
Towards Fast and Accurate Multi-Person Pose Estimation on Mobile Devices

Xuan Shen∗1 , Geng Yuan∗1 , Wei Niu2 , Xiaolong Ma1 ,
Jiexiong Guan2 , Zhengang Li1 , Bin Ren2 and Yanzhi Wang1

1Northeastern University,
2College of William & Mary

{shen.xu, yuan.geng, ma.xiaol, li.zhen, yanz.wang}@northeastern.edu,
{wniu, jguan}@email.wm.edu, bren@cs.wm.edu,

Abstract

The rapid development of autonomous driving, ab-
normal behavior detection, and behavior recogni-
tion makes an increasing demand for multi-person
pose estimation-based applications, especially on
mobile platforms. However, to achieve high accu-
racy, state-of-the-art methods tend to have a large
model size and complex post-processing algorithm,
which costs intense computation and long end-to-
end latency. To solve this problem, we propose
an architecture optimization and weight pruning
framework to accelerate inference of multi-person
pose estimation on mobile devices. With our opti-
mization framework, we achieve up to 2.51X faster
model inference speed with higher accuracy com-
pared to representative lightweight multi-person
pose estimator.

1 Introduction
In recent years, with the increasing popularity of mobile
computing and edge AI, mobile platforms have become an
important carrier of DNN applications [Li et al., 2021a;
Zhao et al., 2020; Niu et al., 2020]. multi-person pose esti-
mation (PE) is one of the popular DNN applications that play
an important role in many fields, including autonomous driv-
ing, abnormal behavior detection, and behavior recognition,
and has made impressive progress with the joint efforts.

The multi-person PE can be achieved mainly in two de-
sign methodologies, which are the top-down method and the
bottom-up method. The top-down method [Fang et al., 2017]
performs PE on a single person who is captured by a detector
in advance. The accuracy will be dependent on the detector
which might fail to find all the persons when they are close
together. And the overall inference time will increase with the
increasing number of people in an image frame, which is not
efficient for multi-person PE. On the other hand, the bottom-
up method [Cao et al., 2019] predicts the human keypoints for
all people in an image frame at the same time. The bottom-up
methods usually have smaller model sizes and fewer compu-
tation counts (i.e., GFLOPs), making the bottom-up methods

∗These Authors contributed equally.

more desirable for fast multi-person PE. However, the state-
of-the-art bottom-up methods are still computational inten-
sive, usually requiring tens to hundreds of GFLOPs. This is
challenging for fast inference, especially on resource-limited
mobile devices.

DNN weight pruning [He et al., 2019; Li et al., 2021b;
Zhang et al., 2021], as an effective model compression tech-
nique, has been widely adopted to remove redundant weights
in DNN models, reducing the required resources for both
model storage and computation, accelerating the model in-
ference. The pruning schemes mainly consist: 1) the flexible,
unstructured pruning scheme that prunes weights at arbitrary
locations [Han et al., 2016], 2) the regular, structured prun-
ing that prunes whole filters/channels for CONV layers [He
et al., 2019], and 3) the compiler-assisted, fine-grained struc-
tured pruning schemes [Cai et al., 2020] that combining the
high accuracy and high hardware parallelism. Weight prun-
ing provides a promising solution for accelerating inference
of multi-person PE on mobile devices while preserving good
accuracy.

Model architecture is another critical factor that signifi-
cantly affects PE performance. For example, under simi-
lar computation FLOPs, the model depth has a direct im-
pact on model accuracy and inference latency. Moreover, the
unfriendly computation operators in a DNN model will in-
troduce tremendous execution overhead on resource-limited
model devices but usually has a minor impact on high-end
server CPUs/GPUs. It is necessary to avoid using mobile-
unfriendly operators for on-mobile PE models.

Besides the DNN model inference, the data post-
processing is another essential part of the pose estimation pro-
cess, which calculates and groups the keypoints of each indi-
vidual obtained from the DNN inference results. Different
post-processing algorithms will significantly affect the end-
to-end running time for the pose estimation. Thus, choos-
ing appropriate post-processing algorithms is also critical for
both speed and accuracy consideration.

In this paper, to facilitate the fast and accurate multi-person
PE on mobile devices, we propose a framework incorporat-
ing architecture optimization and weight pruning to find the
desired model architecture and pruning configurations to ef-
fectively accelerate inference of multi-person PE mobile de-
vices.

• We propose an optimization framework for the multi-

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)
Demonstrations Track

5012



person PE acceleration. The framework includes model
architecture optimization and weight pruning to facili-
tate fast and accurate end-to-end PE on mobile devices.

• We propose several mobile-aware architecture opti-
mization paradigms including model depth determina-
tion, mobile-unfriendly operator replacement, and post-
processing selection.

• We explore the sensitivity of different function blocks
and different layer types to the weight pruning and adopt
suited pruning strategy for optimization.

• We achieve significant acceleration for multi-person
PE inference on smartphones while maintaining a high
model accuracy.

• Our achievements raise the promising future of various
PE-related applications on mobile devices.

2 Optimization Framework Design
The objective of our framework is to provide an optimiza-
tion flow to effectively accelerate PE models for fast infer-
ence on mobile devices while maintaining competitive model
accuracy. Our framework mainly contains two parts, model
architecture optimization, and weight pruning.

2.1 Model Architecture Optimization
Model Depth Determination
The models for multi-person PE tasks usually constitute sev-
eral functional blocks. We use the OpenPose [Cao et al.,
2019] model as an example. The OpenPose model first uses
a backbone model response for feature extraction. The back-
bone depth will affect both final model accuracy and infer-
ence latency. Generally, within a certain depth, a deeper back-
bone model provides a better final accuracy, but leads to a
higher inference latency. To avoid significantly increasing the
model computation FLOPs, we increase the number of build-
ing blocks of the backbone model while shrinking the block
width to maintain similar computation FLOPs. As shown in
Table 1, under similar computation FLOPs, a deeper version
of the ResNet50 model with 72 layers provides a clear better
final accuracy. But keep increasing model depth will further
improve the accuracy.

Besides, to determine the number of cascaded refinement
blocks is also important. The accuracy improvement obtained
by adding refinement blocks usually tends to be saturated af-
ter the first or second refinement block. Thus, it is more eco-
nomic to only add few refinement blocks, especially for an
inference speed-driven PE design on mobile devices.

Mobile-Unfriendly Operator Replacement
Using computation-friendly operators is often not the top
concern when designing networks pursuing high accuracy
and using high-end server CPUs/GPUs. But it is critical
for the implementation on mobile devices. For example the
Swish activation function used in EfficientNet requires expo-
nential computation, which is mobile-unfriendly and signifi-
cantly slows down the inference speed. This even makes Ef-
ficientNet slower than ResNet50, which requires higher com-
putation FLOPs. Thus, our framework replace the unfriendly
operator with more friendly alternative (e.g., hard-tanh).

Model Num of layers GFLOPs AP mAP
ResNet50 24 13.68 0.41 0.682
ResNet502 36 16.05 0.423 0.69
ResNet503 72 16.09 0.436 0.693
ResNet504 147 16.46 0.433 0.69

Table 1: Accuracy under different depths of ResNet50 backbone.

Some special kinds of convolution (CONV) layers are in-
efficient in mobile inference such as the 7x7 CONV layer. In
Lightweight OpenPose [Osokin, 2018], they replace the 7x7
CONV layer with one 1x1 CONV layer followed by a 3x3
CONV layer and a dilation 3x3 CONV layer. However, the
dilation CONV layer requires access to non-consecutive in-
put data, which leads to bad locality and hence a tremendous
execution overhead. In our framework, we replace the 7x7
CONV layer with three consecutive 3x3 CONV layers to pre-
serve a similar receptive field as the 7x7 CONV layer but with
a much higher speed.

Post-Processing Selection
After the DNN model inference, all PE methods require
a post-processing step. There are several different post-
processing methods, and different methods will result in sig-
nificantly different post-processing times. Thus, selecting an
appropriate post-processing method is an essential problem
for PE implementations on mobile devices. To have a fair
comparison of post-processing time for different methods, we
compared them using desktop CPU since some methods are
mobile-unfriendly and hard to be applied on mobile devices.

In EfficientHRNet [Christopher Neff, 2020], it proposes to
use the way same as Associate Embedding, it needs to clus-
ter the keypoints into multiple persons according to tags got
from the output of the network and match the heatmaps for
different resolutions, which is time-consuming. Although the
EfficientHRNet has smaller GFLOPs and higher accuracy,
it takes around 2s for post-processing on desktop CPU and
dominates the overall end-to-end inference time. As for HR-
Net [Jingdong Wang and Xiao, 2019], it used the keypoint re-
gression to improve keypoint detection and grouping, it still
costs 0.2s. In OpenPose [Cao et al., 2019], it proposes to
parse the heatmaps and PAFs obtained from the network out-
put by performing a set of bipartite matchings to associate
body part candidates and assemble them into full-body poses
for all people in the image. This post-processing takes about
0.02s. Both the first two methods are not computational effi-
cient and making the post-processing become the bottleneck
for the latency. The PAF post-processing used in OpenPose
is more desirable for the mobile-based implementation.

2.2 Weight Pruning
Pruning strategy: In order to maintain accuracy while
achieving a higher acceleration, we use the fine-grained prun-
ing schemes in our framework. Since different sizes and types
of DNN layers inherently have different redundancy, it is de-
sirable to adopt a layer-wise pruning ratio. Because sparse
computation introduces execution overhead, for one layer,
only with a prune ratio that exceeds a threshold can achieve
actual acceleration. Our prune strategy for each layer is either

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)
Demonstrations Track

5013



Model
Input
Size

Average
Precision

Num of
Param. (M)

FLOPs
(G)

Friendly
Post-Proce.

PersonLab 1401 66.5 68.7 405.5 ×
Associate Embedding 512 65.5 138.9 222.3 ×

HRNet 512 64.4 28.5 38.9 ×
HigherHRNet 512 67.1 28.6 47.9 ×

EfficientHRNet H−4 384 35.7 3.7 2.1 ×
EfficientHRNet H−3 416 44.8 6.9 4.2 ×

OpenPose 368 48.6 52.3 136.1
√

Lightweight OpenPose 368 40 4.1 9
√

Ours ResNet503 (dense) 368 43.9 6.77 16.4
√

Ours ResNet503 (1.80×) 368 42.0 3.76 9.7
√

Ours ResNet503 (2.15×) 368 41.5 3.15 8.3
√

Ours EfficientNet (2.01×) 368 41.6 1.68 4.7
√

Table 2: Comparison with state-of-the-art pose estimation methods.

Figure 1: Demonstration of multi-person pose estimation on Sam-
sung Galaxy S10 smartphone.

prune with a relatively high ratio or not prune. We established
a latency model to assist our prune ratio selection.

Sensitivity Analysis: As different functional blocks (e.g.,
backbone, heatmap branch, PAF branch) in a network exhibit
different sensitivity to pruning, pruning on different func-
tional blocks lead to different impacts on the final accuracy.
Therefore, we conducted a sensitivity analysis on different
functional blocks in the model. We found that the backbone
part has a higher tolerance for pruning and can be pruned
more aggressively. Compared with the heatmap branch, the
PAF branch is more sensitive to pruning, and the high prun-
ing ratio will bring a relatively higher accuracy drop, so we
adopt a milder pruning strategy for the PAF branch, that is,
only prune a small number of layers or not prune.

3 Results and Demonstrations
Experiment Setup: We trained our models on MS COCO
dataset [Tsung-Yi Lin, 2014] using PyTorch API. The model
inference latency is measured on a Samsung Galaxy S10
smartphone using a mobile GPU. Figure 1 shows the demon-
strations of multi-person pose estimation on the smartphone.
We follow the design methodology of OpenPose [Cao et
al., 2019] since the PAF the most mobile-friendly post-
processing compared to others. Our optimizations include
model depth determination, mobile-unfriendly operator re-
placement, and weight pruning. Note that our optimization
framework is general and can also be used to optimize other
design methodologies.

Accuracy & Visual Quality: We compared our optimized
models with representative PE methods [Papandreou et al.,
2018; Alejandro Newell, 2017; Jingdong Wang and Xiao,

AP: 43.9, FLOPs: 16.4 G AP: 42.0, FLOPs: 9.7 G AP: 41.6, FLOPs: 4.7 G

Figure 2: Visual quality of multi-person pose estimation using our
optimized models.

0

10

20

30

40

50

0

200

400

600

800

1000

Av
er

ag
e 

pr
ec

is
io

n 
(%

)

La
te

nc
y 

(m
s)

Model inference latency (ms) Average precision(%)

Ours
(dense)

Lightweight
Openpose

Ours
(1.80X)

Ours
(2.15X)

Figure 3: Model inference latency on Samsung Galaxy S10.

2019; Bowen Cheng, 2020; Christopher Neff, 2020; Cao et
al., 2019; Osokin, 2018], as shown in Table 2. Most of the
methods either have huge computation FLOPs or mobile-
unfriendly post-processing, or both, making them not ap-
plicable to on-mobile PE tasks. When compare with the
Lightweight OpenPose (LWOP), which has the potentiality to
be deployed on mobile devices, our optimized models achieve
higher accuracy and lower FLOPs. Figure 2 shows the vi-
sual quality of multi-person PE using our different optimized
models. As shown in the figure, we can maintain high visual
quality with a significant reduction in computation FLOPs.

Inference Latency: Figure 3 shows the model inference
latency comparison of our optimized models and LWOP
model on smartphones. As mentioned in Table 2 the LWOP
model has smaller computation FLOPs compared to our
dense model and 1.80× pruned model (i.e., 9G vs. 16.4G
and 9.7G), but our optimized models are 1.42× and 2.07×
faster, respectively. This is because we replaced the mobile-
unfriendly layers in the model. And our best model achieves
2.51× speedup with higher accuracy compared to LWOP.

4 Conclusion
We propose an optimization framework towards enabling fast
and accurate multi-person pose estimation on mobile de-
vices. Our optimized models achieve both higher accuracy
and faster inference speed on mobile device.

Acknowledgements
This project is partly supported by National Science Foun-
dation (NSF) under CNS-1739748, Army Research Of-
fice/Army Research Laboratory via grant W911NF-20-1-
0167 (YIP) to Northeastern University, a grant from Semi-
conductor Research Corporation (SRC), and Jeffress Trust
Awards in Interdisciplinary Research.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)
Demonstrations Track

5014



References
[Alejandro Newell, 2017] Jia Deng Alejandro Newell,

Zhiao Huang. Associative embedding: Endto-end learn-
ing for joint detection and grouping. In Advances in
Neural Information Processing Systems (NIPS), 2017.

[Bowen Cheng, 2020] Jingdong Wang Honghui Shi Thomas
S. Huang Lei Zhang Bowen Cheng, Bin Xiao. High-
erhrnet: Scale-aware representation learning for bottom-
up human pose estimation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 2020.

[Cai et al., 2020] Yuxuan Cai, Hongjia Li, Geng Yuan, Wei
Niu, Yanyu Li, Xulong Tang, Bin Ren, and Yanzhi Wang.
Yolobile: Real-time object detection on mobile devices
via compression-compilation co-design. arXiv preprint
arXiv:2009.05697, 2020.

[Cao et al., 2019] Z. Cao, G. Hidalgo Martinez, T. Simon,
S. Wei, and Y. A. Sheikh. Openpose: Realtime multi-
person 2d pose estimation using part affinity fields. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 2019.

[Christopher Neff, 2020] Steven Furgurson Hamed Tabkhi
Christopher Neff, Aneri Sheth. Efficienthrnet: Efficient
scaling for lightweight high-resolution multi-person pose
estimation. arXiv preprint arXiv:2007.08090, 2020.

[Fang et al., 2017] Hao-Shu Fang, Shuqin Xie, Yu-Wing Tai,
and Cewu Lu. RMPE: Regional multi-person pose estima-
tion. In ICCV, 2017.

[Han et al., 2016] Song Han, Huizi Mao, and William J.
Dally. Deep compression: Compressing deep neural net-
works with pruning, trained quantization and huffman cod-
ing. In International Conference on Learning Representa-
tions (ICLR), 2016.

[He et al., 2019] Yang He, Ping Liu, Ziwei Wang, Zhilan Hu,
and Yi Yang. Filter pruning via geometric median for deep
convolutional neural networks acceleration. In Proceed-
ings of the IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 4340–4349, 2019.

[Jingdong Wang and Xiao, 2019] Tianheng Cheng Borui
Jiang Chaorui Deng Yang Zhao Dong Liu Yadong Mu
Mingkui Tan Xinggang Wang Wenyu Liu Jingdong Wang,
Ke Sun and Bin Xiao. Deep highresolution representation
learning for human pose estimation. IEEE transactions
on pattern analysis and machine intelligence (T PAMI),
2019.

[Li et al., 2021a] Hongjia Li, Geng Yuan, Wei Niu, Yuxuan
Cai, Mengshu Sun, Zhengang Li, Bin Ren, Xue Lin, and
Yanzhi Wang. Real-time mobile acceleration of dnns:
From computer vision to medical applications. In 2021
26th Asia and South Pacific Design Automation Confer-
ence (ASP-DAC), pages 581–586. IEEE, 2021.

[Li et al., 2021b] Zhengang Li, Geng Yuan, Wei Niu,
Pu Zhao, Yanyu Li, Yuxuan Cai, Xuan Shen, Zheng Zhan,
Zhenglun Kong, Qing Jin, Zhiyu Chen, Sijia Liu, Kaiyuan
Yang, Bin Ren, Yanzhi Wang, and Xue Lin. Npas: A

compiler-aware framework of unified network pruning and
architecture search for beyond real-time mobile accelera-
tion. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2021.

[Niu et al., 2020] Wei Niu, Zhenglun Kong, Geng Yuan,
Weiwen Jiang, Jiexiong Guan, Caiwen Ding, Pu Zhao, Si-
jia Liu, Bin Ren, and Yanzhi Wang. Achieving real-time
execution of transformer-based large-scale models on mo-
bile with compiler-aware neural architecture optimization.
arXiv preprint arXiv:2009.06823, 2020.

[Osokin, 2018] Daniil Osokin. Real-time 2d multi-person
pose estimation on cpu: Lightweight openpose. In arXiv
preprint arXiv:1811.12004, 2018.

[Papandreou et al., 2018] George Papandreou, Tyler Zhu,
Liang-Chieh Chen, Spyros Gidaris, Jonathan Tompson,
and Kevin Murphy. Personlab: Person pose estimation and
instance segmentation with a bottom-up, part-based, geo-
metric embedding model. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 269–286,
2018.

[Tsung-Yi Lin, 2014] Serge Belongie Lubomir Bourdev
Ross Girshick James Hays Pietro Perona Deva Ra-
manan C. Lawrence Zitnick Piotr Dollár Tsung-Yi Lin,
Michael Maire. Microsoft coco: Common objects in con-
text. In Proceedings of the European Conference on Com-
puter Vision (ECCV), 2014.

[Zhang et al., 2021] Chengming Zhang, Geng Yuan, Wei
Niu, Jiannan Tian, Sian Jin, Donglin Zhuang, Zhe Jiang,
Yanzhi Wang, Bin Ren, Shuaiwen Leon Song, et al. Click-
train: Efficient and accurate end-to-end deep learning
training via fine-grained architecture-preserving pruning.
In The 35th ACM International Conference on Supercom-
puting (ICS 2021), 2021.

[Zhao et al., 2020] Pu Zhao, Wei Niu, Geng Yuan, Yuxuan
Cai, Hsin-Hsuan Sung, Wujie Wen, Sijia Liu, Xipeng
Shen, Bin Ren, Yanzhi Wang, et al. Achieving real-time li-
dar 3d object detection on a mobile device. arXiv preprint
arXiv:2012.13801, 2020.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)
Demonstrations Track

5015


	Introduction
	Optimization Framework Design
	Model Architecture Optimization
	Model Depth Determination
	Mobile-Unfriendly Operator Replacement
	Post-Processing Selection

	Weight Pruning

	Results and Demonstrations
	Conclusion

