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Abstract
We propose a system for conducting an auction
over locations in a continuous space. It enables par-
ticipants to express their preferences over possible
choices of location in the space, selecting the loca-
tion that maximizes the total utility of all agents.
We prevent agents from tricking the system into
selecting a location that improves their individual
utility at the expense of others by using a pricing
rule that gives agents no incentive to misreport their
true preferences. The system queries participants
for their utility in many random locations, then
trains a neural network to approximate the prefer-
ence function of each participant. The parameters
of these neural network models are transmitted and
processed by the auction mechanism, which com-
poses these into differentiable models that are opti-
mized through gradient ascent to compute the final
chosen location and charged prices.

1 Introduction
We consider multiple agents, which must agree on a location
in a continuous space, such as a point in Rn, and who each
have private preferences over the possible locations.

Motivating examples: As an example, consider multiple
people who must agree on a single place to locate a certain
joint facility, such a school, a factory or a stadium in a city.
Denote the set of possible locations asD. Each person knows
how much value she associates with each possible location
x ∈ D. For instance, one person might want the factory to
be located close to them as they work there, whereas another
person would want the factory away from them as the noise
disturbs them. Similarly a person might want the school close
to them, as this saves them money on fuel for their car when
driving their kids to school. In this case, each possible loca-
tion x for the facility has monetary consequences for a partic-
ipant, and the preferences of a participant i can be captured
as a function vi : D → R mapping each possible location
x ∈ D to the utility participant i derives from having the fa-
cility being placed in location x. We refer to the function vi
as a “heatmap”, since when locations are points in the plane,
it can be visualized as a plot where the color indicates the de-
gree of preference to that location (see example in Figure 1).

Figure 1: Example heatmap depicting preferences over choices of a
location on a map.

Another example is multiple managers who need to de-
cide on the composition of a fund holding a portfolio of k
underlying assets. A composition can be captured as x =
(p1, . . . , pk) where each 0 ≤ pi ≤ 1 is the proportion of the
funds allocated to the i’th underlying asset (so

∑k
i=1 pi = 1,

and x is a point on the unit simplex). We denote the set of pos-
sible compositions as D. Each manager i may have a differ-
ent prediction regarding how each asset composition x would
do, in terms of expected profit and the risk, and hence has
a monetary preference for each alternative. This may again
be captured as a function vi : D → R. In both examples, a
participant i knows its own function vi, but does not the pref-
erences of other participants. How can we select an outcome,
such as the facility’s location or asset composition, so as the
maximize the utility of all participants?

Mechanism design explores how institutions can achieve
desirable economic outcomes when self-interested agents in-
teract. Such institutions are essential to ensuring collab-
oration in human societies, and have the potential of en-
able cooperation between artificial intelligence agents as
well [Dash et al., 2003; Boella et al., 2006; Lopes et al., 2008;
Fatima et al., 2014; Rahwan et al., 2019; Dafoe et al., 2020].
Consider agents who must jointly agree on an alternative a
from a set A of possible alternatives, with each agent i hav-
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ing a valuation function vi : A→ R mapping any alternative
a ∈ A to the value of the alternative a to agent i. These val-
uations are private information, with agent i knowing only
their own valuation vi (but not those of the other agents). A
central optimizer can select the alternative maximizing social
welfare a∗ = arg maxa∈A

∑
i vi(a), but this requires know-

ing all the valuation functions vi. The central optimizer can
request agents to report their valuations vi, but then agents
may have an incentive to misreport their valuations so as to
manipulate the optimizer to choose an alternative they prefer.

The Vickrey-Clarke-Groves (VCG) mechanism [Vickrey,
1961; Clarke, 1971; Groves, 1973] is a key mechanism de-
sign success, prescribing an auction framework for charg-
ing agents prices based on reported valuations, that dis-
incentivizes such manipulations and enables choosing the al-
ternative maximizing the social welfare. 1

Our contribution: Existing VCG applications typically
deal with a discrete (finite) setA of alternatives, so agents can
report the utility function ui as a table, listing ui(a) for each
a ∈ A. When A is finite but large, earlier research also inves-
tigated representation languages for concisely communicat-
ing utilities [Boutilier and Hoos, 2001; Lahaie et al., 2008;
Nisan, 2000; 2006; Nisan and Ronen, 2001].

We propose a framework to enable applying the VCG
mechanism in a continuous domain D, such as participants
having valuation over locations in a subset of the 2D plane
(D ⊂ R2) or higher dimensional space (D ⊂ Rm), where
participants cannot communicate their preferences to the cen-
tral optimizer as a simple table (with a finite number of rows).

Our framework operates by querying each participant i for
their valuations in randomly sampled locations, approximat-
ing their valuation function vi : D → R by training a deep
neural network. The parameters of these neural networks are
communicated to the central optimizer, which executes the
VCG mechanism to compute the chosen location and calcu-
late prices to be paid. We show how the VCG formula can
be computed (approximately) using gradient ascent, as neu-
ral networks are differentiable models. 2

2 Expressing and Aggregating Preferences on
Continuous Spaces

A continuous preferences domain consists of a continuous do-
main D (e.g. D ⊂ R2), and n agents who must agree on a
single chosen location r ∈ D; Each agent i has a valuation

1A key application of VCG or similar auctions is for sponsored
search and display advertising [Edelman et al., 2007; Lahaie et al.,
2008; Bachrach et al., 2014; Jin et al., 2018], where the alternative
set is discrete. In contrast, we focus on continuous alternative sets.

2Our approach is related to other neural auctions [Feng et al.,
2018; Tacchetti et al., 2019; Shen et al., 2019], but rather than using
neural networks to learn the rules of the auction, we use them as a
language enabling agents to express preferences. Our method is akin
to neural methods for aggregating responses [Gaunt et al., 2016;
Li’ang Yin et al., 2017; Atarashi et al., 2018], but we focus on strate-
gic agents that may misreport preferences, and examine the VCG
auction. Other methods learn user preferences [Gal et al., 2004;
Coehoorn and Jennings, 2004; Albrecht and Stone, 2018], but neu-
ral networks are differentiable and offer universal function approxi-
mation so are well-suited for our use-case.

function vi : D → R mapping each element p ∈ D to a real
value vi(p) indicating the utility agent i derives from having
the agreed location be x. When considering a bounded part
of the plane, e.g. D = [0, 1] × [0, 1] (i.e. coordinates (x, y)
in the plane where 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1), one can
visualize the function vi as a heatmap, but we emphasize our
framework works for the general case D = Rm.

The central optimizer requires each agent to report their
valuations {vi}ni=1 (where each is a function vi : D → R).
We refer to this report representing an agent’s valuation as
the agent’s “type” θ ∈ Θ (where Θ denotes the set of all
possible such types). A representation method is an encoder
e, a reversible function converting an agent’s valuation vi to
an encoding e(vi), which can be transmitted to the central
optimizer. 3 The decoder is e−1, the inverse function of an
encoder, mapping a representation θ back into a function vθ :
D → R. We say an agent i with valuation vi is truthful if
it transmits θ = e(vi), though agents may transmit any valid
representation θ′ ∈ Θ, representing some function vθ′ , where
vθ′ may be very different from vi. 4

We denote the reported representations of agent i as θ′i.
The center takes the valuation reports θ′1, . . . , θ

′
n and decodes

them to obtain vθ′i = e−1(θ′i): given i’s report θ′i, it deter-
mines i’s value of location k as vi(k, θ′i) = vθ′i(k). The mech-
anism used by the center is specified by two functions f, t,
both taking the reports θ′1, . . . , θ

′
n, where f : Θn → D speci-

fies how to choose the final location k ∈ D and t : Θn → Rn
specifies the payments t1, . . . , tn to extract (ti is the amount
paid by i under the reports θ′1, . . . , θ

′
n).

A Neural Network Variant of the VCG Mechanism:
We use the VCG mechanism [Vickrey, 1961; Clarke, 1971;
Groves, 1973], which guarantees that participants are incen-
tivized to be truthful, and report a valuation function vθ′i that
matches their true valuation function vi.

For brevity we denote θ′ = (θ′1, . . . , θ
′
n), and denote θ′−i =

(θ′1, . . . , θ
′
i−1, θ

′
i+1, . . . , θ

′
n). The VCG framework uses an

outcome choice function f aimed at maximizing the sum of
the agent utilities according to the submitted reports:

f(θ′) = arg max
d∈D

n∑
i=1

vθ′i(d)

We denote this optimal location according to the agent re-
ports θ′ as d∗(θ′) = f(θ′). The Groves family of mechanisms
sets the payments to be:

ti(θ
′) = hi(θ

′
−i)−

∑
j 6=i

vθ′jd
∗(θ′)

Here, hi(θ′−i) relates to any function hi : Θn−1 → R which
only takes into account the reports of agents other than i (i.e.
this function does not depend on the report θ′i of agent i).

The VCG mechanism is a special case of the
Groves family, which sets hi as follows: hi(θ

′
i−) =

3Standard VCG implementations for discrete domains [Groves,
1973; Nisan and Ronen, 2001] deal with a finite set of alternatives
A, so the encoding may be a list of |A| numbers, consisting of vi(a)
for each a ∈ A. Clearly, this is intractable for continuous domains.

4The encoding and decoding functions are public information.
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∑
j 6=i vθ′j (d∗−i(θ

′
−i)). Here, d∗−i(θ

′
−i) relates the the

(welfare-maximizing) outcome that would have been chosen
based solely on the reports of participants other than i,
i,e: d∗−i = arg maxd∈D

∑
j 6=i vθ′j (d). In discrete domains

D is a finite set of alternatives; each agent i can transmit
its valuation function vi as a table of |D| values, and the
center computes arg maxd∈D

∑n
i=1 vi(d) by iterating over

all elements d ∈ D. Neither is directly feasible where D is a
continuous space, which is where our approach comes in.

2.1 Using Neural Networks as a Representation
Language for Preferences

Our approach is based on executing the VCG mechanism
by using neural networks a the representation language for
the preferences of agents. More precisely, we propose us-
ing the parameters of a neural network to express the func-
tion vi : D → R of each participant. Neural networks
are universal function approximators [Csáji and others, 2001;
Hornik et al., 1989], i.e. given a large enough number of pa-
rameters, neural networks can approximate arbitrarily com-
plex functions. Hence, we can use neural networks as a
language for representing participant preferences vi without
needing to impose any restriction on these valuations.

Our framework operates as follows.

1. For every participant i, we randomly sampleB elements
in the domain D, denoted as d1, . . . , dB .

2. We train a neural network to approximate vi given these
samples, obtaining the neural network parameters θ′i.
There are many possible choices for the neural network
architecture, the loss used for the training, or the opti-
mization hyperparameters such as the learning rate. A
simple implementation can use a feedforward neural net-
work, and an L2 loss L = (fθ′(d) − vi(d))2. However,
many other choices are also valid, and may yield better
results, depending on the domain.

3. Each participant i transmits the trained parameters θ′i to
the center. Note that participants may attempt to manip-
ulate by making a false report i.e. θ′ 6= θ, but the VCG
pricing rule computed in the next step disincentives such
dishonest behavior.

4. The center computes the chosen outcome d∗(θ′) =
arg maxd∈D

∑n
i=1 vθ′i(d). As s =

∑n
i=1 vθ′i(d) is a

sum of the functions vθ′i (and similarly to each vθ′i , the
sum s is also a function s : D → R); as each vθ′i is cap-
tured by a neural network, it is a differentiable model, so
as a result s is also differentiable. Given a differentiable
model s, one can optimize for arg maxd∈D s(d) using
any method for finding a local maximum of a differen-
tiable function, and we suggest applying the commonly
used Gradient Ascent [Sra et al., 2012; Ruder, 2016].

5. The center computes the VCG prices ti. Similarly to
the previous step, to perform the optimization d∗−i =
arg maxd∈D

∑
j 6=i vθ′j (d), we note that the partial sum

s−i =
∑
j 6=i vθ′j is a sum of differentiable models vθ′j ,

and is a differentiable function, so one can optimize for
arg maxd∈Ds−i(d) using Gradient Ascent.

A limitation of this method is that the VCG formula re-
quires computing global optima arg maxd∈D

∑n
i=1 vθ′i(d),

but Gradient Ascent may converge on a local rather than
global optimum. One may ameliorate this by starting off from
many random locations when applying Gradient Ascent (and
selecting the optimal location across these runs), or consider
placing a restriction on the form that the function vi can take
and using a representation form that allows for an optimiza-
tion algorithm with better guarantees. 5

3 Conclusion
Our approach enables users to agree on a location or param-
eter configuration in a continuous space, taking a form of a
VCG auction, executed using neural networks for expressing
the preferences of participants. Users may express valuations
through a graphical interface, providing data to train neural
networks to capture and represent their preferences, and fi-
nally compute the VCG outcome and prices. One could also
use a programmatic interface, where users provide valuation
functions as code, with the system then querying this code
to train the neural network. The VCG pricing rule we use
desincentivizes tricking the system into selecting a location
that improves their individual utility at the expense of others.

Several questions remain open. First, how can we improve
the optimization procedure so as to obtain a global rather than
local optima? Second, can the neural network architecture
be better tailored to specific domains? Finally, could neural
network based representations of user preferences be used in
other settings, such as voting and social choice?
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