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Abstract
We revisit residual algorithms in both model-free
and model-based reinforcement learning settings.
We propose the bidirectional target network tech-
nique to stabilize residual algorithms, yielding a
residual version of DDPG that significantly out-
performs vanilla DDPG in commonly used bench-
marks. Moreover, we find the residual algo-
rithm an effective approach to the distribution mis-
match problem in model-based planning. Com-
pared with the existing TD(k) method, our residual-
based method makes weaker assumptions about the
model and yields a greater performance boost.

1 Introduction
Semi-gradient algorithms have recently enjoyed great success
in deep reinforcement learning (RL) problems, e.g., DQN
[Mnih et al., 2015] achieves human-level control in the Ar-
cade Learning Environment (ALE, [Bellemare et al., 2013]).
However, such algorithms lack theoretical support. Most
semi-gradient algorithms suffer from divergence under non-
linear function approximation or off-policy training [Baird,
1995; Tsitsiklis and Van Roy, 1997]. By contrast, residual
gradient (RG, [Baird, 1995]) algorithms are true stochastic
gradient algorithms and enjoy convergence guarantees (to a
local minimum) under mild conditions with both nonlinear
function approximation and off-policy training. [Baird, 1995]
further proposes residual algorithms (RA) to unify residual
gradients and semi-gradients via mixing them together.

Residual algorithms, however, suffer from the double sam-
pling issue [Baird, 1995]: two independently sampled suc-
cessor states are required to compute the residual gradients.
This requirement can be easily satisfied in model-based RL
or in deterministic environments. However, even in these set-
tings, residual algorithms have long been either overlooked
or dismissed as impractical. In this paper, we aim to overturn
that conventional wisdom with new algorithms built on RA
and empirical results showing their efficacy.

Our contributions are twofold. First, we show the advan-
tages of RA in a model-free RL setting with deterministic
environments. While target networks [Mnih et al., 2015] are
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usually an important component in deep RL algorithms to sta-
bilize training [Mnih et al., 2015; Lillicrap et al., 2015], we
find a naive combination of target networks and residual al-
gorithms, in general, does not improve performance. There-
fore, we propose the bidirectional target network technique
to stabilize residual algorithms. We show that our residual
version of Deep Deterministic Policy Gradients (DDPG, [Lil-
licrap et al., 2015]) significantly outperforms vanilla DDPG
in the DeepMind Control Suite (DMControl, [Tassa et al.,
2018]) and MuJoCo benchmarks.

Second, we show the advantages of RA in a model-based
RL setting, where a learned model generates imaginary tran-
sitions to train the value function. In general, model-based
methods suffer from a distribution mismatch problem [Fein-
berg et al., 2018]. The value function trained on real states
does not generalize well to imaginary states generated by a
model. To address this issue, [Feinberg et al., 2018] train
the value function on both real and imaginary states via the
TD(k) trick. However, TD(k) requires that predictions k steps
in the future made by model rollouts will be accurate [Fein-
berg et al., 2018]. In this paper, we show that RA naturally
allows the value function to be trained on both real and imagi-
nary states and requires only 1-step rollouts. Our experiments
show that RA-based planning boosts performance more than
TD(k)-based planning in most cases.

2 Background
We consider an MDP [Puterman, 2014] consisting of a fi-
nite state space S , a finite action space A, a reward function
r : S×A → R, a transition kernel p : S×S×A → [0, 1] and
a discount factor γ ∈ [0, 1). With π : A× S → [0, 1] denot-
ing a policy, at time t, an agent at a state St takes an actionAt
according to π(·|St). The agent then gets a rewardRt+1 satis-
fying E[Rt+1] = r(St, At) and proceeds to a new state St+1

according to p(·|St, At). We use Gt
.
=
∑∞
i=t+1 γ

i−t−1Ri to
denote the return from time t, vπ(s)

.
= Eπ[Gt | St = s] to

denote the state value function of π, and qπ(s, a)
.
= Eπ[Gt |

St = s,At = a] to denote the state-action value function of
π. In the rest of this section, we use a bold capital letter to de-
note a matrix and a bold lowercase letter to denote a column
vector. We use Pπ to denote the transition matrix induced
by a policy π, i.e., Pπ[s, s′]

.
=
∑
a π(s, a)p(s′|s, a), and use

dπ to denote its unique stationary distribution, assuming the
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chain induced by Pπ is ergodic. The reward vector induced
by π is rπ[s] =

∑
a π(a|s)r(s, a).

The value function vπ is the unique fixed point of the Bell-
man operator T [Bellman, 1957]. In a matrix form, T is de-
fined as T v .

= rπ + γPπv, where v can be any vector in RN .
Here N .

= |S| is the number of states.
Policy Evaluation: We consider the problem of finding vπ

for a given policy π and use v, parameterized by w ∈ Rd,
to denote an estimate of vπ , the vector form of vπ . We
start with on-policy linear function approximation and use
x : S → Rd to denote a feature function which maps a
state to a d-dimensional feature. The feature matrix is then
X .

= [x(s1), . . . , x(sN )]T ∈ RN×d, and the value estimate is
v .

= Xw. Two commonly used objectives for learning w are
the Mean Squared Projected Bellman Error (MSPBE) and the
Mean Squared Bellman Error (MSBE):

MSPBE(w)
.
= ||v−ΠT v||2dπ , MSBE(w)

.
= ||v− T v||2dπ .

Here Π is a projection operator which maps an arbitrary
vector onto the column vector space of X, minimizing a
dπ-weighted projection error, i.e., Πv .

= Xw̄, where w̄ .
=

arg minw ||v − Xw||2dπ . With linear function approximation
and fixed features, Π is linear.

There are various algorithms for minimizing MSPBE and
MSBE. Temporal Difference learning (TD, [Sutton, 1988]) is
commonly used to minimize MSPBE. TD updates w as

w← w + α
(
Rt+1 + γv(St+1)− v(St)

)
∇wv(St),

where α is a step size. Under mild conditions, on-policy lin-
ear TD converges to the point where MSPBE is 0 [Tsitsiklis
and Van Roy, 1997]. TD is a semi-gradient [Sutton and Barto,
2018] algorithm in that it ignores the dependency of v(St+1)
on w. There are also true gradient algorithms for optimiz-
ing MSPBE, e.g., Gradient TD methods [Sutton et al., 2009].
Gradient TD methods compute the gradient of MSPBE di-
rectly and also enjoy convergence guarantees.

[Baird, 1995] proposes residual gradient algorithms for
minimizing MSBE, which updates w as

w← w− α
(
Rt+1 + γv(St+1)− v(St)

)
·
(
γ∇wv(S′t+1)−∇wv(St)

)
, (1)

where S′t+1 is another sampled successor state for St, inde-
pendent of St+1. This requirement for two independent sam-
ples is known as the double sampling issue [Baird, 1995]. If
both the transition kernel p and the policy π are deterministic,
we can simply use one sample without introducing bias. Oth-
erwise, we may need to have access to the transition kernel p,
which is usually not available in model-free RL. Regardless,
RG is a true gradient algorithm with convergence guarantees
under mild conditions.

We now expand our discussion about policy evaluation
into off-policy learning and nonlinear function approxima-
tion, where the states {St} are drawn according to a be-
havior policy µ instead of the target policy π. True gra-
dient algorithms like Gradient TD methods and RG remain
convergent to local minima under off-policy training with
any function approximator [Baird, 1995; Sutton et al., 2009;
Maei, 2011]. However, the empirical success of Gradient TD

methods is limited to simple domains due to its large vari-
ance [Sutton et al., 2016]. Semi-gradient algorithms are not
convergent in general, e.g., the divergence of off-policy linear
TD is well-documented [Tsitsiklis and Van Roy, 1997].

Semi-gradient algorithms are fast but in general not conver-
gent. Residual gradient algorithms are convergent but slow
[Baird, 1995]. To take advantage of both, [Baird, 1995] pro-
poses to mix semi-gradients and residual gradients together,
yielding the residual algorithms. The RA version of TD
[Baird, 1995] updates w as

w← w− α
(
Rt+1 + γv(St+1)− v(St)

)
·
(
γη∇wv(S′t+1)−∇wv(St)

)
,

where η ∈ [0, 1] controls how the two gradients are mixed.
Little empirical study has been conducted for RA.

Control: We now consider the problem of control, where
we are interested in finding an optimal policy π∗ such that
qπ∗(s, a) ≥ qπ(s, a) ∀(π, s, a). We use Q, parameterized
by θ, to denote our estimate of qπ . Q-learning [Watkins and
Dayan, 1992] is usually used to train Q and enjoys conver-
gence guarantees in the tabular setting. When the action space
is continuous, DDPG [Lillicrap et al., 2015] is usually used
as a continuous version of Q-learning. In DDPG, an actor
µ : S → A, parameterized by ν, is trained to output the
greedy action. DDPG updates θ and ν as

θ ← θ + α1

(
rt+1

+ γQ̄(st+1, µ̄(st+1))−Q(st, at)
)
∇θQ(st, at), (2)

ν ← ν + α2∇aQ(st, a)|a=µ(st)∇νµ(st), (3)

where α1, α2 are step sizes, µ̄, Q̄ are target networks [Mnih
et al., 2015; Zhang et al., 2021], which are synchronized with
µ,Q periodically.

DDPG is a semi-gradient algorithms. There are also true
gradient methods for control, e.g., Greedy-GQ [Maei et al.,
2010] and the residual version of Q-learning [Baird, 1995].
As with Gradient TD methods, the empirical success of
Greedy-GQ is limited to simple domains due to its large vari-
ance [Sutton et al., 2016].

3 Residual Algorithms in Model-free RL

In this section, we investigate how to combine RA and
DDPG. In particular, we consider almost deterministic envi-
ronments where the double sampling issue is not significant.

In semi-gradient algorithms, value propagation goes back-
wards in time. The value of a state depends on the value of its
successor through bootstrapping, and a target network is used
to stabilize this bootstrapping. RA allows value propagation
both forwards and backwards. The value of a state depends
on the value of both its successor and predecessor. Therefore,
we need to stabilize the bootstrapping in both directions. To
this end, we propose the bidirectional target network tech-
nique. Employing this in DDPG yields Bi-Res-DDPG, which
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Figure 1: AUC improvements of Bi-Res-DDPG over DDPG
on 28 DMControl tasks and 5 Mujoco tasks, computed as
AUCBi-Res-DDPG−AUCDDPG

AUCDDPG
.

updates the critic parameters θ as:

θ ← θ − α1

(
rt+1 + γQ̄(st+1, µ̄(st+1))−Q(st, at)

)
×
(
−∇θQ(st, at)

)
− α1

(
rt+1 + γQ(st+1, µ(st+1))− Q̄(st, at)

)
× ηγ∇θQ(st+1, µ(st+1)),

where Q̄, µ̄ are target networks and η ∈ [0, 1] controls how
the two gradients are mixed. The actor update remains un-
changed.

We compared Bi-Res-DDPG to DDPG in 28 DMControl
tasks and 5 Mujoco tasks. Our DDPG implementation uses
the same architecture and hyperparameters as [Lillicrap et al.,
2015], which are inherited by Bi-Res-DDPG (and all other
DDPG variants in this paper). For Bi-Res-DDPG, we tune
η over {0, 0.05, 0.1, 0.2, 0.4, 0.8, 1} on walker-stand and
use η = 0.05 across all tasks. We perform 20 deterministic
evaluation episodes every 104 training steps and plot the av-
eraged evaluation episode returns. In Figure 1, we report the
improvement of AUC (area under the curve) of the evalua-
tion curves. AUC serves as a proxy for learning speed (e.g.,
see Example 8.2 in [Sutton and Barto, 2018]). Bi-Res-DDPG
achieves a 20% (41%) AUC improvement over the original
DDPG in terms of the median (mean). Our DDPG baseline
reaches the same performance level as the DDPG baseline in
[Fujimoto et al., 2018] and [Buckman et al., 2018] in Mu-
joco tasks. An ablation study of Bi-Res-DDPG is provided in
[Zhang et al., 2020] to future investigate the necessity of the
bidirectional target network.

We do not expect residual updates to improve the perfor-
mance of all semi-gradient baselines. However, our results

do show that the residual update together with the bidirec-
tional target network is beneficial in many tasks. Despite the
popularity of semi-gradient methods, we do believe residual
algorithms deserve more study. The combination of residual
updates and other semi-gradient algorithms, e.g., TD3 [Fuji-
moto et al., 2018], is a possibility for future work. We also do
not address the double sampling issue in stochastic environ-
ments. This is indeed a restriction, but we would like to em-
phasize that most available benchmarks with continuous ac-
tions have deterministic transitions, which indicates that this
class of problems is of practical concern.

4 Residual Algorithms in Model-based RL
In model-based RL, the double sampling issue can be easily
addressed by querying the learned model (either determinis-
tic or stochastic). Given the empirical success of determin-
istic models and their robustness in complex tasks [Kurutach
et al., 2018; Feinberg et al., 2018; Buckman et al., 2018],
we consider deterministic models in this paper. Dyna [Sut-
ton, 1990] is a commonly used model-based RL framework
that trains a value function with imaginary transitions from a
learned model. In this paper, we consider the combination of
Dyna and DDPG. For each planning step, we sample a transi-
tion (s, a, r, s′) from a replay buffer and add some noise ε to
the action a, yielding a new action â. We then query a learned
model with (s, â) and get (r̂, ŝ′). We aim to investigate dif-
ferent strategies for updating Q during planning.

One naive choice is to use the semi-gradient critic update
(2). However, this suffers from the distribution mismatch
problem [Feinberg et al., 2018]. When we apply (2) in an
imaginary transition (s, â, r̂, ŝ′), we need the Q-value on ŝ′
for bootstrapping. The Q-function is trained to make an ac-
curate prediction on the state distribution of s, which is usu-
ally different from the state distribution of ŝ′. This distri-
bution mismatch results from both an imperfect model and
the different sampling strategies for a and â. It yields an in-
accurate prediction for Q(ŝ′, µ(ŝ′)), leading to poor perfor-
mance [Feinberg et al., 2018]. The TD(k) trick [Feinberg et
al., 2018] is one attempt to address this issue. With a real
transition (s−1, a−1, r0, s0) sampled from a replay buffer, a
model is unrolled for k steps following µ̄, yielding a trajec-
tory (s−1, a−1, r0, s0, a0, r1, s1, . . . , rk, sk). TD(k) then up-
dates θ to minimize

1
k+1

∑k−1
t=−1

(
Q(st, at)

−
(∑k

i=t+1 γ
i−t−1ri + γk−tQ̄(sk, µ̄(sk))

))2
. (4)

With this update,Q is trained on distributions of almost all the
states (s−1, . . . , sk−1), which [Feinberg et al., 2018] show
helps performance. However, TD(k) still does not train Q
on the last imaginary state sk, which is used for bootstrap-
ping. On the one hand, the influence of the bootstrapping
error from sk decreases as the trajectory gets longer thanks to
discounting. On the other hand, even small state prediction
errors typically compound as trajectories get longer, yielding
a large prediction error of the state sk itself. This contra-
diction is deeply embedded in TD(k). Consequently, TD(k)
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Figure 2: Evaluation performance for different model-based DDPG with an oracle model.

must assume the model is accurate for k-step unrolling, which
is usually hard to satisfy in practice.

In this paper, we seek to mitigate this distribution mismatch
issue through RA. For an imaginary transition (s, â, r̂, ŝ′),
RA naturally allows the Q-function to be trained on both s
and ŝ′, without requiring further unrolling like TD(k). The
use of RA in model-based planning is inspired by the the-
oretical results from [Li, 2008], who proves that TD makes
better predictions than RG. On a real transition, this accel-
erates backward value propagation by providing better boot-
strapping. However, on an imaginary transition from a model,
the value function is never trained on the imaginary succes-
sor state. It is questionable whether we should trust the value
prediction on an imaginary state as much as a real state. We,
therefore, propose to use RA on imaginary transitions, which
encourages the Q-function to be consistent with the model as
showed by [Li, 2008].

We now evaluate RA in model-based planning experimen-
tally. We compare the performance of Dyna-DDPG (i.e., use
the semi-gradient to update the critic with imaginary transi-
tions), Res-Dyna-DDPG (i.e., use residual algorithms to up-
date the critic with imaginary transitions ), and MVE-DDPG
(i.e., use the TD(k) trick to update the critic with imaginary
transitions following [Feinberg et al., 2018]). We consider
five Mujoco tasks used by [Buckman et al., 2018], which is a
superset of tasks used by [Feinberg et al., 2018]. In [Feinberg
et al., 2018], the unrolling steps of MVE-DDPG are different
for different tasks, which serve as domain knowledge. For
a fair comparison, [Buckman et al., 2018] set k = 3 for all
tasks in their baseline MVE-DDPG. In our empirical study,
we followed this convention.

To separate planning from model learning, we consider
planning with an oracle model. In this section, we restrict
our empirical study on Mujoco tasks as we do not have di-
rect access to the oracle models in DMControl tasks. We tune
hyperparameters for Dyna-DDPG and Res-Dyna-DDPG on
Walker and set η = 0.2 for all tasks. See [Zhang et al., 2020]
for more details. The results are reported in Figure 2. Curves
are averaged over 8 independent runs and shadowed regions
indicate standard errors. Both Dyna-DDPG and MVE-DDPG
with an oracle model improve performance in 2 of 5 games,
while Res-Dyna-DDPG improves performance in 4 out of 5
games. These results suggest that RA is a more effective
approach to exploit a model for planning. In HalfCheetah,
both MVE-DDPG and Res-Dyna-DDPG fail to outperform
Dyna-DDPG. This could suggest that the distribution mis-
match problem is not significant in this task. Furthermore,

MVE-DDPG exhibits instability in HalfCheetah, which is
also observed by [Buckman et al., 2018]. The results of plan-
ning with a learned model is provided in [Zhang et al., 2020],
where the relative performance is similar to that of planning
with an oracle model.

Note in Res-Dyna-DDPG, we use the naive residual algo-
rithms without the bidirectional target network. Our prelimi-
nary experiments show that introducing the bidirectional tar-
get network during planning does not further boost perfor-
mance. The main purpose of a target network is to stabi-
lize bootstrapping (value propagation). Due to the distribu-
tion mismatch problem on imaginary transitions, however, it
may be more important for the value function to be consistent
with the model than simply propagating the value in either di-
rection. This may reduce the importance of the bidirectional
target network.

5 Conclusions
In this paper, we compare two classical RL methods, RG and
TD, in both model-based and model-free settings. See [Zhang
et al., 2020] for a detailed review of related work. We pro-
pose the bidirectional target network technique to stabilize
bootstrapping in both directions in RA, yielding a significant
performance boost. We also demonstrate that RA is a more
effective approach to the distribution mismatch problem in
model-based planning than the existing TD(k) method. Our
empirical study showed the efficacy of RA in deep RL prob-
lems, which has long been underestimated by the community.
A possibility for future work is to study RA in model-free RL
with stochastic environments, where the double sampling is-
sue cannot be trivially resolved.
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