
Automatic Design of Heuristic Algorithms for Binary Optimization Problems

Marcelo de Souza
Federal University of Rio Grande do Sul

Santa Catarina State University
marcelo.desouza@udesc.br

Abstract
In this work we present AutoBQP, a heuristic solver
for binary optimization problems. It applies au-
tomatic algorithm design techniques to search for
the best heuristics for a given optimization prob-
lem. Experiments show that the solver can find
algorithms which perform better than or compara-
ble to state-of-the-art methods, and can even find
new best solutions for some instances of standard
benchmark sets.

1 Introduction
The manual design of heuristic algorithms for optimization
problems is time-consuming and often biased. First, we
choose a heuristic method and evaluate it experimentally to
determine the best algorithmic components and parameter
values. Then, we iteratively introduce new problem-specific
components and tune their parameters in order to improve
performance. In addition to the time spent in this process, the
design space is often not explored systematically, and good
heuristic strategies may be overlooked.

To minimize these problems, we propose a heuristic solver
for binary optimization problems that automatically deter-
mines the best algorithm and its parameter values. We define
a search space of heuristic components and their input param-
eters, and then apply automatic algorithm configuration tech-
niques to search for the best algorithm for a given problem.
The flexibility of this approach allows the solver to generate
hybrid heuristics of very different types for the specific prob-
lem at hand.

Previous studies use similar approaches to automati-
cally generate algorithms for different optimization prob-
lems [Stützle and López-Ibáñez, 2019]. Despite the good re-
sults reported, all of them focus on specific problems. On the
other hand, we propose a generic solver to deal with a wide
range class of optimization problems: those that represent the
solution by a binary string. This increases the applicability
of the solver and makes it an initial step for researchers inter-
ested in binary optimization.

2 Proposed Approach
The general idea behind AutoBQP is depicted in Figure 1.
In order to generate algorithms for a new problem, we need

Training
instances

Problem
description

irace
Framework

(source code)

Search space

Algorithm

A
ut

oB
Q

P

Figure 1: Structure of the AutoBQP solver.

to provide a problem description, i.e. implementations for in-
stance reading and objective function, and also a set of train-
ing instances. AutoBQP implements a framework with sev-
eral heuristic components and their input parameters, which
define the search space of algorithms. We use irace [López-
Ibáñez et al., 2016] to explore this search space, producing
the algorithm that optimizes the performance on the given
training instances.

The framework component is based on the unconstrained
Binary Quadratic Programming (BQP). Given a matrix Q =
(qij) ∈ Rn×n BQP asks to

maximize xtQx,

subject to x ∈ {0, 1}n.

We focus on BQP because several optimization problems can
be reduced to it. We extracted the heuristic components from
the state-of-the-art algorithms of BQP to build our frame-
work: the iterated tabu search (ITS) of Palubeckis [2006], the
diversity-driven tabu search (D2TS) of Glover et al. [2010],
and the path relinking recombination strategies (PR1 and
PR2) of Wang et al. [2012]. We also included common
heuristic components, like local search strategies (e.g. hill
climbing) and constructive methods (e.g. GRASP). The se-
lected components allow our solver to generate more than
3000 different algorithms.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)
Doctoral Consortium Track

4881



Instance set ITS D2TS PR1 PR2 AACP AACM AACR TS AAC1
T AAC2

T

BEASLEY 2.0 0.0 1.34 5.84 0.0 34.0 0.0 - - -
PALUBECKIS 1109.6 2082.9 457.1 690.4 186.8 2424.3 211.7 - - -
MAXCUT - - 5.6 4.7 25.0 4.4 20.3 - - -
TESTASSIGNMENT - - - - - - - 0.94 0.23 0.18

Table 1: Average absolute gap on the different instance sets. The best values for each instance set are shown in bold.

3 Experimental Results
We analyze the ability of AutoBQP to generate good heuris-
tic algorithms for different problems. Table 1 summarizes the
results of our experiments on different instance sets, present-
ing the average absolute gap from the best known solutions
of running each algorithm 20 times. We compare the algo-
rithms produced by AutoBQP (named AAC) to those from
the literature of each problem considered.

Our first experiment consists in executing AutoBQP on a
subset of the PALUBECKIS instances, producing algorithm
AACP. We observe that this algorithm reaches the best pos-
sible performance on the BEASLEY instances, as well as the
D2TS algorithm. For the PALUBECKIS instances, AACP per-
forms better than all other approaches. Our second exper-
iment considers solving the MaxCut problem. Algorithm
AACM is produced by running AutoBQP using a subset of
the MAXCUT instances. We observe that AACM is worse
than the rest on the BQP instances, but presents a slightly bet-
ter performance on the MAXCUT instances, in comparison to
the other algorithms. Algorithm AACM also found new best
solutions for 7 out of 54 instances (namely G25, G26, G27,
G28, G30, G31, and G38).

In order to find a good algorithm for BEASLEY and
PALUBECKIS instance sets, which also performs good for the
MAXCUT instance set, we executed AutoBQP using a set
of randomly generated training instances. They follow the
structure of PALUBECKIS instances, but were not selected
from their original distribution. The resulting AACR algo-
rithm still performs better than the state-of-the-art approaches
for BEASLEY and PALUBECKIS instances, and better than
AACP on the MAXCUT instances, although algorithms PR1
and PR2 present smaller gaps on MAXCUT.

Finally, our last experiment applies AutoBQP to solve the
test-assignment problem [Duives et al., 2013]. Given a set
of desks in a classroom and a set of test variants, the test-
assignment problem asks to assign tests to desks, in order to
minimize the chance of copies between students. Each pair
of desks has a physical proximity, and each pair of test vari-
ants has a similarity. The chance of copies is given by the
product of proximity and similarity. This problem is a gen-
eralization of the vertex coloring and can be modeled as an
unconstrained a binary quadratic problem using a penaliza-
tion strategy. Duives et al. [2013] present a tabu search (TS)
algorithm for solving the problem and provide a set of bench-
mark instances (TESTASSIGNMENT instance set).

After reducing the test-assignment problem to BQP, we ap-
plied AutoBQP using a subset of the TESTASSIGNMENT in-
stances for training. Two algorithms were produced by Au-
toBQP with similar performance, namely AAC1

T and AAC2
T.

As we can see in Table 1, both algorithms perform better than
the TS algorithm. AAC1

T and AAC2
T also found new best so-

lutions for 8 out of 36 instances (with the following num-
ber of desks, empty desks and tests: {47, 10, 3}, {47, 0, 4},
{47, 10, 4}, {79, 0, 3}, {79, 10, 3}, {79, 20, 3}, {79, 0, 4},
and {79, 10, 4}).

4 Concluding Remarks
We present a solver for binary optimization problems based
on automatic algorithm design techniques. It defines a search
space of components and their input parameters, and then
uses irace to search for the best combination of components
and parameter values. Our experiments show that the pro-
posed solver is able to produce algorithms competitive to
state-of-the-art approaches for different problems that can be
modeled as binary optimization. The proposed solver re-
duces the human effort in developing heuristic algorithms
and provides a baseline method for comparison with other
approaches.

As future work, we plan to extend the experiments to other
problem scenarios. We also aim at producing algorithms bet-
ter than state-of-the-art approaches by introducing new algo-
rithmic components in the solver’s framework.

References
[Duives et al., 2013] Jelle Duives, Andrea Lodi, and Enrico

Malaguti. Test-assignment: a quadratic coloring problem.
Journal of heuristics, 19(4):549–564, 2013.

[Glover et al., 2010] Fred Glover, Zhipeng Lü, and Jin-Kao
Hao. Diversification-driven tabu search for unconstrained
binary quadratic problems. 4OR: A Quarterly Journal of
Operations Research, 8(3):239–253, 2010.

[López-Ibáñez et al., 2016] Manuel López-Ibáñez, Jérémie
Dubois-Lacoste, Leslie Pérez Cáceres, Mauro Birattari,
and Thomas Stützle. The irace package: Iterated racing for
automatic algorithm configuration. Operations Research
Perspectives, 3:43–58, 2016.

[Palubeckis, 2006] Gintaras Palubeckis. Iterated tabu search
for the unconstrained binary quadratic optimization prob-
lem. Informatica, 17(2):279–296, 2006.

[Stützle and López-Ibáñez, 2019] Thomas Stützle and
Manuel López-Ibáñez. Automated design of metaheuris-
tic algorithms. In Handbook of Metaheuristics, volume
272 of International Series in Operations Research &
Management Science, pages 541–579. Springer, 2019.

[Wang et al., 2012] Yang Wang, Zhipeng Lü, Fred Glover,
and Jin-Kao Hao. Path relinking for unconstrained binary
quadratic programming. EJOR, 223(3):595–604, 2012.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)
Doctoral Consortium Track

4882


	Introduction
	Proposed Approach
	Experimental Results
	Concluding Remarks

