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Abstract

Weakly supervised learning (WSL) refers to learn-
ing from a large amount of weak supervision data.
This includes 1) incomplete supervision (e.g., semi-
supervised learning); ii) inexact supervision (e.g.,
multi-instance learning) and iii) inaccurate super-
vision (e.g., label noise learning). Unlike su-
pervised learning which typically achieves perfor-
mance improvement with more labeled data, WSL
may sometimes even degenerate performance with
more weak supervision data. It is thus desired to
study safe WSL, which could robustly improve per-
formance with weak supervision data. In this ar-
ticle, we share our understanding of the problem
from in-distribution data to out-of-distribution data,
and discuss possible ways to alleviate it, from the
aspects of worst-case analysis, ensemble-learning,
and bi-level optimization. We also share some open
problems, to inspire future researches.

1 Introduction

Machine learning has achieved great success in numerous
tasks, particularly in supervised learning such as classifica-
tion and regression. But most successful techniques, such as
deep learning [LeCun et al., 2015], require ground-truth la-
bels to be given for a big training data set. It is noteworthy
that in many tasks, however, it can be difficult to attain strong
supervision due to the fact that the hand-labeled data sets are
time-consuming and expensive to collect. Thus, it is desirable
for machine learning techniques to be able to work well with
weakly supervised data [Zhou, 2017].

Compared to the data in traditional supervised learning,
weakly supervised data does not have a large amount of pre-
cise label information. Specifically, three types of weakly
supervised data commonly exist [Zhou, 2017].

o Incomplete supervised data, i.e., only a small subset of
training data is given with labels whereas the other data
remain unlabeled. For example, in image categorization,
it is easy to get a huge number of images fro the Internet,
whereas only a small subset of images can be annotated
due to the annotation cost.Representative techniques for
this situation are semi-supervised learning [Chapelle et
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al., 2006], which aims to learn a prediction model by
leveraging a number of unlabeled data.

e [nexact supervised data, i.e., only coarse-grained labels
are given. Reconsider the image categorization task, it is
desirable to have every object in the images annotated,
however, usually we only have image-level labels rather
than object-level labels. One representative technique
for this scenario is multi-instance learning [Carbonneau
et al., 2018], which aims to improve the performance by
considering the coarse-grained label information.

e [naccurate supervised data, i.e., the given labels have
not always been ground-truth. Such situation occurs in
various tasks when the annotator is careless or weary, or
the annotator is not an expert. For this type of label in-
formation, label noise learning techniques are one main
paradigm to learn a promising prediction from noisy la-
bel [Frénay and Verleysen, 2014].

In traditional machine learning, it is often expected that
machine learning techniques, such as supervised learning,
with the usage of more data will be able to improve learn-
ing performance. Such observation, however, no longer
holds for weakly supervised learning. There are many stud-
ies [Li and Zhou, 2015; Li et al., 2017; Guo and Li, 2018;
Oliver et al., 2018] reporting that the usage of weakly su-
pervised data may sometimes lead to performance degrada-
tion, that is, the learning performance is even worse than that
of baseline methods without using weakly supervised data.
More specifically, semi-supervised learning using unlabeled
data may be worse than vanilla supervised learning with only
limited labeled data [Li and Zhou, 2015; Li et al., 2016].
Multi-instance learning may be outperformed by the naive
learning methods which simply assign the coarse-grained la-
bel to a bag of instances [Carbonneau et al., 2018]. Label
noise learning may be worse than that of learning from a
small amount of high-quality labeled data [Frénay and Ver-
leysen, 2014]. Such phenomena undoubtedly go against of
the expectation of WSL and limits its effectiveness in a large
number of practical tasks.

Building a safe WSL, that is to say, WSL using extra
weakly supervised data will not be inferior to a simple su-
pervised learning model, it the Holy Grail of WSL [Chapelle
et al., 2006; Li and Zhou, 2015; Zhou, 2017]. Since the prob-
lem was pointed out in [Cozman ef al., 2003], there are many
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attempts trying to solve this important and challenging prob-
lem. In this article, we will review the recent developments
on safe WSL, and share our contributions on two aspects of
safe WSL:

e For WSL with in-distribution data, we proposed a gen-
eral ensemble scheme that maximize the performance
gain in the worse-case to improve the safeness of WSL.

e For WSL with out-of-distribution (OOD) data, we give a
particular focus on SSL with unseen class unlabeled data
and propose a bi-level optimization based framework to
alleviate the potential performance hurt caused by OOD
unlabeled examples.

We will also discuss some open challenges in real-world
applications that may have been less noticed and desire more
attentions.

2 Safe WSL with In-Distribution Data

WSL with in-distribution data, i.e., all supervised data and
weakly supervised data are drawn from a same distribution, is
the most natural situation. [Cozman et al., 2003] pointed out
that WSL could suffer performance degradation problem with
in-distribution data. There are multiple reasons, for example,
the adopted assumption of WSL algorithm is not suitable for
the data distribution [Chapelle et al., 2006]; there are many
candidate large-margin decision boundaries existing in semi-
supervised support vector machine (SVM) and prior knowl-
edge is insufficient to help choose the best one [Li and Zhou,
2015], and so on.

Some attempts have been devoted to this problem [Li and
Zhou, 2015; Loog, 2015; Li et al., 2017; Krijthe and Loog,
2017]. For example, [Li and Zhou, 2015] builds safe semi-
supervised SVMs through optimizing the worst-case perfor-
mance gain given a set of candidate low-density separators.
[Loog, 2015] proposes to maximize the likelihood gain over
a supervised model in the worst-case for generative models.
[Balsubramani and Freund, 2015] proposes to learn a robust
prediction given that the ground-truth label assignment is re-
stricted to a specific candidate set. [Wei er al., 2018] study
safe multi-label learning of weakly labeled data. They opti-
mize multi-label evaluation metrics (F1 score and Top-k pre-
cision) given that the ground-truth label assignment is real-
ized by a convex combination of base multi-label learners.
More introductions can be found in our recent summary [Li
and Liang, 2019].

To address this problem, we propose a general ensemble
learning scheme, SAFEW (SAFE Weakly supervised learn-
ing) [Li er al., 2021], which learning prediction by integrat-
ing multiple weakly supervised learners. Specifically, we
propose a maximin framework, which maximize the perfor-
mance gain in the worse case. Suppose we have obtained b
predictions {fy, - - - , f;, } generated by base weakly supervised
learners, let f denote the prediction of baseline approaches,
i.e., directly supervised learning with only limited labeled
data. Our ultimate goal is here to derive a safe prediction
f = g({f;, -, £}, £), which often outperforms the base-
line fy, meanwhile it would not be worse than fy. In other
words, we wold like to maximize the performance gain be-
tween our prediction and the baseline prediction.
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By assuming that the ground-truth label assignment f* can
be realized as a convex combination of base learners, specif-

ically, f* = Zle a;f; where a = [ag; ;- ;] > 0 be
the weight of base learners and Z?Zl a; = 1, then we have
the following objective function:

b b
max ((fo, Y cuiff) — U(E, Y auf) (1)
i=1 i=1

This is in line with our goal that is to find a prediction f that
maximizes the performance gain against the baseline fj.

In practice, however, on may be hard to know about the
precise weight of base learners. We further assume that «
is from a convex set M to make the proposal more practi-
cal, where M captures the priors knowledge about the im-
portance of base learners. Without any further information to
locate the weight of base learners, to guarantee the safeness,
we aim to optimize the worse-case performance gain, since,
intuitively, the algorithm would be robust as long as the good
performance is guaranteed in the worst case. Then we obtain
a general formulation for weakly supervised data as,

b b
m?XOItIeli.AI}t Z(fo,Zaifi) — E(f,ZaZfz) (2)
i=1 =1
We have the following theorem to guarantees the safeness
of our proposal for commonly used convex loss functions
in both classification and regression tasks, e.g., hinge loss,
cross-entropy loss, mean-square loss, etc.

Theorem 1. Suppose the ground-truth £* can be constructed
by base learners, i.e., f* € {f| Z?Zl a;f;,ac € M}. Let £
and & be the optimal solution to Eq.(2). We have K(f’, f*) <

L(fo,£*) and f has already achieved the maximal perfor-
mance gain against .

Theorem 1 show that Eq.(2) is a reasonable formulation
for our purpose, that is, the derived optimal solution f from
Eq.(2) often outperforms f; and it would not get any worse
than f,.

The objective formulation can be globally and efficiently
addressed via a simple convex quadratic program or linear
program. For example, with mean square loss, the objective
can be equivalently written as

mn a Fa-v'a 3)
aeM
where F € R*? is a linear kernel matrix of f;’s, i.e., F =
£7£;,V1 <i,j <bandv = [2f] fo;...;2f, fo]. Since F is
positive semi-definite, Eq.(3) is convex and can be efficiently

solved. After solving the optimal solution a*, the optimal
f= Z?Zl o f; can be obtained.

Moreover, the optimization can be written as a geometric
projection problem. Specifically, let 2 = {f| Zle afi, o €

M}, f can be rewritten as,
f = argmin |f — £, 4)
feQ
which learns a projection of fy onto the convex set 2. Fig-

ure 1 illustrates the intuition of our proposed method via the
viewpoint of geometric projection.
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Figure 1: Illustration of the intuition of our proposal via the pro-
jection viewpoint. Intuitively, the proposal learns a projection of fy
onto a convex feasible set €.

It is noteworthy that, compared with previous studies
in [Li and Zhou, 2015; Balsubramani and Freund, 2015;
Li et al., 2017], the SAFEW framework brings multiple ad-
vantages to safe WSL. i) It can be shown that the proposal
is probably safe as long as the ground-truth label assignment
can be expressed as a convex combination of base learners.
In contrast to [Li and Zhou, 2015] which requires that the
ground-truth is one of the base learners, the condition in The-
orem 1 is looser and more practical. ii) Prior knowledge re-
lated to the weight of base learners can be easily embedded
in this framework. iii) The framework is readily applicable
for many loss functions in both classification and regression,
which is more general in contrast to [Li er al., 2017] that fo-
cuses on regression. iv) The proposed formulation can be
globally and efficiently addressed and have intuitive geome-
try interpretation.

3 Safe WSL with OOD Data

Previous WSL studies are based on a basic assumption that
labeled data and weakly supervised data come from the same
distribution. Such an assumption is difficult to hold in many
practical applications, among which one common case is that
OOD unlabeled data that contains classes that are not seen
in the labeled set occurs for SSL. For example, in medi-
cal diagnosis, unlabeled medical images often contain dif-
ferent foci from the diseases to be diagnosed. Faced with
the OOD weakly supervised data, WSL no longer works well
and may even be accompanied by severe performance degra-
dation [Oliver et al., 2018].

Efforts on safe WSL with OOD data remains to be lim-
ited. We have made particularly efforts to safe SSL problem
and proposes a simple and effective safe deep SSL frame-
work DS3L (Deep Safe Semi-Supervised Learning) [Guo et
al., 2020].

Specifically, in SSL scenarios, we are given a set of train-
ing data from an unknown distribution, which includes n la-
beled instances D; = {(x1,y1), ", (Xn,y»)} and m unla-
beled instances D, = {X,41," * ,Xntm}. X € X € RP,
y € Y ={1,---,C} where D is the number of input di-
mension and C'is the number of output class in labeled data.
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The goal of SSL is to learn a model h(x;6) : {X;0} = Y
parameterized by § € © from training data to minimize the
generalization risk R(h) = E(x y)[l(h(X;0),Y)], where
¢ :Y x Y — Rrefers to certain loss function, e.g., mean
squared error or cross entropy loss.

The way SSL utilizes unlabeled data structures is usually
through the introduction of regularization. The objective of
SSL is typically formulated as following:

roréig U(h(x:;0),y:) + QUx;0) st.xeDUD,. (5)

i=1
where €)(x; 0) refers to the regularization term, e.g., entropy-
minimization regularization [Grandvalet and Bengio, 2005],
consistency regularization [Sohn ef al., 2020].

Different from the existing SSL techniques which use all
unlabeled data, DS3L uses it selectively and keeps tracking
the effect of the supervised learning model to prevent perfor-
mance hazards. Meanwhile, DS3L uses beneficial unlabeled
data as much as possible to improve performance, preventing
performance gains from being too conservative.

On one hand, DS3L uses the unlabeled selectively. The
main methodology is to design a weighting function w :
RP — R parameterized by a € B that maps an instance
to a weight. Then, DS3L tries to find the optimal 6(c) that
minimizes the corresponding weighted empirical risk,

n n+m

O(c) = min > L(h(xi50),y:) + > w(xi; ) Q(xi; 0)

9€0 4 _
=1 1=n+1
) (©6)
where 6(«) is denoted as the model trained with the weight
function paramaterized by «.

On the other hand, DS3L keeps tracking supervised per-
formance to prevent performance degradation. Specifically,
DS3L requires that the model returned by the weighted em-
pirical risk process should maximize the generalization per-
formance, i.e.,

o = argé[r;jn Ex v [(h(X;0(a)),Y)] @)

In real practice, the distribution is unknown, similar to the
empirical risk minimization, DS3L tries to find the optimal
parameters & such that the model returned by optimizing the
weighted instance loss, should also have a good performance
on the labeled data which acts as an unbiased and reliable
estimation of the underlying distribution, i.e.,

& = argmin Z U(h(xi;0(a)),ys) ®)

d
a€B? 4

To simplify the notation, we denote 6(«) as . Taking both
the Eq.(6) and Eq.(8) into consideration, the objective of our
framework can be formulated as the following bi-level opti-
mization problem,

n

min » £(h(x;;0),y:) 9
acBd P
S.t.
) n n+m
0 = argmin Y " £(h(x;30),y:) + Y w(xi; @) Q(xi;0)
S i=n+t1
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Eq.(9) can be understood by two stages: first, DS3L seeks
the optimal model parameter 0 via the wei ghted empirical risk
minimization, then evaluates it on n labeled instances and op-
timizes the weight function parameter « to make the learned 6
to achieve better reliable performance. Moreover, the bi-level
optimization can be efficiently solved via stochastic gradient
descent methods [Ren et al., 2018].

In order to show the safeness of DS3L, we analyze the
empirical risk of DS3L compared with the simple supervised
method and obtain the following theorem,

Theorem 2. Let 65 be the supervised model, i.e., 5L =
argmingeo Y., L(h(x;;0),y:). Define the empirical risk
as:

R(9) =

3=

Z[E(h(xi; 0), Yi)}

Then we have the empirical risk of 0 returned by DS3L to
be never worse than 05 that is learned from merely labeled

data, i.e., R(0) < R(65T).

Theorem 2 reveals that compared with previous SSL meth-
ods, DS3L can achieve safeness in terms of empirical risk,
i.e., the performance is not worse than its supervised counter-
part, with the learned a.

We further analyze the generalization risk of DS3L to bet-
ter understand the effect of the parameter dimension and the
size of labeled data to « and drive the following theorem,

Theorem 3. Assume that the loss function is \-Lipschitz con-
tinuous w.r.t. «. Let o € B? be the parameter of example
weighting function w in a d-dimensional unit ball. Let n be
the labeled data size. Define the generalization risk as:

R(0) = E(x v)[€(h(X;0),Y)]
Let o* = argmax,cpd R(é(a)) be the optimal parameter in
the unit ball, and & = argmax,c 4 R(0(a)) be the empir-
ically optima among a candidate set A. With probability at
least 1 — & we have,

(3\ + \/4d1In(n) + 81n(2/4))
Vn
Theorem 3 establishes that DS3L approaches the optimal
weight in the order O(y/dIn(n)/n). Based on theorem 2
and theorem 3, from both the safeness and generalization, it
is reasonable to expect that DS3L can achieve better gen-

eralization performance compared with baseline supervised
learning methods.

R(0(a")) < R(0(a)) +

4 Open Problems

Although significant progress has been made in safe WSL
with in-distribution data and out-of-distribution data, there
still remain many open problems in this area.

e Safe WSL in dynamic environments. Learning in dy-
namic environments is far more difficult than in static
ones. The challenges come from distribution drift, new
class emerging, feature space change, and so on. There
are some studies trying to tackle these problems [Da
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et al., 2014], however, the issue of safeness remains
an open problem for weakly-supervised learning in dy-
namic environments, e.g., an interesting problem is
when the unlabeled data are useful in online learning.

o Automated safe WSL [Feurer ef al., 2015]. AutoML,
which seeks to build an appropriate machine learn-
ing model for an unseen dataset in an automatic man-
ner (without human intervention), has received increas-
ing attention recently. However, existing AutoML sys-
tems focus on supervised learning, and existing AutoML
techniques could not directly be used for the automated
WSL problem. Efforts on automated WSL, remain lim-
ited right now. Automated WSL introduces some new
challenges, e.g., various meta-features extracted from
limited number of supervised data are no longer avail-
able and suitable; the use of auxiliary weakly supervised
examples may sometimes even be outperformed by di-
rect supervised learning. Therefore, safeness if one of
the crucial aspects of AutoWSL, since it is not desir-
able to have an automated yet performance degenerated
WSL system. [Li et al., 2019] first present an auto-
mated learning system for SSL. They incorporate meta-
learning with enhanced meta-features to help searching
well-perform instantiations, and a large margin separa-
tion method to fine-tune the hyper-parameters as well as
alleviate performance deterioration. More efforts are ex-
pected to be devoted to this direction.

e Safe deep WSL. Although we have introduced SAFEW
and other related methods that aim to solve the safe WSL
problem with in-distribution data. However, current safe
WSL studies typically work on shallow models such as
support vector machines, logistic regression, linear re-
gression, etc. Applying WSL techniques to deep neural
networks has attracted much attention in recent years for
the promising results achieved by deep models. How-
ever, studies of safe WSL with deep neural networks re-
main to be limited. It is expected to design an efficient
scheme for safe deep WSL.

e Safe imbalanced WSL. Previous WSL studies typically
assume a balanced class distribution in both labeled sets
and unlabeled sets. However, it is well-known that real-
world dataset is often imbalanced or long-tailed. The
performance of previous WSL studies is seriously de-
creased when the class distribution is imbalanced since
their predictions are biased toward majority classes and
result in low recall on minority classes [Kim et al.,
2020]. There are some efforts begin to address the im-
balanced SSL problem [Kim er al., 2020]. But how to
achieve safe performance for imbalanced WSL is still
under study and remains an open problem.
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