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Abstract

Reinforcement learning (RL) is a learning
paradigm in which an agent interacts with the
environment it inhabits to learn in a trial-and-error
way. By letting the agent acquire knowledge from
its own experience, RL has been successfully
applied to complex domains such as robotics.
However, for non-trivial problems, training an RL
agent can take very long periods of time. Lifelong
machine learning (LML) is a learning setting in
which the agent learns to solve tasks sequentially,
by leveraging knowledge accumulated from pre-
viously solved tasks to learn better/faster in a
new one. Most LML works heavily rely on the
assumption that tasks are similar to each other.
However, this may not be true for some domains
with a high degree of task-diversity that could
benefit from adopting a lifelong learning approach,
e.g., service robotics. Therefore, in this research
we will address the problem of learning to solve
a sequence of RL heterogeneous tasks (i.e., tasks
that differ in their state-action space).

1 Research Problem
Let T = (T1, ..., Ti, ..., TN ) be a finite sequence of RL
tasks (whose length is unknown by the system) that differ in
their state-action space, DL a lifelong reinforcement learning
(LRL) agent (see Fig. 1), DS a standard RL agent, C(d, Ti)
the amount of data required by agent d to learn to solve task
Ti, K(d, {..., Ti, ...}) the memory space required to store the
knowledge of agent d after it learned to solve the set of tasks
{..., Ti, ...}, and PL

i (Tj) the performance of agent DL in task
Tj after it has learned to solve task Ti, where Ti, Tj ∈ T and
j ≤ i.

Thus, this research is concerned with the analysis and de-
sign of an LRL agent DL that satisfies the following condi-
tions, ∀i ∈ [1, N ]:

1. C(DL, Ti) ≤ C(DS , Ti),

2. K(DL, {T1, ..., Ti}) ≤
∑i

k=1 K(DS , {Tk}), and

3. ∀j ∈ [1, i− 1] then PL
i−1(Tj) ≤ PL

i (Tj)

Figure 1: A lifelong learning system learns to solve tasks sequen-
tially by transferring knowledge from previous tasks and storing new
knowledge to reuse it in future tasks.

In other words, the LRL agent 1) should learn tasks at least
as fast as the RL agent, 2) it should not occupy more memory
space than the one required by multiple RL agents, and 3) it
should not forget how to solve previously learned tasks.

2 Related Work
In [Kirkpatrick et al., 2017] a method for the consolidation of
knowledge in neural networks (NN) is introduced. A single
NN is trained on a sequence of tasks. Based on the Fisher
information matrix, the learning process is slowed down in
those weights that are more important for previous tasks. Al-
ternatively, [Rusu et al., 2016] propose to instantiate a new
NN for each task the system encounters. Knowledge is trans-
ferred via lateral connections, from the hidden units of older
NNs to the NN that is currently being trained.

[Mendez and Eaton, 2020] propose to represent a set of
task-specific policies, as a factorization L · si with a ma-
trix of latent components L and a set of task-specific vectors
si. Common knowledge is transferred across tasks through
L, while si encodes the particularities of the i-th task. On
the other hand, [Lecarpentier et al., 2020] propose a pseudo-
metric based on the Lipschitz continuity between the optimal
value function of different tasks. The pseudo-metric deter-
mines which of the previous value functions is the closest to
the optimal value function of the current task, that is, the best
candidate for transferring knowledge to the current task.

In terms of scalability, with respect to the amount of
tasks, [Rusu et al., 2016] offer a quadratic growth, [Mendez
and Eaton, 2020; Lecarpentier et al., 2020] offer a linear
growth, while in [Kirkpatrick et al., 2017] the model remains
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with a constant size throughout the sequence of tasks. Re-
garding the consolidation of knowledge, [Rusu et al., 2016;
Lecarpentier et al., 2020] guarantee to remember older tasks,
since task-specific knowledge is stored separately. Whereas
in [Rusu et al., 2016; Lecarpentier et al., 2020], the capability
to retain knowledge depends on how similar tasks are. That
is, since task-specific knowledge is partially or completely
stored in a set of shared parameters, if tasks are significantly
dissimilar then conflicts between their parameters may arise,
as a consequence of striving to satisfy different goals.

3 Contributions and Expectations
With the presented research we expect to make the following
contributions:

1. An inter-task similarity measure for tasks that differ in
their state-action space.

2. A transfer learning algorithm for tasks that differ in their
state-action space.

3. A knowledge consolidating algorithm for tasks that dif-
fer in their state-action space.

4. A lifelong reinforcement learning algorithm for tasks
that differ in their state-action space.

We believe that by designing an LRL system based on the
concept of inter-task similarity, our approach will provide a
robust learning agent that is capable of exploiting common
knowledge between tasks to learn faster, as well as avoiding
harming its performance as a consequence of the dissimilar-
ities heterogeneous tasks are likely to present. Hence, our
LRL agent will remain skeptical about the similarity tasks
hold, only until they prove to be similar enough for knowl-
edge consolidation and transfer purposes.

4 Inter-Task Similarity Measure
We propose an inter-task similarity measure as the basis for
an LRL agent in heterogeneous tasks. By separating the pro-
cesses of consolidation and transfer of knowledge, we adopt
what [Silver et al., 2013] call the system approach. We pro-
pose to use the inter-task similarity measure as a heuristic
to select from which tasks knowledge should be transferred
(similar to [Lecarpentier et al., 2020]), as well to decide how
knowledge should be organized and stored. That is, based on
the similarity the latest learned task has with previous tasks,
the system will decide if they will share parameters or if the
new knowledge requires its own set of parameters, in order to
avoid harming older pieces of knowledge.

Thus, besides aiming to reduce the data required to learn
in each task by transferring knowledge, with the inter-task
similarity measure our system will strive to keep the size of
the model as small as possible without forgetting how to solve
previous tasks. Contrary to the revised literature, our system
will instantiate new parameters in an informed manner, i.e.,
only for significantly dissimilar tasks, while similar tasks can
safely share parameters.

Our inter-task similarity measure compares Q-tables to as-
sess the similarity between tasks. We evaluated the similar-
ity measure in three discrete RL tasks: Taxi domain (TX),

Similarity score Transer ratio
TX FL F8 TX FL F8

TX 0.519 0.481 0.492 - 0.358 0.059
FL - 0.496 0.463 0.994 - 1.276
F8 - - 0.512 0.992 1.167 -

Table 1: Inter-task similarity scores (higher is more similar) and
transfer ratios obtained from transferring knowledge from a source
task (rows) to a target task (columns). Transfer ratios above 1 repre-
sent an improvement of performance in comparison to learning from
scratch.

Frozen Lake (FL) and Frozen Lake 8×8 (F8)1. Table 1 shows
how the similarity measure correctly assigns a greater score
to each task with itself, as well as an improvement in perfor-
mance after transferring Q-values (with a procedure based on
our similarity measure) between FL and F8. This is reason-
able, considering that F8 is an extension of FL, where they
share the action space but F8 has a larger state space.

5 Directions for Remaining Work and
Evaluation of Success

Currently, we are focused on the development of the simi-
larity measure for heterogeneous tasks. Specifically, we are
working to extend it for tasks with continuous state-action
spaces. Based on the findings we obtain, we will incorporate
them into the design of the transfer, consolidation and LRL
algorithms. Our approach is to analyze what features are the
most relevant for transferring and consolidating knowledge,
despite a mismatch in the state-action spaces. To determine
the success of our LRL system, it must suffice the three con-
ditions presented in Section 1. Additionally, we will evaluate
experimentally the LRL agent in a wide variety of control
heterogeneous tasks, and compare it to other LRL works.
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1See https://gym.openai.com/envs/#toy text for more details.
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