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Abstract

We aim for mobile robots to function in a variety
of common human environments, which requires
them to efficiently search previously unseen tar-
get objects. We can exploit background knowl-
edge about common spatial relations between land-
mark objects and target objects to narrow down
search space. In this paper, we propose an active
visual object search strategy method through our
introduction of the Semantic Linking Maps (SLiM)
model. SLiM simultaneously maintains the belief
over a target object’s location as well as landmark
objects’ locations, while accounting for probabilis-
tic inter-object spatial relations. Based on SLiM,
we describe a hybrid search strategy that selects the
next best view pose for searching for the target ob-
ject based on the maintained belief. We demon-
strate the efficiency of our SLiM-based search strat-
egy through comparative experiments in simulated
environments. We further demonstrate the real-
world applicability of SLiM-based search in scenar-
ios with a Fetch mobile manipulation robot.

1 Introduction
Being able to efficiently search for objects in an environ-
ment is crucial for service robots to autonomously per-
form tasks [Khandelwal et al., 2017; Veloso et al., 2015;
Hawes et al., 2017]. When asked where a target object can
be found, humans are able to give hypothetical locations ex-
pressed by spatial relations with respect to other objects. For
example, a cup can be found “on a table” or “near a sink”.
Table and sink are considered landmark objects that are in-
formative for searching for the target object cup. Robots
should be able to reason similarly about objects locations, as
shown in Figure 1. Previous works [Kollar and Roy, 2009;
Kunze et al., 2014; Toris and Chernova, 2017] assume land-
mark objects are static. This assumption is invalid for dy-
namic landmark objects such as chairs. Further, there also
exists uncertainty in the spatial relations between landmark
objects and the target object, and between landmark objects
themselves. For example, a cup can be “in” or “next to” a
sink.

Figure 1: Robot tasked to find a coffee machine.

We propose the Semantic Linking Maps (SLiM) model to
account for uncertainty of objects locations as well as inter-
object spatial relations during object search. Building on
Lorbach et al. [Lorbach et al., 2014], we model inter-object
spatial relations probabilistically via a factor graph. Inferred
marginal belief from the factor graph is used in SLiM to ac-
count for probabilistic spatial relations between objects. We
describe SLiMas a Conditional Random Field (CRF) model to
simultaneously maintain the belief over target and landmark
object locations with probabilistic modeling over inter-object
spatial relations.

Using the maintained belief over target and landmark ob-
jects’ locations from SLiM, we propose a hybrid strategy for
active object search. We select the next best view pose, which
guides the robot to explore promising regions that may con-
tain the target and/or landmark objects. Previous works [Wix-
son and Ballard, 1994; Garvey, 1976; Sjöö et al., 2012;
Aydemir et al., 2011] have shown the benefit of purpose-
fully looking for landmark objects (Indirect Search) before
directly looking for the target object (Direct Search). The
proposed hybrid search strategy draws insights from both in-
direct and direct search. In our experiments, We demonstrate
the robustness of SLiMto uncertainty of object locations and
inter-object spatial relations, as well as the efficiency of the
proposed hybrid search strategy.
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2 Problem Statement
Let O = {oi|i = 1, · · · ,N} be the set of objects of in-
terest, including landmark objects and the target object
for search. Given observations z0:T and robot poses
x0:T , we aim to maintain the belief over object locations
P(OT |x0:T ,z0:T ), while accounting for the probabilistic spa-
tial relations Ri j between objects oi,o j ∈ O. For this
work, we consider the set of spatial relations to be Ri j ∈
{In, On, Contain, Support, Proximity, Disjoint}. For exam-
ple, the relation Ri j = In indicates that object oi is inside
object o j. The probabilistic spatial relations between object
oi,o j is represented by the belief over Ri j, denoted as B(Ri j).

Based on the maintained belief P(OT |x0:T ,z0:T ), the robot
searches for the target object by selecting the next best view
pose ranked by an utility function U : τ 7→ R. τ specifies
the 6 DOF of camera view pose. During object search, the
robot iterates between the belief update of objects’ locations
and view pose selection, until the target object is found or the
maximum search time is reached.

3 Semantic Linking Maps
For Semantic Linking Maps (SLiM), we consider inter-object
spatial relations, while maintaining the belief over target
and landmark objects’ locations. Building on our previous
work [Zeng et al., 2018], we probabilistically formalize the
object location estimation problem via a Conditional Random
Field (CRF). The model is now extended to account for prob-
abilistic inter-object spatial relations, as shown in Figure 2.

The posterior probability of object locations O history is
p(O0:T |x0:T ,z0:T ) =

1
Z

T

∏
t=0

N

∏
i=1

φp(oi
t ,o

i
t−1)φm(oi

t ,xt ,zt)∏
i, j

φc,B(Ri j)(o
i
t ,o

j
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where Z is a normalization constant. Robot pose xt and obser-
vation zt are known. We assume that the robot stays localized
given a metric map of the environment.

φp(oi
t ,o

i
t−1) is the prediction potential that models objects

to remain static or move with temporal coherence (varies
across object classes) during the search. φm(oi

t ,xt ,zt) is
the measurement potential that accounts for the observation
model, and zt = {zi

t |i = 1, · · · ,N} are (potentially noisy) de-
tections for each object oi at time t. We model the spatial re-
lations between objects with context potential φc,B(Ri j). Here,
we extend φc from our previous work by parameterizing it
with the belief B(Ri j) over the inter-object spatial relation be-
tween oi,o j,

φc,B(Ri j) = ∑
r
B(Ri j = r)φc,r(oi

t ,o
j
t ,Ri j = r) (2)

where r can take any value in the set of possible relations
{In, On, Contain, Support, Proximity, Disjoint}. Please refer
to the full paper [Zeng et al., 2020] for more details on each
potential function.

3.1 Inference
We propose a particle filtering inference method for main-
taining the belief over object locations. Instead of estimat-
ing the posterior of the complete history of object locations

Figure 2: CRF-based SLiM model: (a) Known: {xt} robot poses,
{zt} sensor observations; Unknown: Ot = {o1

t , · · · ,oN
t }. (b) Plate

notation: at time t, the spatial relations between objects oi,o j is pa-
rameterized by the belief over their spatial relations B(Ri j).

p(O0:T |x0:T ,z0:T ), we recursively estimate the posterior prob-
ability of each object oi

t ∈ Ot , similarly to [Zeng et al., 2018;
Limketkai et al., 2007]. Please refer to the full paper [Zeng et
al., 2020] for more details on the particle filtering algorithm.

3.2 Probabilistic Inter-Object Spatial Relations
To get the belief over inter-object spatial relations B(Ri j) for
each object pair oi,o j ∈ O, we use a factor graph by building
on preceding work by Lorbach et al [Lorbach et al., 2014].
We generalize [Lorbach et al., 2014] by relaxing the assump-
tion on known spatial relations between landmark objects.

The factor graph G : {V,F,E} consists of variable ver-
tices V= {Ri j|∀i6= j oi,o j ∈O}, factor vertices F= {FCS,FLC}
and edges E which connect factor vertices with variable ver-
tices. Specifically, FCS : Ri j 7→ R is a unary factor that
considers commonsense knowledge on spatial relation be-
tween objects, FCS(Ri j) = Frequency(Ri j), extracted from on-
line image search engine (e.g. Flickr) by counting the fre-
quency of Ri j, similarly to [Lorbach et al., 2014]. FLC :
(Ri j,Rik,R jk) 7→ {0,1} is a triplet factor that considers logi-
cal consistency between a triplet of objects oi,o j,ok, with 1 if
consistent and 0 otherwise. For example, if oi is in o j, and o j

is in ok, then oi should be in ok to satisfy logical consistency.
We infer the marginal belief over inter-object relations B(Ri j)
through Belief Propagation [Kschischang et al., 2001].

4 Search Strategy
Based on the belief over object locations, we actively search
for the target object, by generating promising view poses and
select the best one ranked by a utility function. Given the
maintained particles of the target object o in section 3, we
fit Gaussian Mixture Models (GMMs) with auto selecting the
number of clusters [Figueiredo and Jain, 2002],

〈o(k)t ,α
(k)
t 〉 ∼ 〈N (xn,Σn),ωn〉 (3)

4.1 View Pose Generation
For each Gaussian componentN (xn,Σn), we generate a set of
camera view pose candidates {τ i

n = (ci
n,ψ

i
n)}, where cn and

ψn denote the translation and the rotation of the camera re-
spectively. Initially, we sample cn evenly from a circle with a
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fixed radius around the center xn of the Gaussian component,
and assign a default value to ψn. Then, we optimize each
sampled view pose via

argmin
τn=τn

1−vn ·
xn− cn

‖xn− cn‖
s.t xn ∈ Eτn , c(τn)> 0 (4)

where vn is the view direction given τn, Eτn denotes the effec-
tive observation region of the target object at camera pose τn,
and c : τ 7→ R is a function that computes a signed distance
of a configuration τ to the collision geometry of the environ-
ment.

4.2 View Pose Selection
We propose two different utility functions that trade off be-
tween navigation cost and the probability of search success.

Direct Search Utility
UDS enables direct object search, by encouraging the robot
to explore promising areas that could contain the target object
while accounting for navigation cost,

UDS(τk) = ωn +α
1

arctan(σdnav)
(5)

where ωn is the weight of the Gaussian component (as in (3))
that τk is generated from, and dnav is the navigation distance
from the current robot location to view pose τk. Parameter α

trades off between the probability of finding the target object
and the navigation cost. Parameter σ determines how quickly
the arctan(σdnav) plateaus. In our experiments, we use a A∗
based planner to compute dnav. We empirically set α = 0.1,
β = 0.4 , and σ = 0.5 such that arctan(σdnav) plateaus as dnav
goes beyond 3m.

Hybrid Search Utility
UHS enables hybrid object search, by encouraging the robot
to explore promising areas that could contain the target object
and/or any landmark object, while accounting for navigation
cost

UHS(τk) = ωn +α
1

arctan(σdnav)

+β max
j,n

CoOccur(o,o j)ω j
nI j

n

(6)

where the additional term compared to UDS acts to encour-
age the robot to also explore areas that could contain land-
mark object o j which co-occurs with the target object o with
probability CoOccur(o,o j), inspired by indirect object search
strategy [Garvey, 1976; Wixson and Ballard, 1994]. Specifi-
cally, CoOccur(o,o j) = (1−B(Rtarget, j = Disjoint)), and ω

j
n

is the weight of the n-th Gaussian component of GMMs fitted
to landmark object o j particles. And I j

n is 1 if the n-th Gaus-
sian of object o j is within the effective observation region at
camera pose τk, otherwise 0.

5 Experiments
We perform object search tasks in both simulation and real-
world environments with a Fetch robot. In the simulations,
we quantitatively benchmark methods that resemble previous

Figure 3: An simulated apartment with four rooms. There are 6
landmark objects and 3 target objects: coffee machine, laptop, cup.
Each target object has two equally possible locations.

works and our proposed method. In real-world, we demon-
strate qualitatively that the proposed method scales to real-
world applications. In both simulation and real-world, the
robot moves at most 1m/s and turns at most at 1.7rad/s.

Simulation Experiments
The simulation experiments are performed in an apartment-
like environment (10mx11m) in the Gazebo, as shown in Fig-
ure 3. Object detector returns an object detection, if the object
is in view, not fully occluded, and within the effective obser-
vation range. For large objects (e.g. sofa, fridge), mid-sized
objects (e.g. table, sink), and small objects (e.g. cup, laptop,
coffee machine), the effective observation range is 5m, 4m,
2.5m respectively. We benchmark following methods.
UDS. Uninformed direct search (Eq.5). The robot does not
account for the spatial relations between the target and land-
mark objects (omitting Eq. 2 in SLiM). This baseline repre-
sents a naive approach for object search.
IDS-Known-Static. Informed direct search (Eq.5) with a
known prior on landmark object locations. The robot assumes
that landmark objects are static. This method resembles
previous works [Kollar and Roy, 2009; Kunze et al., 2014;
Toris and Chernova, 2017].
IDS-Known-Dynamic. Informed direct search (Eq.5) with
a known prior on landmark object locations. This is similar
to IDS-Known-Static except that the robot does not assume
the landmark objects to remain static.
IDS-Unknown. Informed direct search (Eq.5) without
prior on landmark object locations. The particles for land-
mark objects are initialized uniformly across the environ-
ment. This method resembles previous works [Loncomilla
et al., 2018; Aydemir et al., 2010].
IHS-Unknown. Informed hybrid search (Eq.6) without
prior on landmark object locations.

All methods except for UDS are using the full SLiM model.
We assume that an occupancy-grid map of the environment is
given. We also assume that the room types are accurately rec-
ognized. IDS-Known-∗ methods are provided with a noisy
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Figure 4: Examples of search paths generated by each method while searching for cup. Methods from left to right: UDS, IDS-Known-Static,
IDS-Known-Dynamic, IDS-Unknown, IHS-Unknown. (Best viewed in color).

Target Object Metrics UDS IDS known, static IDS known, dynamic IDS unknown IHS unknown

Coffee Machine

Views 7.83 6.17 4.67 6.33 3.67
Search Time (s) 107 76 60 75 50
Search Path (m) 8.68 6.70 5.80 6.74 4.93
Success Rate 1.0 1.0 1.0 1.0 1.0

Laptop

Views 11.00 12.50 7.17 5.67 4.17
Search Time (s) 197 222 124 91 78
Search Path (m) 28.27 26.86 13.13 7.69 8.40
Success Rate 0.83 0.50 1.00 1.00 1.00

Cup

Views 13.17 14.50 12.67 11.83 9.00
Search Time (s) 184 229 189 185 139
Search Path (m) 22.64 29.81 23.40 19.68 13.91
Success Rate 0.83 0.33 0.83 0.83 1.00

Table 1: Benchmark results for object search in simulation experiments. Among methods that reached 100% success rate, IHS unknown
successfully found target objects within the smallest number of views and least search time.

prior on landmark object locations, to emulate the common
cases where perfect knowledge about landmark locations is
not available. For all methods, the particles for the target ob-
ject are initialized uniformly across the environment.

For each target object, we run 6 trials per method. In each
trial, the robot starts at the same location shown in Figure
3. A trial is successful if the robot finds the target object
(i.e. belief converges at the correct location) before time-
out. For each target object and each method, we measure
the number of view poses, search time, distance travelled by
the robot, and search success rate averaged across all trials.
The benchmark result is as shown in Table 1. Examples of
the resulting search path from each method are depicted in
Figure 4. As we can see, UDS is not as efficient because it
is not making use of the spatial relations between the target
and landmark objects in the environment. Given a noisy prior
on landmark object locations, IDS-Known-Dynamic outper-
forms IDS-Known-Static because it accounts for the uncer-
tainty of the landmark object locations, whereas IDS-Known-
Static is misled by the noisy prior.

Given no prior information, IHS-unknown outperforms
IDS-unknown because it encourages the robot to explore
promising regions that contain the target and/or useful land-
mark objects, whereas IDS-unknown only considers promis-
ing regions that contain the target object. With IHS-unknown,
the robot benefits from finding landmark objects which help
narrow down the search region for the target object.

Real-World Experiments
The real-world experiment is executed in an environment
(8mx8m) that consists of a kitchen and a living room. The
robot stays localized with LIDAR, and navigates with a
MPEPC path planner [Park et al., 2012]. The target object
is a cup, and landmark objects include table, sofa, coffee ma-
chine and sink. IHS-Unknown reached average success rate
of 0.7 (7 out of 10 trials). The average number of view poses,
search time and search path is 4.86, 103s, and 8.32m repec-
tively. The failure cases were due to false negative detection
of the cup due to lighting (we used Faster R-CNN [Ren et al.,
2017] trained on COCO dataset [Lin et al., 2014]). Examples
of real-world experiments with a Fetch robot is available in
online video https://youtu.be/uWWJ5aV6ScE.

6 Conclusion
In this paper we present an efficient active visual object search
approach through the introduction of the SLiM model. SLiM
simultaneously maintains the belief over target and landmark
objects locations, while accounting for the probabilistic inter-
object spatial relations. Further, we propose a hybrid search
strategy that draws insights from both direct and indirect ob-
ject search. Given noisy or no prior on landmark objects lo-
cations, we demonstrate the benefit of modeling landmark
objects locations under uncertainty in SLiM, and the hybrid
search strategy that encourages the robot to explore promis-
ing areas that can contain the target and/or landmark objects
in both simulation and real-world experiments.
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