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Abstract
My research in the past few years has focused on
fostering trust in algorithmic systems. I often an-
alyze scenarios where a variety of desirable trust-
oriented goals must be simultaneously satisfied; for
example, ensuring that an allocation mechanism
is both fair and efficient, or that a model expla-
nation framework is both effective and differen-
tially private. This interdisciplinary approach re-
quires tools from a variety of computer science dis-
ciplines, such as game theory, economics, ML and
differential privacy.

1 Overview
Recent years have seen algorithms outperform humans in a
rapidly growing list of tasks. Not only are they able to quickly
process vast amounts of data, automated decision makers are
often perceived as more accurate and impartial (compared to
their human counterparts). However, accuracy often comes at
the cost of fairness, transparency, and ultimately - trust in au-
tomated decision makers. To achieve satisfactory levels of ac-
curacy, one must train complex models on large quantities of
data. Even highly accurate algorithms can be unfair. Since ac-
curacy is measured across the entire dataset, decision-making
algorithms can maintain accuracy while consistently offer-
ing worse outcomes to some individuals (say, members of a
very small minority population). What’s worse, even if one
were able to identify undesirable algorithmic discriminatory
behavior, it would be extremely challenging to identify its
underlying causes. For example, a course allocation mecha-
nism may offer excellent course slots to 99% of the student
population, but consistently fail to offer desirable classes to
1% of the student cohort (say, offering random classes to ex-
change students). Such a mechanism would still be consid-
ered highly accurate — after all, it is able to offer good out-
comes to 99% of the students — and treat certain students un-
fairly. Our recent work focuses on incorporating fairness and
efficiency criteria in a variety of resource allocation domains.
In addition, we study how various aspects of trustworthy ML
come into play in the design and implementation of algorith-
mic model explanations, i.e. frameworks that elucidate the
internal workings of complex decision makers to stakehold-
ers. Accuracy/fairness concerns often arise in model expla-

nations as well: is the model explanation any good? How
can we ensure that it is well behaved across different popula-
tions and domains? For example, our explanation framework
might consistently offer bad explanations to certain minority
groups, or inadvertantly expose such populations to security
breaches (e.g. exposing their personal data to potential ma-
licious actors). Ensuring good practices and ethical norms
in AI/ML applications is a foundational problem, requiring
a broad interdisciplinary effort. My research focuses on two
key aspects of this problem: norms and data. In particular,
my work focuses on (a) normative analysis of algorithmic de-
cision makers; (b) ensuring the fair treatment of individuals
and groups when allocating sparse resources and (c) using
data to derive good solutions in game-theoretic domains.

2 Norms in Algorithmic Decision Making
Systems

What makes an algorithm fair? The answer to this question
largely depends on how one would define fairness; in other
words, one needs to identify norms, or axioms required from
the algorithmic system. This idea is not new; axiomatic anal-
ysis is a commonly used technique in theoretical economics,
employed in cooperative games [Shapley, 1953], bargaining
[Nash, 1950], and social choice theory [Arrow, 1950]. With
this paradigm in mind, I design fair allocation algorithms
and black-box model explanations that provably satisfy a set
of desirable properties. In some cases, we can even show
that certain frameworks uniquely satisfy a set of criteria; in
other words, if we agree that the properties we propose make
sense, then our analysis points to a single way of explaining
a model/allocating resources/deciding on an outcome. The
axiomatic approach is appealing for a variety of reasons.

First of all, it offers a set of provable assurances regard-
ing one’s framework: in a recent paper, we present an algo-
rithm that allocates items to individuals in a provably effi-
cient and envy-free manner; in others, we show that certain
model explanation frameworks are the only ones that satisfy
a certain set of properties. Secondly, not only does the ax-
iomatic approach provide provable guarantees to users, it of-
fers stakeholders the opportunity to shift the debate from al-
gorithms and formulas, to norms and desiderata: while fair al-
location algorithms can rely on complex foundations (such as
matroids, maximum flows, or matching theory), the axioms
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that they satisfy are often simple enough to explain: envy-
freeness is a concept that most people intuitively grasp at a
very young age; similarly, we would want our model expla-
nations to be unbiased, i.e. not a-priori assign importance
to some features (e.g. deciding that individual income is to
be assigned at least 10% of the responsibility for an outcome
without even observing the data). By shifting the debate to
the realm of norms and axioms, we offer a broader commu-
nity of stakeholders (beyond computer scientists, economists
and mathematicians) an opportunity to participate in the de-
sign of systems that may greatly affect them.

2.1 An Axiomatic Approach to Algorithmic
Transparency

Decision-making algorithms are often trained over vast quan-
tities of data, and incorporate complex architectures (e.g.
deep neural networks, or large-scale online auction mecha-
nisms); as a result, they are black boxes: their internal work-
ings are not understood by various stakeholders — even their
own designers. In particular, it would be immensely difficult
to explain how such models arrive at their decisions. The lack
of algorithmic transparency raises significant concerns: it is
unclear whether these algorithms are making decisions based
on wrong parameters, whether they are inadvertently discrim-
inatory in nature, or potentially expose their users’ data. In a
recent line of work, we propose various methods for automat-
ically generating model explanations. Consider, for example,
an applicant for a bank loan, whose eligibility is deteremined
by an automated decision maker. If this person has not been
granted a loan, they need to be offered an explanation why:
what were the most important factors in making this deci-
sion? How can the user change the outcome?1 Formally, we
are given a specific datapoint ~x0; what made a classification
algorithm c assign ~x0 a label of c(~x0)? We generate expla-
nations based on a given dataset, its labels, and (possibly)
additional information; our focus in past work is on feature-
based explanations, assigning a value φi(~x0) to each feature
of the datapoint ~x0. The value φi(~x0) roughly corresponds to
the degree to which i affects the label of ~x0; a great deal of
our analysis deals with the question of how one might cap-
ture the notion of effect: should we consider only effects ob-
served in the training data? Is it reasonable to examine what
the model does on randomly sampled points? What compu-
tations are we allowed to execute on the model (e.g. access
to the model’s gradient or internal parameters). We take an
axiomatic approach. Rather than arbitrarily choosing expla-
nation frameworks, we set forth a number of natural expla-
nation desiderata, and proceed to show that a given measure
uniquely satisfies these properties. Our initial work in this
space [Datta et al., 2015] showed some promise — for ex-
ample, it was able to identify the importance of language and
location in determining ads presented to Google users — but
its axioms turned out to be too restrictive: our measure was
unable to attribute influence to any feature on richer datasets.
Using a more robust set of axioms, we propose Quantitative

1While similar, the explanations offered to answer the two
questoins are quite distinct: the first highlights important features,
whereas the second offers users recourse (see [Barocas et al., 2020]).

Input Influence (QII) [Datta et al., 2016], a method based on
axioms from cooperative game theory [Young, 1985]. Inter-
estingly, QII has deep connections to the formal theory of
counterfactual causality [Chockler and Halpern, 2004], a con-
nection we are still in the process of exploring.

QII satisfies several desirable properties; however, it suf-
fers from two major issues: it is expensive to compute, and
requires access queries to the underlying black-box classifier
c: in order to generate explanations, QII asks questions like
“what happens if we randomize the values of a set of fea-
tures S?”, which assesses the model’s expected behavior over
a randomized domain that we may not have access to. In a re-
cent line of work [Sliwinski et al., 2019], we consider a set
of axioms for data-driven explanations, assuming no access
to the classifier. Our approach, termed Monotone Influence
Measures (MIM), is computationally efficient, and is able to
generate interpretable explanations in a variety of domains.

Model explanations are essentially a means of convey-
ing additional information about the decision-making pro-
cess to end users. This raises a potential concern: ad-
versaries can exploit additional information encoded in the
model explanations to conduct inference attacks; for exam-
ple, recovering segments of the training data, or uncover
hidden user attributes. In a recent line of work [Shokri et
al., 2021], we explore the vulnerability of model explana-
tions to adversarial behavior. Our results indicate that indeed,
some popular explanation methods [Koh and Liang, 2017;
Ribeiro et al., 2016] are highly exploitable, and could be
used to reconstruct some of the model training data. In an-
other line of work we provide provably secure model expla-
nations [Patel et al., 2020]; this work also shows the inherent
tradeoffs between privacy, accuracy, and fairness in model ex-
planations. As can be expected, private model explanations
are less accurate; moreover, we show that minority popula-
tions are offered worse model explanations than more com-
mon classes, and that one needs to lower explanation accu-
racy further in order to protect their data.

Going beyond single-feature attribution methods, in a re-
cent paper we provide an axiomatic treatment of a high-
dimensional model explanation framework [Patel et al.,
2021]. Our characterization yields a rather intuitive model
explanation framework, that is able to capture natural feature
synergies, both in theory and on real-world datasets.

2.2 Fair Algorithmic Decision Making
Designing algorithms that treat users fairly is a fundamental
AI problem, arising in a variety of domains, from computa-
tional resource allocation, via picking a set of candidates, to
fairly dividing revenue amongst collaborative agents. I have
explored a number of fairness related topics in the past few
years.

Envy-Free Rent Division
A group of roommates would like to allocate rooms and
divide the rent in a fair and mutually agreeable manner.
An algorithm for this problem has been implemented on
spliddit.org; its outputs are guaranteed to be envy-free (EF):
the rent and the rooms are allocated so that no tenant prefers
another’s room, given that room’s price. In [Gal et al., 2016;
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Gal et al., 2017], we show that envy-freeness is neither theo-
reticall fair, nor is it necessarily perceived as fair. We propose
choosing an EF outcome that maximizes the welfare of the
least well-off tenant, called the maximin EF outcome. We
show that the maximin EF outcome has significant welfare
effects on data collected from spliddit.org, changing the rent
allocation by hundreds of dollars in some cases. Moreover,
in our human study, Spliddit users indicated a preference to-
wards the maximin EF outcome over the original (arbitrary)
EF outcome. This finding led to a reimplementation of the
algorithm used on spliddit.org.

Fair and Diverse Allocation of Indivisible Goods
The Singapore public housing allocation system is a dom-
inant force in the Singapore housing market: over 80% of
Singaporeans live in (heavily subsidized) public housing de-
velopments. The government office in charge of housing —
the Singapore Housing Development Board (HDB) — im-
plements an ethnic integration policy. The three major eth-
nic groups in Singapore (Chinese, Malay and Indian/Others)
must be adequately represented in every HDB development;
this is achieved by imposing ethnic quotas: upper bounds on
the number of applicants from each ethnicity that are allowed
to purchase flats in a new development. We begin our study
[Benabbou et al., 2018] with a simple question: what are
the welfare effects of imposing ethnic quotas? We model this
setting as an assignment problem where players (prospective
buyers) have different types and the goods (apartments) are
partitioned to blocks. Each block can house no more than
a certain number of players of each type. Naturally, limit-
ing players by type quotas decreases social welfare. Thus,
our objective is to bound the price of diversity: the ratio be-
tween the welfare of the optimal unconstrained and the op-
timal type-constrained assignment. We show several bounds
on the price of diversity in terms of natural problem parame-
ters, and apply our methods to data from the Housing Devel-
opment Board. Our empirical results are encouraging: under
several natural utility models, our (optimal) allocation mech-
anisms, and the (suboptimal) mechanisms implemented by
HDB exhibit a low price of diversity.

In two recent papers, we show how the notion of envy
is sensible in the group allocation setting [Benabbou et al.,
2019]; we treat ethnic groups as individuals, and define group
envy as the capacity to which an individual ethnicity desires
the apartments allotted to other ethnic groups. While envy is
indeed a compelling fairness notion, it does not take into con-
sideration group size; in [Chakraborty et al., 2020], we intro-
duce the notion of weighted envy-freeness, and offer several
mechanisms for computing weighted envy-free outcomes.

Group preferences in housing allocation mechanisms are
assumed to be matching-based valuations: the more homes
that a group can allocate to individuals that want them, the
better. This naturally induces a highly structured valuation
profile; matching based valuations are known as OXS valua-
tions in the economics literature [Leme, 2017]. Under a mild
assumption (that individuals either approve or disapprove of
any apartment), these valuations constitute a subclass of a
large, non-trivial valuation class: binary submodular, or ma-
troid rank valuations. For example, introducing cardinality

constraints to valuations (e.g., agents may receive no more
than k items each) prevents them from being matching-based
valuations, while retaining submodularity. In a recent paper
[Benabbou et al., 2020], we provide the “ultimate solution”
for this valuation class: an efficient algorithm that computes a
socially optimal, envy-free (up to one good) allocation. In ad-
dition, we show that binary submodular valuations admit allo-
cations that satisfy several other desirable properties, though
these are computationally hard to find.

3 Data-Driven Solution Concepts
My PhD thesis focused primarily on the mathematical foun-
dations of game theory; while the theory itself was interesting
and compelling, I wanted to see whether it could be used in
order to test — and predict — actual human behavior. More
broadly, do humans actually care about provably fair algo-
rithms? The answer to this question is elusive, as data on
strategic decision making is hard to collect and assess. Fur-
thermore, most game-theoretic literature assumes knowledge
of underlying player preferences. This is an unrealistic as-
sumption in practice, which led me to explore the possibility
of inferring game-theoretic solution concepts from data.

3.1 Strategic Cooperative Behavior in the Wild
Human experiments were a key part of our work in the EF
rent division domain [Gal et al., 2016]. We selected users
of the spliddit.org service (ones who legitemately used the
website to divide rent among roommates), and asked them to
reevaluate their initial allocation versus the newly proposed
maximin share rent division. We tried out different question-
naire interfaces on Amazon Mechanical Turk (AMT), before
settling on a simple two question format. Our results show
that users prefer the maximin share method to a standard EF
mechanism. This preference held true even if they were re-
quired to pay a higher rent.

We continued to analyze human collaborative behavior,
this time examining reward division in a more controlled lab
environment [Bachrach et al., 2017; Mash et al., 2020]. We
asked users to complete a simple collaborative task - each
user i has a weight wi, and they need to form a coalition of
weight at least 10. If they successfully do so, they receive a
reward of 100 points, which they need to split amongst coali-
tion members in an agreeable manner. Users were allowed
to iteratively propose coalitions and splits; gameplay contin-
ued until an agreeable split was found, or a maximal number
of rounds was reached. Using initial test runs on AMT and
in the lab, we trained an agent who was able to consistently
out-negotiate humans, by using cooperative solution concepts
to determine proposal structure. We designed a more engag-
ing interface to get users to play a more complex cooperative
game: instead of combining their weights to achieve a single
objective, users could complete multiple different tasks (e.g.
there might be a task that needs a total weight of 5 which pays
40, in addition to a task whose required weight is 10 but pays
100); we established the theoretical properties of our model
[Nguyen and Zick, 2018], and provided an in-depth analysis
of human play [Gal et al., 2020]. It turns out that humans nat-
urally bargain their way towards (approximately) fair payoff
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divisions in a large percentage of games, a result that con-
firms known models of cooperative bargaining [Aumann and
Maschler, 1964].

3.2 A Learning Framework for Game-Theoretic
Solution Concepts

Game theoretic solution concepts are often meant to be uti-
lized in full information domains: we are fully aware of
player preferences, and algorithms that output solutions rely
on this assumption to work. What happens when we are not
given player preferences, but rather partial observations of
their realizations over sampled data?

For example, to find a fair payoff division for an unknown
cooperative game v, one can use data to train an approxi-
mation of v, say v∗, and find a satisfactory payoff division
for v∗. This approach is problematic. First, it may be hard
to approximate v in the first place; more importantly, fair
solutions for an approximate model need not be approxi-
mately fair for the original model. We propose an alter-
native approach in [Balcan et al., 2015]: instead of learn-
ing an approximate model, learn an approximate solution
directly from data. Our learned solutions are guaranteed
to be mostly core-stable with respect to the original game,
and can be efficiently learned from data, even for complex
cooperative games. This last point is particularly interest-
ing: intuitively, it means that in the domain of coopera-
tive games, core-stable payoff divisions are fundamentally
simpler mathematical objects than the games upon which
they’re computed. In later works, we extend our results to the
more complex class of hedonic games [Igarashi et al., 2019;
Sliwinski and Zick, 2017]: instead of assigning a global value
to every subset S, each player i assigns a value (or prefer-
ence) over S, vi(S). In addition, rather than trying to identify
“well-behaved” payoff divisions, we are interested in find-
ing “well-behaved” partitions of players to disjoint groups
(also known as coalition structures). In a recent paper, we
propose a general framework for learning game-theoretic so-
lution concepts from data, employing novel definitions of
function class complexity [Jha and Zick, 2020]; in addition
to our cooperative game-theoretic frameworks, our results
can be applied in many other game-theoretic domains (e.g
[Balcan et al., 2018; Syrgkanis, 2017; Huang et al., 2018;
Zhang and Conitzer, 2019]. In a recent paper, we show how
the solution-learning framework in [Jha and Zick, 2020] can
be applied to find PAC market equilibria for a variety of mar-
ket valuation classes [Lev et al., 2021].

4 Future Directions
Algorithmic fairness/accountability/transparency is a fast
growing field, which makes for exciting times ahead. There
are still plenty of directions for formally defining and eval-
uating transparency measures: not only in developing new
frameworks (namely, ones based on non-linear explanation
models), but also assessing their risks. As our recent work
[Shokri et al., 2021] indicates, model explanations may pose
a significant risk to their users. This raises a natural question:
can we develop meaningfull model explanations that main-
tain privacy guarantees? While we offer some answers to

this question in [Patel et al., 2020], there is still a lot that we
do not know: can we offer any meaningful privacy guaran-
tees to other types of model explanations, such as rule-based
systems or algorithmic recourse? Can we ensure that all parts
of the data space receive good model explanations? What are
the potential costs of such guarantees?

We are also starting to explore alternative characterizations
of causal analysis in model explanations: can we formally
capture the relation between formal causality and model
explanations? What types of explanations are “causality-
faithful”?

In the fairness domain, I am interested in the interplay of
individual and group fairness: can we jointly guarantee that
both individuals and groups are treated fairly? Can we come
up with algorithms that ensure that group and individual fair-
ness guarantees both hold? In addition, I continue to explore
how structural restrictions on preference profiles affect fair-
ness guarantees; in particular, whether we can guarantee the
existence of fair and efficient outcomes for preference profiles
that conform to certain combinatorial structures.
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