SEARCH FOR A SOLUTION: A CASE STUDY*

R. M. Balzer

The RAND Corporation, Santa Monica,

ABSTRACT

This paper describes a series of
attempts at the solution of a conceptual-
ly tough problem, the Firing Squad Syn-
chronization Problem. These attempts
demonstrate an increasing reliance on man-
machine symbiosis and decreasing reliance
on powerful heuristics and preplanning.

These attempts consist of a clerical
checking program, and four attempts uti-
lizing a basic backtracking program for
searching the solution space. The first
two attempts, Serial Definition of Pro-
ductions and Symbolic Definition of Pro-
ductions were non-interactive entirely
computer directed attempts at solution.
The second two, Functional Planning and
Constraint Satisfaction were man-machine
symbiotic attempts designed to allow the
human to control and direct the computer
search of the solution space. The bene-
fits of these symbiotic attempts and the
problems encountered with them are
discussed.

INTRODUCTION

This is the second of two papers
detailing my personal experiences with
the Firing Squad Synchronization Problem
over the last four years. During this
period, | have tried many different ap-
proaches toward solving the problem. The
first sequence led to the original best
(smallest number of states) Minimal Time
Solution yet found; the remaining attempts
have been unsuccessful at either improving
the solution (reducing the number of
states) or proving it is the best possible
solution, although they have generated
several other Minimal Time solutions with
this same number of states, and from other
than an intellectual and illustrative

This research is supported by the
Advanced Research Projects Agency under
Contract No. DAHC15 67 C 0141. Views or
conclusions contained in this study should
not be interpreted as representing the
official opinion or policy of ARPA.

California

standpoint, were rather unproductive.
The first of these papers dealt with the
succession of representations and the key
insights they allowed that culminated in
the Minimal Time Solution. This paper
discusses the unsuccessful attempts from
the standpoint of Man-Machine Symbiosis.
Reviewed chronologically, these attempts
demonstrate a continuing effort to sub-
stitute problem-oriented heuristics and
interaction for brute force and pre-
planning.

PROBLEM STATEMENT

The problem with which this paper is
concerned was first publicly presented by
Dr. E. F. Moore in 1962:

"The problem known as the Firing
Squad Synchronization Problem was devised
about the year 1957 by John Myhill, but
so far as | know the statement of the
problem has not yet appeared in print.

It has been widely circulated by word of

mouth, and has attracted sufficient in-
terest that it ought to be available in
print. The problem first arose in connec-

tion with causing all parts of a self-
producing machine to be turned on simul-
taneously. The problem was first solved
by John McCarthy and Marvin Minsky, and
now that it is known to have a solution,
even persons with no background in logical
design or computer programming can usually
find a solution in a time of two to four
hours. The problem has an unusual ele-
gance in that it is directly analogous to
problems of logical design, systems de-
sign, or programming, but it does not
depend on the properties of any particular
set of logical elements or the instruc-
tions of any particular computer. I would
urge those who know a solution to this
problem to avoid divulging it to those
who are figuring it out for themselves,
since this will spoil the fun of this
intriguing problem.

"Consider a finite (but arbitrarily
long) one dimensional array of finite-
state machines, all of which are alike
except the ones at each end. The machines



are called soldiers, and one of the end
machines is called a general. The ma-
chines are synchronous, and the state of
each machine at time t + 1 depends on the
states of itself and of its two neighbors
at time t. The problem is to specify the
states and transitions of the soldiers in
such a way that the general can cause them
to go into one particular terminal state
(i.e., they fire their guns) all at exact-
ly the same time. At the beginning (i.e.,
t = 0) all the soldiers are assumed to be
in a single state, the quiescent state.
When the general undergoes the transition
into the state labeled "fire when ready",
he does not take any initiative after-
wards, and the rest is up to the soldiers.
The signal can propagate down the line no
faster than one soldier per unit of time,
and their problem is how to get all coor-
dinated and in rhythm. The tricky part
of the problem is that the same kind of
soldier with a fixed number, k, of states,
is required to be able to do this, regard-
less of the length, n, of the firing
squad. In particular, the soldier with k
states should work correctly, even when n
is much larger than k. Roughly speaking,
none of the soldiers is permitted to count
as high as n.

"Two of the soldiers, the general and
the soldier farthest from the general, are
allowed to be slightly different from the
other soldiers in being able to act with-
out having soldiers on both sides of them,
but their structure must also be indepen-
dent of n.

"A convenient way of indicating a
solution of this problem is to use a piece
of graph paper, with the horizontal coor-
dinate representing the spatial position,
and the vertical coordinate representing
time. Within the (i,j) square of the
graph paper a symbol may be written,
indicating the state of the ith soldier
at time j. Visual examination of the
pattern of propagation of these symbols
can indicate what kinds of signaling must
take place between the soldiers.

"Any solution to the Firing Squad
Synchronization Problem can easily be
shown to require that the time from the
general's order until the guns go off must
be at least 2n - 2, where n is the number
of soldiers. Most persons solve this
problem in a way which requires between
3n and 8n units of time, although occa-

-22-

sionally other solutions are found. Some
such other solutions require 5/2n and of
the order of n-squared units of time. For
instance, until recently, it was not known
what the smallest possible time for a
solution was. However, this was solved
at M.I.T. by Professor E. Goto' of the
University of Tokyo. The solution ob-
tained by Goto used a very ingenious con-
struction, with each soldier having many
thousands of states, and the solution re-
quired exactly 2n - 2 units of time. In
view of the difficulty of obtaining this
solution, a much more interesting problem
for beginners is to try to obtain some
solution between 3n and 8n units of time,
which as remarked above, is relatively
easy to do.

|[Eiichi Goto, "A Minimal Time Solution
of the Firing Squad Problem," Dittoed
course notes for Applied Mathematics 298,
Harvard University (May 1962), pp. 52-59,
with an illustration in color. Also a
different version of Goto's solution is
to be published, without the colored
illustration."*

Goto's solution apparently has not
been published. However, independently of
the present effort, Abraham Waksman' has
found a 16-state minimal time solution
using essentially the same ideas as pre-
sented in the following section. Fischer2
has also used these ideas in discussing
other properties of one-dimensional itera-
tive arrays of finite-state machines.

GENERAL OUTLINE OF A MINIMAL TIME SOLUTION

The Firing Squad Synchronization
Problem can be solved by successively sub-

dividing the line into halves, quarters,
eighths, etc., until all members of the
line are division points. At this time,

they all can fire simultaneously. By
always dividing the line into two equal
parts, and then subdividing each of those
parts into two equal parts, and so on, the
synchronization of the firing can be
assured.

To divide the line into two equal
parts, the general simultaneously sends
out two signals, SI and S2 (see Fig. 1).

*Moore, E. F. (1964), "Sequential
Machines, Selected Papers," pp. 213-214.
Addison Wesley, Reading, Mass.



Time

Fig.1—A 3n-3 solution for a firing squad of length 12



For the sake of definiteness, we will
assume the general is the rightmost man
in the line. SI and S2, then, both trav-
el to the left, S1 at a speed of one
machine every three time units. When S1
reaches the far end of the line, the end
machine sends back a signal, S3, which
travels at a speed of one machine per
time unit to the right. Signals S2 and
S3 will meet at the center of the line,
for, if P is the length of the line, then
s1 and S3 combined have traveled a dis-
tance of 3P/2 while S2 has traveled a
distance of P/2, a ratio of three to one,
which is the same as the ratio of their
respective speeds. Since S2 moves to the
left only once every three units, the
machine containing this signal must count
to three (i.e., S2 - 1, 82 - 2, S2 - 3).
By the state of the machine containing
s2 and S3 encountered, it can be deter-
mined whether the line is of even or odd
length, and hence, whether both machines
should become middle men or only the one
containing S2. These middle men (or man)
then act like the original general, send-
ing out both S1 and S2 signals to the
left and also to the right. This process
is repeated over and over until all the
men in the line are middle men, at which
time firing occurs.

Notice that the above process in-
sures the synchronization of the line and
also permits the determination of the
firing condition on a local basis, i.e.,
a machine fires if it is a middle man and
the machines on either side of it are
also middle men. The outside machines
fire if they are middle men and the
machine next to it is also a middle man.

The above process will lead to a
three N solution (where N is the length
of the line). The first middle point is
found in 3N/2, the quarter points are
found in 3(N/2)/2 additional units of
time, and so on. This summation leads to
a 3N solution.

The above method can be modified to
yield a 2N solution (see Fig. 2). Assum-
ing again that the general is the right-
most machine, we change the process as
follows: When S1 reaches the left end of
the line, the leftmost machine acts as if
it were also a general; i.e., it sends
out two signals to the right, one signal,
S3, has been discussed a'oove. The second

-24-

signal, S4, is like S2, except that it
travels to the right instead of the left.
The middle of the line is still found
when S3 and S2 meet. Now when the middle
man (or men) created sends out signals S1
and S2 to the left (as described above),
S1 will meet S4 at the quarter point of
the original line. From the state of the
machine containing the slower moving sig-
nal, it can be determined (as above)
whether the length of the left half of
the original line is even or odd; and
hence, whether there should be two or one
middle man. Notice that the mechanism
used to find this quarter point is the
same as that used in the 3N solution.
However, the process was started earlier,
when the end of the line was reached, and
originated at the opposite end of the
left half of the line. This process can
be continued to find the right quarter
point of the left half of the line. The
length of time necessary to find the
quarter point after the middle point has
been found is just the distance between
these points, N/4. The length of time
necessary to find the eighth point after
the quarter point has been found is N/8,
and so on. If this rate of finding suc-
cessive middle points could be maintained,
the total time for a solution would be
3N/2 -I- N/4 + N/8 + N/16 ., wWhich equals
2N. However, since the general is count-
ed as one member of the line the remain-
ing line is of length N - 1. Hence this
solution will take 2(N - 1). Therefore,
if the above rate of finding successive
middle points could be maintained, a
minimal time solution would be attained.

The above process does not produce a
solution because, in any interval, it
will find only one of the two quarter
points in the required length of time.
Again assuming the general is the right-
most man in the line, the above will find
only the left quarter point, but not the
right. Thus the line will not be syn-
chronized and a solution will not be
found. This can be rectified by having
the general also send out a signal, S5,
along with SI, and S2, which travels to
the left at a rate of one machine every 7
units of time. This signal and S3 sent
from the middle of the line will meet at
the quarter point. Each middle man now
sends out three signals enabling every
interval to be divided into quarters in
synchronization. However, the rightmost



Y

Time

57
s#

\53 SI‘

\st (26_ ,

s&a SN |1V 2
; 77\
S2 \S (26"12)
— — D — el m— 4
5 13
<YM NI
s\ Ys S

Fig.2—A 2n-2 solution for a firing squad of length 13

25



eighth point cannot be found as fast as
the other eighth points (this is the same
problem as above with the rightmost quar-
ter point). As above, we can find this
point by having the general also send out
another signal traveling at a rate of one
machine every 15 units of time. In a
similar way, the rightmost 1/(21)th
point in an interval can be found by
having the general send out a signal
traveling at a rate of one machine every
2¢(K + 1) - 1 units of time.

Sending out enough of these signals
would produce a minimal time solution for
any given length of the firing squad.
However, the number of signals required
is dependent on the length of the line.
Since the number of states required for a
machine is dependent on the number of sig-
nals that machine must handle, the number
of states required is dependent on the
length of the line; hence, the above does
not constitute a solution to the Firing
Squad Synchronization Problem.

The above process fails because it
cannot find the rightmost (or leftmost if

the general starts on the left) I/(2tK)th
points in an interval, with a given num-
ber of states for all lengths. If one

could have a marker that reached the
right quarter point and then stopped
there, and a marker which reached the
right eighth point and then stopped there,
and so on, the problem would be resolved.
As the right traveling signal encountered
these markers it would create middle men,
and then the process would begin to sub-
divide the next interval in the same
manner. The total distance traveled by
each of these markers would be half the
distance traveled by the marker to its
left.

Consider the following: A signal
travels to the left at a rate of one
machine every unit of time. Every second
time it moves, it sends out a signal to
the right that travels at a rate of one
machine every unit of time. When this
signal reaches a marker, a machine in a
given state, the marker moves one machine
to the left. Every second time this
marker has moved, it sends a similar sig-
nal to the right that causes the next
marker to move. Each marker behaves in
this manner, moving to the left when it
receives a signal from its left; and
every second time it moves, sending a

-26-

signal to its right for the next marker.
Finally, the general acts as a source of
these markers, producing one on its left
every time a signal is received.

We now have a system in which each
marker travels half as far as the marker
in front of it, and no matter how long
the line is, enough of these markers are
produced to properly subdivide the line.

When the original signal reaches the
end of the line, the same process describ-
ed above is repeated except that all
directions are now reversed. When the
original signal reaches the far end of
the line, the first marker has not yet
reached the middle of the line because all
the signals causing it to move have not
been received. No new signals causing
movement of the markers will be produced,
and so the markers will ultimately stop

at the correct positions in the line.
Since the movement causing signals travel
at the same rate as the original signal,

none of these signals can be overtaken by
the original signal from the far end of
the line. Hence, when this signal reaches
the marker, all the signals causing that
marker to move will already have been
received; therefore, the marker will be

in the correct position. In any interval,
two separate processes are used to find
the quarter points. The quarter point

farthest from the middle man who initiated
the subdivision of the interval is found
by the process first described in the 3N

solution. The quarter point nearest this
middle man is found by the process just
described. The length of time required
to find these quarter points after the
middle of the interval has been found is
equal to the number of machines between
the quarter points and the middle point
for both processes. Hence, the quarter
points will be found simultaneously, the
solution will remain synchronized, and
this process will produce a minimal time
solution (since there is an unlimited
source of markers, the problem can be
solved with a fixed number of states no
matter how long the line).

SOLUTION ATTEMPTS

The use of the computer as an aid in
solving the Firing Squad Problem occurred
quite early, but only after the conceptual
framework described above had been estab-
lished. The first use of the computer



was strictly clerical in accepting a defi-
nition of the soldiers as a set of produc-
tions, and producing a simulation of
their behavior for a number of different
length lines, noting any errors in this
behavior. The interaction consisted of
scanning the output, deciding on changes,
making them and restarting the process
(response time «8-10 hours). Using this
mechanism alone, | was able to obtain a
minimal time twenty-eight state solution
and reduce it to an eight state minimal
time solution. At this point | began,
with my trusty computer, searching for a
better solution or a proof that no better
solution existed. While | did not suc-
ceed in this search, the attempts provide
an interesting collage of some ways a man-
machine partnership can be used to attack
a conceptually tough problem.

SERIAL DEFINITION OF PRODUCTIONS

It was obvious from the first that
brute force could not be used to search
the solution space exhaustively (there
are 1*10t244 possible seven-state solu-
tions); so the simplest heuristic above
brute force was employed, i.e., Don't
make any decisions until you must! In
the present context this means:

1) Start simulation with all
ductions undefined.

pro-

2) If an undefined production is
encountered, define it to the
first state and continue the
simulation.

3) If an error is found, back the
simulation up to the definition
point of the most recent produc-
tion, change its definition to
the next state, and continue the
simulation.

4) If there are no more states to
try in #3 above, move back to

the previous production. If
there are no more productions
quit.

This process will exhaust the possible
search space, finding any solutions which
exist or proving that none exist. This
is the familiar technique of Backtrack
Programming.3 A second heuristic utiliz-
ing isomorphism among unused states fur-
ther reduced the search space by approx-
imately two orders of magnitude. There

-27-

was no interaction with this attempt; the
computer carried the ball by itself,
fumbling because the search space was
still too large for seven-state solutions.
It did, however, prove that no four-state
minimal time solution exists.

SYMBOLIC DEFINITION OF PRODUCTIONS

Having failed via Backtrack Program-
ming to find that a better solution
existed or to prove that it didn't, and
noting from more than adequate computer
output that this technique spent most
(would you believe ALL?) of its time look-
ing down implausible trails, | decided to
escalate one more level. Instead of hold-
ing decisions off until needed, hold them
off even longer, making pseudo (symbolic)
decisions and continuing. Ultimately,
each pseudo (symbolic) decision in turn is
converted to a real decision in a Back-
track Programming algorithm and the re-
sults of such decision can be observed.
We thus have provided a means of look-
ahead. The results of a decision can be
observed at the time of that decision, and
so, | thought, large portions of the
search space could be pruned earlier.

This method started a simulation of
the Firing Squad; but, as an undefined
production is encountered, rather than
decide what state should be produced, a
new symbolic state is created, and the
simulation continues until a suitably
large structure has been built up. Then,
via a Backtrack Programming algorithm
symbolic states are converted to actual
states. With each such assignment, we
first check to see if a contradiction has
occurred. The only kind of contradiction
that can occur in this approach is two
productions that have equal left-hand
sides but unequal right-hand sides.
contradictions cause backtracking to
occur. Second, finding no contradiction,
the implications of the assignment are
handled. These implications occur when
two productions exist with equal left-
hand sides but with at least one right-
hand side still symbolic. To avoid a
later contradiction, the right-hand sides
are equated. These new assignments and
any new assignments they produce are pro-
cessed in the above manner until either a
contradiction is found, or no more impli-
cations are generated. It is these gener-
ated implications that provide the look-
ahead capability.

Such



The amount of look-ahead depends only
on the amount of structure (simulation)
generated before making actual assign-
ments. The number of symbolic productions
generated is proportional to the amount of
simulation. Unfortunately, the search re-
quired to look for contradictions and im-
plications is proportional to the square
of the number of productions. When enough
structure was generated to get an adequate
amount of look-ahead, the number of pro-
ductions generated was large enough to
slow the processing down to the point
where it more than offset any advantage
gained from look-ahead, and nothing new
was gained from this approach.

Like the exhaustive search method,
this approach was handled entirely by the
computer and there was no interaction.

THE TRANSITION TO COOPERATION

By now, my failures had me well con-
vinced that | would be unable to exhaus-
tively search the entire search space
(even as constricted by a suitable set of
heuristics). Since | believed, and still

believe, that a seven-state Minimal Time
Solution exists, it made sense to try to
find one. | tried two approaches, both of

which consisted of a basic backtrack prog-
ramming algorithm in the machine, and a
man-machine interface, by which | could
make suggestions on where and for what to
search. My entire outlook changed at this
point. Rather than trying to build bigger,
more powerful heuristic tools, | tried to
design simple algorithms that could effec-
tively be directed by me through the man-
machine interface. | wanted to be able

to specify the outline of a solution, in
my terms, and have the machine fill in the
details and produce an actual solution of
the form specified. In retrospect, this
may seem like an obvious course to follow;
but at the time, although | was familiar
with on-line environments, | had to under-

go a rather traumatic rethinking of the
problem, not from an implementation stand-
point (which was fairly straightforward),

but on the conceptual level. | had to
switch my thinking from, How can | (em-
bodied either as myself or as a non-
Interactive program) find a solution?, to
How can WE find a solution? | think the
two approaches discussed below show this
shift in viewpoint; and, as they are pre-
sented chronologically, also an increased

-28-

emphasis on interaction, feedback, and

control of the search process.

FUNCTIONAL PLANNING

From my attempts to find solutions,
it was apparent that | started with a
plan, or outline, that stated what job or
group of jobs each state in the attempted
solution would perform. That is, each
state was given a function, such as being
a middle man, that it was expected to per-
form. | therefore called this activity
functional planning. After deciding on
such a functional plan, | tried to define
a set of productions that caused each
state to perform as specified in the plan.
Notice that in this approach, as con-
trasted with the Constraint Satisfaction
presented next, the definition of a func-
tion is specified on a local (through pro-
ductions) rather than global basis.

Viewed as a cooperative venture, |
would propose a plan in terms of the func-
tions desired for each state and the com-
puter would search the necessary solution
space to determine whether or not a set
of productions existed that satisfied the
given plan.

The functions | used in my attempts--
and that | envisioned using on further
attempts--could all, with one exception,
be defined by their interaction with other
states on a local basis. These functions
could therefore be defined by a set of
productions or by a set of restrictions
on the resultant of certain productions.
The basic backtracking program could
still be used to do the searching by
altering its behavior so that through an
input language | could define some produc-
tions that would remain unalterable, and
restrict the set of allowed states for the
resultants of some other productions.

The one function that could not be
defined in this manner was the middle man.
The reason being that this concept is not
local--the determination of the middle of
the line involves the entire line. The
other functions considered are those de-
scribed in the section - General Descrip-
tion of the Minimal Time Solution. Basi-
cally, all the plans proposed were merely
attempts to realize this general type of
solution with the given number of states.



This approach was the most successful
from two standpoints. First, because it
was fairly easy to crank out several dif-
ferent eight-state minimal time solutions
including the one presented in my thesis®
and the one for which an induction proof
was obtained. (The plan was specifically
designed to make this proof easier.) Sec-
ond, and more important, this approach
produced a conceptual addition to my
thinking about the problem. In an effort
to specify a plan through production re-
strictions, | discovered the idea of what
I call Image Solutions which are a formal
way of saying that the processes going on
in one part of the line ought to be also
occurring in an "image form" with the
directions reversed and using different
states in some other part of the line at
some other time. That is, all interac-
tions within the line ought to have a
counterpart occurring in the opposite
direction. This viewpoint also led to the
idea of image states that specify the cor-
respondence between states within image
processes. Note that this conceptual
breakthrough, which | now consider basic
to any heuristic search for a solution,
arose not through any actual man-machine
interaction but through a man-machine
symbiotic relationship in which the need
to communicate a complex feature of a
plan occurred; i.e., the machine acted
only as a catalyst, not taking any active
role in the discovery.

The interaction for this approach
involved observing on-line the simulation
behavior as it was periodically printed,
and deciding whether or not to let the
program proceed. If the decision were
made to stop the simulation, a new input
specification of the plan had to be pre-
pared before restarting the program. It
usually took between 10 to 20 minutes to
decide what modifications to make to the
plan specification, and about one minute
to actually make them and restart the
program. The environment under which this
was performed was a non-multiprogrammed
batch machine for which | was the sole
user during my signup periods. Thus,
although | was running in a standard
batch off-line environment, | was really
on-line with the program with an effective
response time of one minute.

We frequently talk about the response
time of a computer system but almost never

-29-

about the human response time, except
for such trivia as the time to hit a key.
In the above man-machine system, my re-
sponse time was over an order of magni-
tude longer than the machine's; thus |
did not feel, during my work, that the
machine was not adequately handling its
portion of our partnership. Furthermore,
it is hard to see how the machine, for
this approach, could have further aided
me to cut down my response time. | was
still performing too much work in our
partnership; work for which my processing
capabilities were not well suited.

CONSTRAINT SATISFACTION

The last attempt at finding a solu-
tion resulted from the problems encoun-
tered in Functional Planning; mainly
that | was still supporting too much of
the load in terms of real effort expended
per iteration. | tried to find a way of
specifying a plan that was more natural
to the way | was conceptualizing the
problem.

My basic representation was the two
dimensional one suggested by Moore4 and
ray plan followed the kinds of ideas ex-
pressed in the section, "General Outline
of a Minimal Time Solution'’. | wanted an
easy way of communicating this to the ma-
chine. Because | was used to looking at
a simulation and, by observing its beha-
vior at various points, seeing if it fol-
lowed my plan, | decided to specify its
behavior in the same way--the medium is
the message. That is, | could specify
what state should occur at various points
and along various lines in the two dimen-
sional representation, and then let the
computer--using the trusty backtracking
simulation program--see if it could satis-
fy these constraints.

A graphical interactive program5 was
constructed that utilized an IBM 2250
with a RAND Tablet as the interface de-
vice. With this program, | could quickly
and easily specify, in graphical form,
the constraints | desired along any
straight line or at any point. In addi-
tion, to help further restrict the search
space, | could define frozen (unalterable
by the computer) productions. | was able
to specify on-line: what length line to
work on; what the names of the states
should be; whether image solutions were



desired or not, and if so what the mapping
between image states would be; whether the
computer should display the simulation as
it did it or whether it should run autono-
mously; when it should stop (after each
time unit in the simulation, or only on
asynchronous interrupts); which produc-
tions to freeze or thaw; and whether the
first occurrence of each production should
be brightened or not.

All of this was designed to provide
me with a fast, flexible, and facile con-
trol of the search. This it did; | was
able to very quickly specify a set of
constraints and some frozen productions,
turn the system loose and get a solution

for the given length. This, | think, is
a noteworthy advancement over the other
approaches.

However, this approach suffered from

two problems. First were operational
ones such as a terrible flicker on the
screen that made it very annoying to use
the system, and not enough core to include
routines to save the current status so
that at some later time the system could
be restarted at that point. Second, the
use of the system pointed up some lack of
foresight in the design of the interac-
tive simulator.

First, the constraints were speci-
fied for only one length; and when a suc-
cessful solution was found for that
length, they had to be re-entered,
ly modified, before trying the next
length. This became a very tiresome
chore, one that should be automated in
the next pass on such a system. Second,
I did not include the capability in func-
tional planning to talk about classes of
states in the constraints. This proved
to be a grave mistake, forcing me to
overspecify my plans. Finally, | had no
inkling beforehand that | constantly
would want to constrain all states within
a polygon to be members of a class of
states. But this turned out to be a
rather basic part of the plans; and with-
out this capability, again, | was forced
to overspecify the plan t desired.

slight-

SUMMARY

From this series of attempts, and my
experiences with man-machine inter-
allow me a few observations.
often one can get much further

other
action,
First,

-30-

with a rather simple, slow interactive
system than he can alone--a little symbi-
osis goes a long way. Second, the NEED
to communicate an idea, an aspect of a
problem, a plan, or whatever, often pro-
duces a much better understanding or even
a new way of viewing the thing to be
communicated--independent of any later
gain from the party to which the informa-
tion was communicated, be it man or ma-

chine. Third, the human response time
should be a critical design factor, espe-
cially if the task area includes real

problem-solving capabilities from the
human; and this human response time should
in large part determine the "tightness" or
"binding" of the interactive relationship.
Finally, no matter how much experience one
has had with designing and building inter-
active systems, and no matter how well he
knows the task area, he cannot foresee

all of the factors that will turn out to
be relevant in this system; hence, a good
interactive system will require several
passes to produce. Let us not be so
shortsighted to realize that the product
we are touting so highly for eliminating
much preplanning--man-machine symbiosis-
is also required by us in the building of
such systems.

ACKNOWLEDGEMENT

| am indebted to Dr. Allen Newell
who introduced me to the Firing Squad
Problem and guided me through the solu-
tion attempts described in this paper.
| also wish to express my thanks to
Robert Shirey who designed and built the
Firing Squad Constraint Satisfier Program
used in my most recent solution attempt.

REFERENCES

1. Waksman, Abraham, "An Optimal Solution
to the Firing Squad Synchronization
Problem," Information and Control.
Vol. 9, No. 1, February 1966, pp. 66-
78.

2. Fischer, Patrick C, "Generation of
Primes by a One-Dimensional Real-Time
Iterative Array," Journal of the Asso-
ciation for Computing Machinery, Vol.
12, No. 3, July 1965, pp. 388-394.

3. Balzer, Robert M., "Studies Concern-
ing Minimal Time Solutions to the
Firing Squad Synchronization Problem,"
Ph.D. thesis, Carnegie Institute of



Technology, 1966,

Moore, E. F., Sequential Machines,
Selected Papers, Addison-Wesley, 1964.

Balzer, R. M. and R. W. Shirey, "The
On-Line Firing Squad Simulator," The
RAND Corporation, RM-5573-ARPA,
August 1968.

-31-



