
Graph-Augmented Code Summarization in Computational Notebooks

April Wang1 , Dakuo Wang2∗ , Xuye Liu3 and Lingfei Wu2

1University of Michigan
2IBM Research

3Rensselaer Polytechnic Institute
aprilww@umich.edu, dakuo.wang@ibm.com, liux27@rpi.edu, wuli@us.ibm.com

Abstract
Computational notebooks allow data scientists to
express their ideas through a combination of code
and documentation. However, data scientists of-
ten pay attention only to the code, and neglect
the creation of the documentation. In this work,
we present a human-centered automation system
Themisto that can support users to easily create
documentation via three approaches: 1) We have
developed and reported a GNN-augmented code
documentation generation algorithm in a previ-
ous paper, which can generate documentation for
a given source code; 2) Themisto implements a
query-based approach to retrieve online API doc-
umentation as the summary for certain types of
source code; 3) Themisto also enables a user
prompt approach to motivate users to write docu-
mentation for some use cases that automation does
not work well.

1 Introduction
Documenting the story behind code and results is critical for
data scientists to work effectively with others, as well as their
future selves [Zhang et al., 2020; Kery and Myers, 2017].
The story, code, and computational results together construct
a computational narrative. Data scientists find these com-
putational notebooks particularly useful as they can support
rapid exploration with code and explanation with natural lan-
guage [Rule et al., 2018].

Unfortunately, the ease of use of computational notebooks
also comes with a cost. Data scientists often write frag-
mented and drafty code in computational notebooks during
their quick experimentation of testing hypotheses or alterna-
tives. It is a tedious process for data scientists to then man-
ually document and refactor the raw notebook into a more
readable computational narrative, thus many people neglect
to do so [Wang et al., 2021a].

Natural language processing (NLP) researchers have
started exploring various ways to automatically generate code
summarizations and documentation using source code as in-
put [LeClair and McMillan, 2019; LeClair et al., 2020]. But

∗Contact Author

the documentation in data science notebooks are particularly
challenging for two reasons: 1) documentations in a notebook
may explain the rationale of a piece of code, or may interpret
the outcomes of a table or a chart, which is difficult for ex-
isting automated code summarization techniques; 2) even for
the documentation simply about what code snippet does, it is
still challenging than other coding contexts, due to the unique
nature of the notebook that one documentation markdown cell
may cover multiple code cells.

In this paper, we propose Themisto, an end-to-end au-
tomated documentation generation system that can support
users to create various documentations in a computational
notebook. It has a frontend user interface that is integrated
into the Jupyter Notebook environment (Fig. 1) thus users do
not need to leave their familiar coding environment; its back-
end is built on top of a three-approach framework to tackle
the two aforementioned challenges: 1) to generate the doc-
umentation that is not easy for an automation algorithm, we
devise a query-based approach and a prompt-based approach
so that the users can semi-automatically write documenta-
tions themselves; 2) to generate documentation for multiple
code blocks, we consider each code block as a graph, and
together as a hierarchical multi-graph structure and propose
an attention-based hierarchical ConvGNN component to aug-
ment a seq2seq network to solve this problem. The HACon-
vGNN algorithm framework is reported in [Liu et al., 2021].

In summary, we present a three-approach automated code
documentation system to help Jupyter Notebook users to cre-
ate documentation for their code and results. Builds on our
previously reported HAConvGNN algorithm, the system has
a human-in-the-loop design feature that can make the human
users’ work easier for the difficult-to-generate documenta-
tion.

2 Themisto
We design and implement Themisto as a Jupyter Note-
book extension that supports data scientists to write better-
documented computational narratives.

2.1 System Architecture
The Themisto system has two components: the client-side UI
implemented as a Jupyter Notebook plugin using TypeScript
code, and the server-side backend implemented as a server
using Python and Flask.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)
Demonstrations Track

5020



A

B

C

D

Figure 1: The Themisto user interface is implemented as a Jupyter Notebook plugin: (A) When the recommended documentation is ready, a
lightbulb icon shows up to the left of the currently focused code cell. (B – D) shows the three options in the dropdown menu generated by
Themisto, (B) A documentation candidate generated for the code with our HAConvGNN model, (C) A documentation candidate retrieved
from the online API documentation for the source code, and (D) A prompt message that nudges users to write documentation on a given
topic.

The client-side program is responsible for rendering the
user interface and monitoring the user actions on the note-
book to edits in code cells. When the user’s cursor focusing
on a code cell, the UI will send the current code cell content
to the server-side program through HTTP requests.

The server-side program takes the code content and gen-
erates documentation using both the deep-learning-based ap-
proach and the query-based approach. For the deep-learning-
based approach, the server-side program first tokenizes the
code content and generates the AST. It then generates the
prediction with the pre-trained model. For the query-based
approach, the server-side program matches the curated API
calls with the code snippets and returns the pre-collected de-
scriptions. For the prompt-based approach, the server-side
program sends different prompts (e.g., for interpreting results
or for explaining reason) base on the output type of the code
cell.

2.2 User Interface Design
Figure 1 shows the user interface of Themisto as a Jupyter
Notebook plugin. Each time the user changes their focus on
a code cell, as they may be inspecting or working on the cell,
the plugin is triggered. The plugin sends the user-focused
code cell’s content to the backend. Using this content, the
backend generates a code summarization using the model and
retrieves a piece of documentation from the API webpage.
When such a documentation generation process is done, the
generated documentation is sent from the server-side to the
frontend, and a light bulb icon appears next to the code cell,
indicating that there are recommended markdown cells for
the selected code cell (as shown in Figure 1.A).

When a user clicks on the light bulb icon, they can see three
options rendered in the dropdown menu: (1) the HACon-
vGNN approach to generate documentation for source code
(Figure 1.B); (2) a query-based approach to retrieve the on-

line API documentation for source code (Figure 1.C); and (3)
a user prompt approach to nudge users to write more docu-
mentation (Figure 1.D). If the user likes one of these three
candidates, they can simply click on one of them, and the se-
lected documentation candidate will be inserted into above
the code cell (if it describes why for the code), or below it (if
it interprets the result of the code).

3 Three Approaches for Documentation
Generation

In this section, we briefly describe the three different ap-
proaches for documentation generation.

3.1 HAConvGNN Model Approach
We proposed an attention-based hierarchical ConvGNN com-
ponent to augment a seq2seq model (HAConvGNN), inspired
by GNN architecture in [LeClair et al., 2020]. These GNN
models can take both the source code’s structure (extracted
as AST) and the source code’s content as input, in compar-
ison to the traditional sequence-to-sequence model architec-
tures, which only take the source code’s content as an input
sequence. Because a markdown cell can cover multiple, we
augment LeClair et al. [LeClair et al., 2020] by encoding ad-
jacent four code cells under a markdown cell to gain a high-
level attention weight.

To build a training dataset, we collect the top 10% of the
publicly available notebooks from the top 20 popular Kaggle
competitions 1. Then we remove non-English notebooks and
transform the data to follow the data structure in [LeClair et
al., 2020]. After data preprocessing, our dataset has 28,625

1We checked these challenges’ data policy and contacted the
Kaggle administrators to make sure our data collection process com-
plies with the Kaggle policy.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)
Demonstrations Track

5021



Dense

GRU

Code 
Embedding

Code Sequence Code AST 
Nodes

Documentation 
Token Sequence 

(0 → t-1)

Decoder

Document 
Embedding

Encoder

Documentation 
Token Sequence 

(t)

Code AST 
Edges

HAConvGNN

HAConvGNN

High Level Attention

GRU

Low Level 
Attention

GRU

ConvGNN

Code AST Embedding Code AST Edges

Multiply

AST Uniform Attention

Low Level 
Attention

GRU

ConvGNN

Low Level 
Attention

GRU

ConvGNN

Low Level 
Attention

GRU

ConvGNN

Code AST 
Embedding

Document 
RNN Decoder

Document 
RNN Decoder

Attention AST Uniform Attention

Figure 2: A code summarization model for the deep-learning-based documentation generation approach via GNN.

code(s)-summary pairs. Following the best practice of model
training, we split the dataset into training, testing, and vali-
dation subsets with an 8 to 1 to 1 ratio. We use the Adamax
optimizer [Kingma and Ba, 2014] with a batch size of 20. The
learning rate we set is 0.001. The code sequence embedding
size is 100. In the encoder, we use GRU [Cho et al., 2014]
with the hidden size of 256. The hop size of our GNN is 2.
The dropout rate of our attention layer is 0.5.

In our previously published algorithm paper, we reported
both quantitative and qualitative evaluations of our model’s
performance against two baseline models using ROUGE
scores [Lin, 2004]. The two baseline models are Code2Seq
model [Alon et al., 2018] and Graph2Seq model [Xu et al.,
2018] . In this paper, we briefly present the partial quantita-
tive evaluation result. As shown in Table 1, our HAConvGNN
model outperforms the other two baselines. For more details,
please refer to [Liu et al., 2021].

3.2 Query-Based Approach and Prompt-Based
Approach

Well-documented Kaggle notebooks often have the descrip-
tion of frequently-used data science code functions for educa-
tional purposes. And sometimes data scientists directly paste
in a link or a reference to the external API documentation
for a code function [Wang et al., 2021a]. Thus, we imple-
ment a query-based approach that curates a list of API from
commonly used data science packages, and short descriptions

Model Precision Recall F-Measure
code2seq 11.45 8.46 8.23

graph2seq 13.21 9.87 9.51

HAConvGNN 22.87 16.92 16.58

Table 1: ROUGE-1 scores for baselines and our models

from external documentation sites. In our system, we only
cover Pandas , Numpy , and Scikit-learn these three libraries
as a starting point to explore this approach. We collected both
the API names and the short descriptions by building a crawl-
ing script with Python. When users trigger this query-based
approach for a code cell, Themisto matches the API names
with the code snippets and concatenate all the corresponding
descriptions.

Lastly, a well-documented notebook not only documents
the process of the code, but also interprets the output, and
explains rationales. These types of documentation are hard
to generate with automated solutions To achieve it, we im-
plement a prompt-based approach. It detects whether the
code cell has a cell output or not: if the cell outputs a result,
Themisto assumes that the user is more likely to add inter-
pretation for the output result, thus the corresponding prompt
will be inserted below the code cell. Otherwise, the system
assumes the user may want to insert a reason or some edu-
cational type of documentations, thus it changes its prompt
message.

4 Conclusion
In conclusion, this demo paper presents a prototype system
that can support Jupyter notebook users to utilize our state-
of-the-art NLP algorithm [Liu et al., 2021] to automatically
generate documentation for a computational notebook. In
the future, we will continue to pursue the intertwined NLP
and HCI research agenda [Wang et al., 2021b]: we will de-
sign new algorithm models to improve the fully automated
documentation generation accuracy, and we will design and
evaluate our human-centered AI system’s usability with tar-
get users.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)
Demonstrations Track

5022



References
[Alon et al., 2018] Uri Alon, Shaked Brody, Omer Levy,

and Eran Yahav. code2seq: Generating sequences
from structured representations of code. arXiv preprint
arXiv:1808.01400, 2018.

[Cho et al., 2014] Kyunghyun Cho, Bart van Merriënboer,
Caglar Gulcehre, Fethi Bougares, Holger Schwenk, and
Y. Bengio. Learning phrase representations using rnn
encoder-decoder for statistical machine translation. 06
2014.

[Kery and Myers, 2017] Mary Beth Kery and Brad A. My-
ers. Exploring exploratory programming. In 2017 IEEE
Symposium on Visual Languages and Human-Centric
Computing (VL/HCC), pages 25–29, 2017.

[Kingma and Ba, 2014] Diederik Kingma and Jimmy Ba.
Adam: A method for stochastic optimization. Interna-
tional Conference on Learning Representations, 12 2014.

[LeClair and McMillan, 2019] Alexander LeClair and Collin
McMillan. Recommendations for datasets for source code
summarization. arXiv preprint arXiv:1904.02660, 2019.

[LeClair et al., 2020] Alexander LeClair, Sakib Haque, Lin-
fgei Wu, and Collin McMillan. Improved code sum-
marization via a graph neural network. arXiv preprint
arXiv:2004.02843, 2020.

[Lin, 2004] Chin-Yew Lin. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summarization
Branches Out, pages 74–81, Barcelona, Spain, July 2004.
Association for Computational Linguistics.

[Liu et al., 2021] Xuye Liu, Dakuo Wang, April Wang, and
Lingfei Wu. Haconvgnn: Hierarchical attention based
convolutional graph neural network for code documen-
tation generation in jupyter notebooks. arXiv preprint
arXiv:2104.01002, 2021.

[Rule et al., 2018] Adam Rule, Aurélien Tabard, and
James D Hollan. Exploration and explanation in com-
putational notebooks. In Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems,
pages 1–12, 2018.

[Wang et al., 2021a] April Yi Wang, Dakuo Wang, Jaimie
Drozdal, Xuye Liu, Soya Park, Steve Oney, and Christo-
pher Brooks. What makes a well-documented notebook?
a case study of data scientists’ documentation practices in
kaggle. In Extended Abstracts of the 2021 CHI Confer-
ence on Human Factors in Computing Systems, pages 1–7,
2021.

[Wang et al., 2021b] Dakuo Wang, Pattie Maes, Xiangshi
Ren, Ben Shneiderman, Yuanchun Shi, and Qianying
Wang. Designing ai to work with or for people? In Ex-
tended Abstracts of the 2021 CHI Conference on Human
Factors in Computing Systems, pages 1–5, 2021.

[Xu et al., 2018] Kun Xu, Lingfei Wu, Zhiguo Wang, Yan-
song Feng, Michael Witbrock, and Vadim Sheinin.
Graph2seq: Graph to sequence learning with attention-
based neural networks. arXiv preprint arXiv:1804.00823,
2018.

[Zhang et al., 2020] Amy X Zhang, Michael Muller, and
Dakuo Wang. How do data science workers collab-
orate? roles, workflows, and tools. arXiv preprint
arXiv:2001.06684, 2020.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)
Demonstrations Track

5023


	Introduction
	Themisto
	System Architecture
	User Interface Design

	Three Approaches for Documentation Generation
	HAConvGNN Model Approach
	Query-Based Approach and Prompt-Based Approach

	Conclusion

