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Abstract
Network representation learning aims at transfer-
ring node proximity in networks into distributed
vectors, which can be leveraged in various down-
stream applications. Recent research has shown
that nodes in a network can often be organized in
latent hierarchical structures, but without a particu-
lar underlying taxonomy, the learned node embed-
ding is less useful nor interpretable. In this work,
we aim to improve network embedding by model-
ing the conditional node proximity in networks in-
dicated by node labels residing in real taxonomies.
In the meantime, we also aim to model the hier-
archical label proximity in the given taxonomies,
which is too coarse by solely looking at the hierar-
chical topologies. Comprehensive experiments and
case studies demonstrate the utility of TAXOGAN.

1 Introduction
Representation learning has become the backbone of various
tasks in artificial intelligence [Bengio et al., 2013; Yang et al.,
2020b]. Unsupervised learning is often the default setting due
to the desired generalizability. However, many recent works
in various fields have demonstrated the profit of leveraging
limited label data to learn representations that are not only
powerful for the corresponding predictive objectives, but also
transferrable to other related tasks. Among them, hierarchical
labels residing in given taxonomies have been widely used
for natural language processing and bioinformatics, which
are especially useful for the tasks of hypernym modeling and
hierarchical classification [Wehrmann et al., 2018; Peng et
al., 2018; Alsuhaibani et al., 2018; Nguyen et al., 2017;
Vulić and Mrkšić, 2018]. In their essence, these methods
jointly learn the representations of objects and labels in a
shared latent space. The objects they model often have rich
features, but they do not directly interact with each other.

As for representation learning on networks of intercon-
nected objects (nodes), intensive research has been done on
∗Full version of this paper was originally published at the 2020

IEEE International Conference on Data Mining (ICDM) and re-
ceived the Best Paper Award ([Yang et al., 2020c]).
†Corresponding author

the modeling of both plain networks without node features
[Yang et al., 2018; Perozzi et al., 2014; Tang et al., 2015b;
Wang et al., 2018; Dai et al., 2019; Gao et al., 2019]
and content-rich networks with node attributes and/or labels
[Yang et al., 2017; Meng et al., 2019; Huang et al., 2017a;
Kipf and Welling, 2017; Hamilton et al., 2017; Yang et
al., 2020a]. Recently, the notion of taxonomy has been
explored by pioneering research [Nickel and Kiela, 2017;
Ma et al., 2018], which assume and seek for the latent hier-
archical structure underlying the seemingly flatly connected
nodes. However, without proper reference to a particular un-
derlying taxonomy, the learned network embedding is still
limited to global network mining tasks and uninterpretable
without further analysis [Liu et al., 2018].

Thanks to the vast effort in taxonomy construction from
both the research community [Zhang et al., 2018; Park et
al., 2017; Wang et al., 2015; Downey et al., 2015; Yang et
al., 2019] and industry123, increasing amount of network data
nowadays can be readily associated with existing taxonomies,
which provides great opportunities for enhancing network
embedding and enabling novel network mining tasks. Mean-
while, the rich relational data in networks may also help in
better modeling and interpreting the existing taxonomies.

Consider a toy example in Figure 1, which consists of an
author network and a research topic taxonomy. Author-author
links can be generated w.r.t. co-authorships, while author-
label links can be generated by keyword matching between
the topic names in the taxonomy and the published papers of
the authors. In this work, we stress the importance of two
novelly observed properties, i.e., conditional node proximity
and hierarchical label proximity.

Conditional node proximity. While existing works on net-
work embedding mostly consider network proximity within
the same set of nodes, we argue that node proximity should
be conditionally measured within the proper context. For ex-
ample, on the left side of Figure 1, consider the proximity be-
tween C. Faloutsos and J. Kleinberg (particularly, in com-
parison to that between C. Faloutsos and J. Han). When
working on Graph Mining (Graph) problems, C. Falout-

1https://feedonomics.com/amazon-category-taxonomy/
2https://www.ncbi.nlm.nih.gov/books/NBK21100/
3https://wiki.dbpedia.org/services-resources/ontology
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Figure 1: Toy example of TAXOGAN: Authors in a publication network are naturally connected to a research topic taxonomy. Through
proper modeling of conditional node proximity (on the left side) and hierarchical label proximity (on the right side), we aim to leverage
author node proximity in the network to capture topic label proximity in the taxonomy, which in turn can benefit the learning of both author
and topic representations in a closed loop.

sos and J. Kleinberg share more important coauthors like
J. Leskovec, thus resulting in a smaller distance. However,
when working on broader problems in Data Mining (DM),
they find their own coauthors like S. Mullainathan and J.
Han from different fields, hence resulting in a larger distance.
As such, under different conditions, node proximity can be
rather different and even contradictory.

Hierarchical label proximity. Although we assume the ex-
istence of given taxonomies for particular networks, where
node labels are organized in tree-structured hierarchies, the
actual distribution and relative distance of these labels in the
embedding space is unknown. For example, consider the four
labels CV, NLP, Rbt. and DM on the right side of Figure 1.
Although they are all child labels of the parent label AI, the
distances among these siblings as well as their distances to
AI might be rather different, which is impossible to under-
stand by solely looking at the taxonomy structure itself. In
this work, we propose to leverage the rich relational infor-
mation from the networks to model the fine-grained proxim-
ity among the hierarchical labels. Continue with our exam-
ple. Since authors working on Rbt. may overlap or collabo-
rate more with those working on CV than DM, the distance
between Rbt. and CV should be smaller than that between
Rbt. and DM. Moreover, compared with authors working on
DM, authors working on CV might more often study the core
problems of AI. As a consequence, the distance between AI
and CV should be smaller than that between AI and DM.

Present work. We propose TAXOGAN to co-embed net-
work nodes and hierarchical labels, which leverages stacked
generative adversarial nets to model the conditional node
proximity and hierarchical label proximity in networks
guided by label taxonomies. Specifically, TAXOGAN mod-
els a hierarchical network generation process, where a net-
work generator is devised at each parent label in the taxon-
omy to model the children network induced by the corre-
sponding child labels and labeled nodes in the original net-
work. Moreover, a learnable network encoder is devised at
each child label to enable the learning of proximity transfer
from the embedding spaces of children to parents in a fine-to-
abstract manner along the actual label paths in the taxonomy.
Finally, we device hierarchical adversarial learning to achieve
efficient and robust model inference.

2 TAXOGAN
We propose TAXOGAN to co-embed network nodes and hi-
erarchical labels through a hierarchical network generation
process, where a network generator is devised at each par-
ent label in the taxonomy to model the subnetwork of nodes
and child labels, and a network encoder is devised at each
child label to learn the transferrable proximity across levels in
the taxonomy. The generator and encoder are jointly trained
through efficient and robust hierarchical adversarial learning,
where a network discriminator is devised in each embedding
space to enforce correct node-node and node-label proximity.
In the following, we motivate and describe each component
of TAXOGAN in details.

Label-wise subnetwork generator: jointly model node
and label proximities in conditional subnetworks. To
properly model conditional node proximity and respect the
label hierarchy, we propose to generate a specific node-label
network under each parent (non-leaf) label in the taxonomy.
Let lp denote an arbitrary parent label in T , and Lp denote the
set of all immediate child labels of lp. Then Vp is the subset of
V consisting of all nodes with label lp or labels in Lp. A con-
ditional subnetwork Bp is constructed from Vp, Lp as well as
the node-node links Ep among nodes Vp and node-label links
Yp between nodes Vp and labels Lp.
Bp acts as a bridge between node proximity and label prox-

imity under the condition of lp. In the corresponding embed-
ding space Sp, Vp and Lp can then be arranged in a flat way.
To learn the node embedding Up and label embedding Qp

in the space of Sp, we devise a subnetwork generator G to
enforce Ep and Yp based on the softmax function as follows

G(vj , vi|lp) =
exp(upT

j · u
p
i )∑

vk∈Vp exp(u
pT
k · u

p
i )
, (1)

G(ls, vi|lp) =
exp(qpT

s · u
p
i )∑

lk∈Lp
exp(qpT

k · u
p
i )
. (2)

Following LINE [Tang et al., 2015b], we can use neg-
ative sampling to compute the softmax in Eq. 1, since the
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number of nodes |Vp| can be quite large even in the subnet-
works. However, since the number of child labels |Lp| is of-
ten quite small, we can directly compute the softmax in Eq. 2
for better label accuracy. Note that, in each conditional sub-
network, there exist no direct links among labels. Thus, the
fine-grained relative distances among child labels under each
parent label are learned based on the corresponding network
structure, which cannot be inferred from the taxonomy struc-
ture itself.
Cross-level learnable encoder: proximity transfer and pa-
rameter sharing in the taxonomy. The generator G, with-
out the consideration of label correlations and transferrable
information in the taxonomy, can either model all conditional
subnetworks essentially in a single embedding space or sep-
arately in independent spaces. The key difference lies in the
computation of Up and Qp. Since in each conditional subnet-
work Bp, we co-embed nodes Vp and labels Lp in the space
Sp, Up and Qp can be computed from U and Q in the same
way. Without loss of generality, we will focus our discussion
on the computation of Up.

Particularly, if Up = U, which is shared across all condi-
tional subnetworks, all nodes and labels are essentially flatly
arranged in a single embedding space of U, which violates
the label hierarchy, resulting in clutter embedding space and
underfitting. Otherwise, if we compute a completely differ-
ent Up for each conditional subnetwork, the subnetworks are
modeled in independent spaces, which ignores label correla-
tions, leading to large parameter redundancy and overfitting.

As a remedy to this trap, we propose to compute each Up

as an encoded version of U, i.e., Up = A(U, lp), so as to
essentially transfer proximities captured by different subnet-
work generators in the taxonomy. However, since the seman-
tic information in taxonomies is coarse, it is hard to decide
how to exactly transfer the proximities. For example, con-
sider the sibling labels of NLP and CV under parent AI. Since
NLP communities might be tighter than CV as including less
diverse subtopics, it should transfer stronger proximity sig-
nals. That is, in the subspace of AI, authors close in the sub-
space of NLP should be closer than those close in the sub-
space of CV. To capture such subtle semantics in the taxon-
omy, we require the encoder A to be learnable and label-
dependent. To this end, we leverage the simple but powerful
nonlinear fully connected feedforward neural network (FNN)
to model Up as

Up = A(U, lp) = ReLU(ApU) + bp, (3)

where Ap and bp are the learnable parameters in the encoder
at lp.

Learning a separate encoder function at each child label
does not really leverage the hierarchical structure of T and
still leads to large parameter spaces. To this end, we get
motivated by the idea of hierarchical image representation
learning [Huang et al., 2017b], which leverages stacked en-
coders to guide the generation of image representations from
high (abstract) to low (detailed) levels. In our scenario, since
nodes in the network are connected with labels in the taxon-
omy, they can also be described by representations at multiple
granularities [Ma et al., 2018]. Therefore, we propose to pa-
rameterizeA as nested embedding transformations following

the hierarchy paths along the taxonomy. For any label lp, let
lp → . . . → lj → li denote the path from lp to a certain leaf
label li. We have

Up = A(U, lp) = Ap(· · · Aj(U, lj) · · · , lp). (4)

Note that, the number of parameters in A grows linearly
with the number of labels |L| in the taxonomy. However,
since the main purpose for using A is to compute multi-
granularity node embeddings and separate labels on different
levels, it is reasonable to share the parameters of A among
all labels on the same levels of the taxonomy, which reduces
the model complexity of A to log |L|, and further alleviates
possible overfitting due to sparse data in certain subspaces.
Adversarial network discriminator: enable efficient
and robust learning. Through subnetwork generation and
learnable encoding, we essentially manage to partition the
whole network and taxonomy into a set of conditional sub-
networks with proper proximity transfer functions. Following
the classic heterogeneous network embedding framework of
PTE [Tang et al., 2015a], we formulate the overall objective
of TAXOGAN into

JTAXOGAN = Jvl + λ1Jvv + λ2Jll, (5)

where each of Jvv , Jvl and Jll is parameterized by the condi-
tional generators and embedding encoders defined in Eq. 1-4.

In practice, we find the joint training of generator networks
G and encoder networks A to be often inefficient and unsta-
ble. Inspired by recent advances in adversarial learning [Gui
et al., 2020], we propose to improve the efficiency and robust-
ness of model inference, by designing a novel hierarchical ad-
versarial network discriminator D. Specifically, each of Jvv ,
Jvl and Jll can be optimized through a two-player minimax
game between G andD as defined in [Wang et al., 2018], with
the corresponding designs of G andA defined in Eqs. 1-4 and
D defined as follows, which measure the log-probability of
node-node and node-label links.

D(vj , vi|lp) =
1

1 + exp(−upT
j up

i )
, (6)

D(ls, vi|lp) =
1

1 + exp(−qpT
s up

i )
. (7)

3 Experiments
3.1 Datasets
We construct four datasets of real-world networks with ex-
plicit taxonomies.
• DBLP: We collect the author network4 with the research

topic taxonomy5. Undirected uniform links in the network
are generated based on coauthorships. A label in the tax-
onomy is assigned to an author if her/his papers mentions
the keyword.

• Yelp: We collect the business network6 with the category
taxonomy7. Undirected uniform links in the network are
4https://dblp.uni-trier.de/xml/
5https://dl.acm.org/ccs/ccs flat.cfm
6https://www.yelp.com/dataset
7https://www.yelp.com/developers/documentation/v3
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Model Micro F1 Macro F1
DBLP Yelp FreeBase PubMed DBLP Yelp FreeBase PubMed

DeepWalk 11.07± 0.61 26.24± 0.84 26.41± 1.12 10.94± 1.06 13.11± 0.81 4.54± 0.97 28.11± 1.06 39.37± 0.36
GraphGAN 16.10± 0.55 26.40± 1.21 25.97± 0.85 13.68± 1.28 16.19± 0.71 4.90± 1.04 26.65± 0.43 40.35± 0.44
PTE 16.42± 0.47 33.73± 0.93 50.27± 1.40 12.71± 1.64 18.61± 0.67 5.47± 0.39 28.19± 0.31 40.74± 0.87
GraphSage 18.72± 1.18 29.06± 0.29 45.77± 0.60 12.05± 1.17 16.65± 0.72 9.43± 1.03 24.06± 0.90 36.39± 1.09
Poincare 13.87± 0.51 29.02± 1.12 30.43± 1.29 12.73± 1.90 18.49± 0.51 4.25± 1.08 28.57± 0.37 40.09± 0.33
Nethiex 10.06± 0.56 19.44± 1.53 35.39± 1.37 12.22± 1.31 13.86± 0.54 4.06± 1.03 24.75± 0.52 40.83± 0.78
TAXOGAN-sin 20.56± 0.25 34.88± 0.42 65.36± 0.59 11.81± 1.13 30.44± 0.63 13.33± 0.39 32.21± 0.32 39.86± 0.63
TAXOGAN-sep 25.80± 1.01 28.47± 1.04 63.46± 0.46 11.98± 0.42 33.37± 0.45 11.63± 0.95 29.41± 0.98 39.86± 0.74
TAXOGAN-noadv 29.52± 0.79 39.83± 1.09 65.79± 1.07 16.31± 0.22 30.13± 0.62 12.74± 0.93 31.55± 0.62 40.05± 0.98
TAXOGAN 31.97± 1.44 41.37± 0.58 65.98± 0.98 20.11± 1.41 36.42± 0.57 15.19± 0.72 36.62± 0.95 40.89± 0.63

Table 1: Performance of all compared algorithms on hierarchical node classification.

generated based on common customers who posted re-
views for both businesses. Label assignments are given
in the original dataset.

• FreeBase: We collect the entity network8 with the type
taxonomy9. Undirected uniform links in the network are
generated if two entities appear together in any triplet of
facts. Labels are assigned by retrieving the nested entity
types.

• PubMed: We collect the protein network10 with the dis-
ease taxonomy11. Undirected uniform links in the net-
work are generated if mentions of two proteins appear in
any same sentence. Labels are assigned by surface name
matching.

3.2 Performance Evaluations
Table 1 presents the performance of compared algorithms on
hierarchical node classification. The improvements of TAX-
OGAN over the second runners all passed the significance
t-test with p-value 0.01. Since the classification at each level
in the label taxonomy is multi-class, and deeper labels are
harder to be correctly predicted (if any precedent label is pre-
dicted wrong, the label path can never reach the correct label),
the absolute F1 values are all pretty low. Dataset like Yelp
has a lot of deep but narrow labels, which are hard to cor-
rectly predict, and the mistakes largely impact the macro F1,
whereas dataset like PubMed has a lot of shallow but wide
labels, and the mistakes largely impact the micro F1. Thus
the suite of datasets and metrics provides a comprehensive
evaluation towards the compared algorithms.

The baselines have varying performance across different
datasets, while PTE and GraphSage often perform better due
to the leverage of labeled data during training. By considering
latent hierarchies, Poincare and Nethiex perform better than
DeepWalk and GraphGAN in many cases, but their learned
latent hierarchies do not always perfectly match the reality
and even lead to worse performance in some cases like on
DBLP.

Overall, TAXOGAN constantly outperforms all compared
algorithms in all cases, with significant margins over the best
baseline ranging from 11% to 70%, and the scores all passed

8http://freebase-easy.cs.uni-freiburg.de/dump/
9http://dbpedia.org/page/Taxonomy

10ftp://ftp.ncbi.nih.gov/pub/taxonomy
11ftp://ftp.ncbi.nlm.nih.gov/

t-test with p-value 0.05, demonstrating its superior effective-
ness and generalizability. In particular, the improvements of
TAXOGAN are more significant when the numbers of labels
are larger and the hierarchies of labels are deeper, like with
DBLP and Yelp, which supports the appropriate design of
our model to leverage the explicit hierarchical structure of
associative labels. Note that, while the unsupervised base-
lines (DeepWalk, GraphGAN, Poincare and Nethiex) do not
have access to the node labels in the taxonomy, PTE and
GraphSage use the exact same labels as TAXOGAN. This
shows TAXOGAN to be effective in modeling hierarchical
label spaces, as we will further demonstrate in the ablation
study.

For ablation study, our TAXOGAN-sin model has close
performance towards the best baselines like PTE, because
they are indeed similar only by the difference in adversar-
ial training; our TAXOGAN-sep model does not always out-
perform TAXOGAN-sin, indicating that even if the evalua-
tion protocol of level-by-level classification may favor mul-
tiple embeddings, simply using separate embeddings is not
good enough and can harm the performance due to problems
like subnetwork sparsity and overfitting, and TAXOGAN-
sep is extremely hard to train due to redundant parameters
and large memory cost; our TAXOGAN-noadv model is the
nested space model without adversarial training, which out-
performs TAXOGAN-sep with significant margins, corrobo-
rating the effectiveness of our model design with connected
subspaces through base and transformed embeddings; our
TAXOGAN model further outperforms TAXOGAN-noadv,
directly showing the advantage of our novel hierarchical ad-
versarial training technique.

For more experiment and case study results, please refer to
our full paper published in ICDM 2020 [Yang et al., 2020c].

4 Conclusion

To the best of our knowledge, we are the first to jointly model
networks and taxonomies. By stressing the important prop-
erties of conditional node proximity and hierarchical label
proximity, we develop TAXOGAN, which computes high-
quality network embedding under the guidance of hierarchi-
cal labels, while in turn produce fine-grained label embed-
ding. Extensive experimental results and interpretable case
studies demonstrate the advantages of TAXOGAN in both tra-
ditional network mining tasks and unique novel applications.
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