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Abstract
Distributed artificial intelligence (DAI) studies ar-
tificial intelligence entities working together to
reason, plan, solve problems, organize behav-
iors and strategies, make collective decisions and
learn. This Ph.D. research proposes a principled
Multi-Agent Systems (MAS) cooperation frame-
work, Self-Adaptive Swarm System (SASS), to
bridge the fourth level automation gap between
perception, communication, planning, execution,
decision-making, and learning.

1 Introduction
In the artificial systems, distributed artificial intelligence
(DAI) has developed more than three decades as a sub-
field of artificial intelligence (AI). It has been divided into
two sub-disciplines: Distributed Problem Solving (DPS) fo-
cuses on the information management aspects of systems
with several branches working together towards a common
goal; Multi-Agent Systems (MAS) deals with behavior man-
agement in collections of several independent entities, or
agents [Stone and Veloso, 2000]. For cooperative MAS, the
individual is aware of other group members, and actively
shares and integrates its needs, goals, actions, plans, and
strategies to achieve a common goal and benefit the entire
group, especially building so-called artificial social systems
[Wooldridge, 2009], such as Multi-Robot Systems (MRS).

For low-level planning and control, [Rizk et al., 2019]
groups the system based on the cooperative tasks’ complex-
ity as four levels of automation, and no references were
found currently. For high-level MAS decision-making and
learning, recent studies mainly concern partial cooperation
and do not consider deeper cooperative relationships among
agents representing more complex team strategies [Rizk et
al., 2018]. Combining the information from perceiving the
environments and inferring the corresponding strategies and
the world’s conditional (or even causal) relations in those sce-
narios, a unified probabilistic framework to tightly integrate
deep learning and Bayesian models adapting the environ-
ments and achieving the tasks with reasonable time complex-
ity and efficient and effective information exchange between
the perception component and the task-specific component
are still challenging problems [Wang and Yeung, 2020].

Figure 1: Behavior Tree representing Robot Needs Hierarchy at each
agent in SASS. [?] - Selector Node, [99K] - Sequence Node, Con -
Conditions, Act - Actions, Pe - Perception, Sa - Safety, BN - Basic
Needs, Ca - Capability, U - Utility, Pl - Plan, Ne - Negotiation,
A&E - Agreement and Execution.

2 Contributions
This Ph.D. research proposes a principled MAS coopera-
tion framework called Self-Adaptive Swarm System (SASS)
[Yang et al., 2019; Yang and Parasuraman, 2020b]. Fig. 1
shows needs-driven SASS mechanism represented as a Behav-
ior Tree and we briefly introduce our contributions as follow:

Robot Needs Hierarchy To model an artificial intelligence
agent’s motivations and needs, we classify the Robot Needs
Hierarchy as five different levels: safety needs (collision
avoidance, human-safety control, etc.); basic needs (energy,
time constraints, etc.); capability (heterogeneity, hardware
differences, etc.); teaming (global utility, team performance,
etc.); and self-upgrade (learning).

Negotiation-Agreement Mechanism We propose a dis-
tributed Negotiation-Agreement mechanism for selection
(task assignment), formation (shape control), and routing
(path planning) through automated planning of state-action
sequences, helping MAS solve the conflicts in cooperation.
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Figure 2: SASS Synthetic Framework

Atomic Operations By decomposing the complex tasks
into a series of simple sub-tasks based on the Atomic Oper-
ations: Selection, Formation, and Routing, agents can recur-
sively achieve all sub-tasks until MAS completes the mission.
Game-theoretic Utility Tree (GUT) GUT [Yang and Para-
suraman, 2020a] is a new state-space Bayesian network
model [Koller and Friedman, 2009] for artificial intelligent
agent decision-making in uncertain and adversarial environ-
ments. It builds hierarchical relationships between individual
behaviors and interactive entities and helps agents infer the
following step strategy combination representing more com-
plex behaviors to adapt to various scenarios through given the
observations and the arriving data in real-time.
Relative Needs Entropy (RNE) Based on the Robot Needs
Hierarchy model, Trust can be defined as the difference or
distance of needs distribution between agents or groups in a
specific scenario. Statistics regard Relative Entropy as the
similarity of high-dimensional sample sets. Here, we call
it – Relative Needs Entropy (RNE) [Yang and Parasuraman,
2021], which describes the reliability and stability of the re-
lationships between agents in MAS cooperation.
GUT-Based Bayesian Adaptive Learning By designing
the appropriate Trust (RNE) Network, building suitable per-
ception models, estimating reasonable parameters, simplify-
ing the corresponding GUT model, and implementing struc-
ture learning (Fig. 2), adaptive learning [Nikolaev and Iba,
2006] can efficiently optimize the group strategy fitting the
specific scenarios in MAS interaction and cooperation.
Explore Domain From the realistic and practical perspec-
tive, Explore Domain [Yang and Parasuraman, 2020a] ana-
lyzes how to organize more complex relationships and behav-
iors in MAS cooperation, achieving tasks with higher success
probability and lower costs in adversarial environments.
Urban search and rescue (USAR) Through organizing
heterogeneous agents’ needs for MAS cooperation in USAR,
we consider the Group’s Utility (teaming needs) as the num-
ber of victims or valuable properties rescued as much as pos-
sible in a limited time [Yang and Parasuraman, 2020c].

3 Conclusion
In the SASS, Robot Needs Hierarchy is the foundation. It sur-
veys the system’s utility from individual needs. Balancing
the rewards between agents and groups for MAS through in-
teraction and adaptation in cooperation optimizes the global
system’s utility and guarantees sustainable development for
each group member, much like human society does.

As a novel DAI model, the planning and control govern
the individual low-level safety and basic needs; capability
and teaming needs are the preconditions and requirements
of MAS cooperation in decision-making for achieving tasks;
individuals upgrade themselves from interaction, coopera-
tion, and adaptation in the process for the highest level needs
learning, helping SASS self-evolution.
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