporary dysphonia (loss of voice). We also in-
clude results when all users are instructed to mouth words
silently. Our results reveal that:

* RFTattoo achieves a median accuracy in stretch of 1.4
mm.

* RFTattoo distinguishes between eleven visemes of the
English language at an accuracy of 90%.

* RFTattoo recognizes the most frequently used 100
words of the English language at an accuracy of 86%.

Contributions: Our main contribution is a novel system
that recognizes intended speech of users with voice impair-
ments using light-weight RFID tattoos attached to the face.
Our contributions include:

* Algorithms that recognize subtle mm-accurate stretches
of the tattoos as well as movement of the tongue by pro-
cessing RF-backscatter signals at a handheld reader.

* A natural language processing framework that recog-
nizes various facial gestures associated with speech to
construct meaningful words and sentences.

* A detailed user study that reveals the promise of our ap-
proach in recognizing intended speech, even when users
do not make any sounds.

2 Primer on RFID Tags

RFID tags are widely used in our daily life, for example, ID
cards, contactless key fobs, baggage trackers in airports, and
clothing tags in warehouses and markets. RFID tags are bat-
teryless; they rely on a nearby wireless energy source (RFID
reader) to operate and send information back to the reader.
The communication range of passive RFID tags is limited —
at most 5 to 10 meters. Recent work develops a long-range
RFID system that extends the range by 8 times [Wang er al.,
2019b]. While commercial RFID tags are usually used for as-
set tracking and person identification, many new applications
are developed in the wireless research community. Prior work
has shown that commercial RFID tags can be used for body
skeleton tracking [Jin et al., 2018al, shape sensing [Jin et al.,
2018b], everyday object localization [Wang et al., 2021], etc.
In this paper, we design and build a new type of passive RFID
tag that is stretchable and skin-friendly.
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Figure 1: RFTattoo’s Architecture: (1) measures the wireless channel of RFID tattoos; (2) infers stretch bits and tongue position based on
the reflected signal power and phase of multiple three-chip RFID tattoos; (3) feeds the features into machine learning models to recognize
corresponding facial gestures (viseme); images show the corresponding viseme from the GRID dataset [Cooke et al., 2006]; (4) combines
visemes to form meaningful words and sentences by natural language processing.

3 Overview of RFTattoo

(1) Inferring RFID stretch and tongue position: RFTat-
too actively measures the stretch of each RFID tag and the
position of the tongue — two key aspects that help recog-
nize speech. RFTattoo infers stretch by monitoring its effect
on impedance due to the fact that a stretched tag is longer
and thinner. RFTattoo specifically measures the frequency
response, i.e. the change in magnitude of the reflected sig-
nal across frequencies to study this effect. We measure this
property accurately and in real-time despite the limited band-
width of commercial reader. We further show how RFTattoo
can also infer the position of the tongue through its effect on
RFID impedance.

(2) Processing speech: Given the stretch of individual RFID
tags, RFTattoo fuses these measurements to infer visemes,
that are visual gestures of the face produced by different syl-
lables pronounced by the user. We note that some visemes
can be produced by multiple sounds, (e.g. ’thee” and “tea”
are indistinguishable visually). We show how we can disam-
biguate many such sounds using the position of the tongue.
Sec. 5 describes our system that borrows from natural pro-
cessing techniques to fuse the resulting phoneme measure-
ments into meaningful words and sentences.

4 Processing RFTattoo Signals
4.1 Inferring Tag Stretch

Our key approach to monitor tag stretch measures the change
in impedance as a result of the tattoo elongating. Specifi-
cally, as tattoos are stretched, its effecting width decreases
and length increases, both of which increases its resistance
and reactance. In effect, this causes a change in the resonant
frequency of the RFID tag.

Why does resonant frequency shift with stretch?: The
resonant frequency of an antenna is the frequency, where the
amplitude is higher than at adjacent frequencies. Stretch-
ing an RFID tag changes its antenna’s electrical length and
therefore its resonant frequency. Specifically, as the antenna
length increases, the wavelength at which it resonates also
increases meaning that the resonant frequency will shift to-
wards lower frequencies. Mathematically, the resonant fre-
quency of a half-wave dipole antenna is written as [Bhartia et
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al., 1991]:
c 1
2\/ec L+ L,

where L is the effective length of the half-wave dipole an-
tenna and the L. is the effective elongation of the antenna as
stretching, ¢, is the effective relative permittivity of the an-
tenna substrate and c is the speed of light in free-space. The
€. can be estimated using the method mentioned from [Jack-
son and Alexopoulos, 1986]. From this equation, we can see
the resonant frequency is inversely proportional to its electric
length leading to a very simple approach to infer stretch once
electric length is found accurately.

Using the principle above, RFTattoo infers the stretch by
monitoring the frequency responses of the tags. We would
like to refer our full paper that describes the approach in
greater details. RFTattoo further measures the tag locations
and the tongue positions using the phase and amplitude of the
tag signals [Wang ef al., 2019al.

fres = (1)

5 From RF Signals to Speech

RFTattoo synthesizes speech by processing the stretch, loca-
tion and tongue position of various points in the skin obtained
from the RFID tag signals. It first uses this information to
classify between various facial gestures called visemes that
are unique to different sounds. RFTattoo then borrows from
the rich literature on text-to-speech in natural language pro-
cessing to synthesize speech in real-time.

5.1 Characterizing Visemes

A viseme is a unit of visual speech — more specifically, the
visual equivalent of a phoneme (a unit of sound in speech
recognition). Each viseme represents the shape of the face
when the user attempts to speak a particular phoneme [Fisher,
1968]. Past work on automated lip-reading have widely
used visemes to recognize speech based on video input[Bear,
2017]. Recognizing shorter visemes as opposed to longer
speech segments has several advantages such as needing less
training effort and generalizing well for different speaker
identities (speaking styles, accents, etc.).

Choice of visemes: Phonemes map many-to-one to visemes,
because many phonemes can not be distinguished using only

visual cues (e.g. ”p” vs. “m” sounds). Phoneme-to-viseme
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mappings have been constructed mainly by two approaches:
linguistic and data-driven. In this paper, we use the map
from [Lee and Yook, 2002] obtained through a hybrid linguis-
tic and data driven approach — a relatively sparse set which
worked well experimentally (see Sec. 6). This map is com-
posed by 38 phonemes and 11 classes (plus a silence class).

Viseme classification: To classify the different viseme sets,
we use the resonant frequency shift property of the RFID tat-
too tag. RFID tattoos are attached to 4 different locations on
the persons face: above the upper lip, below the lower lip, the
left cheek and the right cheek. As the person utters the dif-
ferent phoneme sounds, these tags are stretched by different
amounts resulting in diverse set of resonant frequencies.

5.2 Speech Synthesis

Now we aim to synthesize the speech that the user intends
to speak. At each unit of time, we predict a list of phoneme
candidates, derived from the viseme mapping, as well as their
likelihood scores. The likelihood scores are obtained by our
machine learning model, which outputs the predicted viseme
with corresponding probabilities for all possible visemes.
Using these phoneme candidates, we can reconstruct words
with ambiguities. We note that despite the 90% accuracy in
viseme classification and even upon accounting for tongue
position, the ambiguity of the phonemes could significantly
impact speech reconstruction accuracy.

To address this, RFTattoo draws from a salient advan-
tage of natural language processing — adjacent phonemes and
words are not independent — they are limited by the English
dictionary and rules of grammar. We leverage this fact to
disambiguate the recognition results and recognized the tran-
script of what the user intends to speak. Finally, we synthe-
size the speech using a public text-to-speech API?.

During the operation, our recognition algorithm will pro-
duce a prediction stream that contains the recognition result
and the corresponding time windows. Each recognition result
1, consists a list of phoneme candidates rjc;, rico, .. and as-
sociated likelihoods 711, rilo, ...

Word & sentence segmentation: To perform speech recog-
nition, we first organize the recognized phonemes into words
and sentences, based on their recorded time stamps. Here,
a word is comprised of phonemes, and words compose a
sentence. The lengths of pauses between in-word syllables,
words, and sentences often vary. We run a pilot study with
four participants and empirically determine the pause thresh-
olds for both word-level separation and sentence level sep-
aration. If the pauses between multiple adjacent phonemes
are smaller than the word/sentence threshold, we group these
phonemes into the same word/sentence.

On-the-fly word disambiguation: Next, for each set of
phonemes constituting a word, we derive a set of most likely
word candidates using a pronouncing dictionary [Group,
2019]. A pronouncing dictionary defines the mapping be-
tween sequences of phonemes and words. We then need to
select one word from each group to assemble the final sen-
tence. Choosing the words randomly, or even the most likely

>https://cloud.google.com/text-to-speech/
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word per phoneme sequence often results in gibberish, since
the words may not form meaningful sentences in combina-
tion. Leveraging this fact, we build a Bayesian model to eval-
uate the naturalness of the sentence formed by different word
sequences. Let N (wg|w1, wa, ..wk_1) denote the naturalness
score of choosing the word w,, among a group G, given that
the prior sequence wj, ws, ..wy—1 is determined. The selec-
tion of the incoming word W, is equivalent to finding word
that can maximize:

wy, = argmax N (wi|wy, wa, . wi—1) * l(wg)  (2)
wy

where [(wy,) is the word likelihood score from the earlier
viseme recognition.

We use a co-occurrence relation to measure the natural-
ness. We count the frequencies of m consecutive words ap-
pear in a large document collection, and use these frequencies
to indicate the naturalness. In other words, the more common
the word sequence is, the more natural the sequence would
be. We measure the co-occurrence in a sliding window of m
consecutive words.

m

N(wr|wr, wa, wg—1) = Hp(wk,wk—l, oy We—m41) (3)
1

where p(wg, Wg—1, .., Wg—m+1) 18 the non-zero frequency of
these consecutive words in a large document collection. If
we cannot find a specific consecutive word sequence in the
corpus, We set p = le™3 to avoid multiplication by zero.
Our implementation sets m = 3 and measures the frequency
in Cornell Movie Dialog Corpus [Danescu-Niculescu-Mizil
and Lee, 2011]. While our approach is simple and easy to
reproduce, a more specific and contextual corpus, such as in-
cluding sentences used most commonly in daily conversation
can improve performance.

6 Results

We evaluate the performance of our speech recognition
system at three different levels: viseme, word and sen-
tence [Wang et al., 2019a]. We present the accuracy in sen-
tence construction below:

Method: We conducted a pilot experiment for the sentence
construction in a regular office space.

Result: We first observe that for the 20 commonly used
sentences in day-to-day use known to our system, RFTat-
too shows an average of 91% accuracy. In contrast, the
raw recognition accuracy for sentences unseen by RFTattoo
is 35.7%. Integrating natural language processing based cor-
rection further boosts the average accuracy to 53.2%. We
note that this is within the performance range for unknown
sentences of state-of-the-art vision-based lip-reading soft-
ware that requires line-of-sight (e.g. 46.8% in [Chung et al.,
2017]1). We also find that RFTattoo works better for longer
sentences, which contains more contextual information. Our
results reveal that RFTattoo holds promise in reconstructing
sentences for users with voice impairments. Our accuracy can
be further improved over time with more data to tune to the
user’s particular speaking habits.
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