A CONCEPTUAL PARSER FOR NATURAL LANGUAGE*

Roger C. Schank and Lawrence G. Tesler

Computer Science Department
Stanford University

Stanford,

This paper describes an operable automatic parser
for natural language. It is a conceptual parser,
concerned with determining the underlying meaning

of the input utilizing a network of concepts ex-
plicating the beliefs inherent in a piece of dis-
course.

1. Introduction

The parser described in this paper is a con-
ceptual parser. Its primary concern is to expli-
cate the underlying meaning and conceptual rela-
tionships present in a piece of discourse in any
natural language. Its output is a language-free
network consisting of unambiguous concepts and
their relations to other concepts. Pieces of dis-
course with identical meanings, whether in the
same or different languages, parse into the same
conceptual network.

The parser is not a syntactic parser in that
its output is not concerned with the syntax of the
input language. It bears some similarity to certain
deep structure parsers4,7,12,13 only insofar as all
these parsers are concerned to an extent with the
meaning of the piece of discourse being operated
upon. However, the conceptual parser is not limited
by the problems inherent in transformational gram-
mar (such as the difficulty in reversing transfor-
mational rules and the notion that semantics is
something that 'operates' on syntactic output).
Also, the parser does not have as a goal the test-
ing of a previously formulated grammar7,13 so that
the underlying theory has been able to be changed
as was warranted by obstacles that we encountered.

The intention of this work is to handle natural
language utilizing a semantics-based system, and
thus our paper bears some similarity to the work of
Quillian". However, the conceptual dependency
framework, though semantics-based, is intended to
function as a more complete linguistic system. Thus,
a grammar of a language is employed.

The grammar of the system is bipartite. The
first part is a universal grammar exemplified by the
conceptual rules employed by the system. The second
part is language-specific and is made up of realiza-
tion rules intended to map pieces of the conceptual
network into linguistic items. The realization
rules may be used for both parsing and generating.
However, it is not necessary to use all the real-
ization rules in order to parse. That is, the

*This research is supported by Grant PHS MH 06645-0?
from the National Institute of Mental Health, and
(in part) by the Advanced Research Projects Agency
of the Office of the Secretary of Defense (SD-183).

California

system is capable of making sense of a piece of
language containing only a few words that it knows
since its conceptual framework is capable of making
predictions. Thus, it can understand while using
only a few realization rules, whereas it would need
a great many more to map the same structure back
into language. This phenomenon is similar to that
observed in a man attempting to learn a foreign
language.

The network produced by the parser contains
conceptualizations. A conceptualization is a
statement about a single conceptual subject. The
subject may be abstract or concrete; it may be one
thing or a combination of things. The statement
may tell what the subject is, what it does, what is
done to it, etc. Furthermore, the entire concep-
tualization may be qualified as to time and place
of occurrence, reasons, causes, consequences, and
explanations. The numerous conceptualizations in a
discourse are interrelated not only by casual, log-
ical, spatial and temporal ordering, but also by
anaphoric references and by multiple mention of the
same concepts.

Several conceptualizations may occur in a
single sentence, and words from several sentences
may be required to complete one conceptualization.
Furthermore, information from some conceptualiza-
tions in a discourse may serve to disambiguate the
interpretation of other conceptualizations. Con-

sequently, the parser is not inherently sentence-
bound.
2. Domain _and Capabilities

The parser is being used to understand natural
language statements in Colby's on-line dialogue
program for psychiatric interviewing , but is not
restricted to this context. |In interviewing pro-
grams like Colby's, as well as in question-answer-
ing programs, a discourse-generating algorithm
must be incorporated to reverse the function of the
parser. The conceptual parser is based on a lin-
guistic theory that uses the same rules for both
parsing and generating, thus facilitating man-
machine dialogues.

In an interviewing program, the input may con-
tain words that the program has never encountered,
or which it has encountered only in different envi-
ronments. The input may deal with a conceptual
structure that is outside the range of experience
of the program, or even use a syntactic combination
that is unknown. The program is designed to learn
new words and word-senses, new semantic possibili-
ties, and new rules of syntax both by encountering
new examples during the dialogue and by receiving
explicit instruction.

,569-

3 Underlying Theory

The parser is based on the Conceptual Depen-
dency model of language9, in this model, a con-
ceptualization is a network of linguistic con-

cepts'® that fall into the following conceptual
categories;

Governing categories

PP An actor or object; corresponds roughly
to a syntactic noun or pronoun.

ACT In English, corresponds syntactically to
verbs, verbal nouns (e.g., gerunds) and
certain abstract nouns.

LOC A noun denoting the location of a con-
ceptualization.

T Denotes the time of a conceptualization.

Assisting categories

PA PP-assister; corresponds roughly to an
adjective.

AA ACT-assister; an adverb.

Most words or idiomatic phrases in a piece of
discourse represent one or possibly several con-
cepts in the network, and therefore fall into the
categories above.

However, connectives such as conjunctions,
prepositions, punctuators, auxiliaries, and deter-
miners are intended linguistically to represent
the structure rather than the content of the net-
work. They serve in a parser to disambiguate the
parse. In a generator, they are generated so that
the hearer will have clues to disambiguate the
discourse. He thereby can understand what meaning
was intended by the speaker.

The Conceptual Dependency model is stratid-
eational insofar as it involves a mapping from one
level to another (e.g., see Lamb6). Its highest
level is an interlingua consisting of a network of
language-free dependent concepts. (The dependency
considered here is partially derived from the no-
tions of Hays3 and Klein®, however the dependen-
cies are not at all restricted to any syntactic
criterion.) The linguistic process can be thought
of, in Conceptual Dependency terms, as a, mapping
into and out of some mental representation. This
mental representation consists of concepts related
to each other by various meaning-contingent depen-
dency links. Each concept in the network may be
associated with some word that is its realizate on
a sentential level.

The conceptual categories and relationships
of the system are arrived at by studying a one-by-
one analysis, identical to the way in which a per-
son hears a sentence. According to the theory, as
each word is input, its representation is deter-
mined and then is stored until it can be attached
to the concept which directly governs it. The
rule-of-thumb in representing concepts as depen-
dent on other concepts is to see if the dependent
concept will further explain its governor and if

the dependent concept cannot make sense without
its governor.

For example, in the sentence, "The big man
steals the red book," the analysis is as follows:
'The' is input and stored for possible use in
connecting sentences in paragraph, i.e., in this
case, 'the' specifies that 'man' has been referred
to previously. Next, 'big' is input. But 'big'
cannot stand alone conceptually, and it is stored
until its governor appears. 'Man' can stand alone
and is modified conceptually by 'big', so it is
stored as a governor with its dependent.

'Steals' denotes an action that is dependent
on the concept that is doing the acting. A con-
ceptualization cannot be complete without a con-
cept acting (or an attribute statement), so a two-
way dependency link may be said to exist between
'man' and 'steal'. That is, they are dependent on
each other and govern each other. Every concep-
tualization must have a two-way dependency link.

Next, 'the' is stored as before as is 'red’.
When 'book' is input, 'red' is attached to it as
before, and the whole entity is stored as dependent
on 'steals' as the object of the action (repre-
sented by a horizontal single arrow).

The entire structure is as follows:

man & steals <+ book
1 t
big red

The categories assigned to these concepts are as
follows:

PP & ACT + FF
$ t
PA PA

This system, with more symbols and categories
added, has been made to effect a set of rules
which can account for all possible conceptualiza-
tions. The relations inherent in these concep-
tualizations are intended to provide a system for
representing the meaning of a sentence in any
language, in language-free terms. (Language
enters into the conceptual representation only in
a naming capacity.) A list of the allowable con-
ceptual dependencies is presented in the Appendix.
In addition to dependencies, other relations are
allowed by the theory, e.g., conjunctions, dis-
junctions and comparatives.

This conceptual framework can be used to
write realization rules for any language and rules
for English have been written®. The realization
rules are responsible for placing the entities
realized from the conceptual level in the correct
grammatical order to form a sentence. These rules
are then the parsing rules for a particular lang-
uage.

The system for analyzing a sentence into its
conceptual representation works backwards through
the realization rules of a language. In places

-570-

where either of two rules could apply, the system
can build upon both of them, aborting if one anal-
ysis leads to an impossible conceptual structure,
or producing multiple analyses for ambiguous sen-
tences. All conceptualizations are checked
against a list of experiences to see if that part-
icular part of the construction has occurred be-
fore. If the construction has not occurred, or
has occurred only in some peculiar context, this
is noted. Thus, in the construction 'ideas <
sleep1, it is discovered that this connection has
never been made before, and is therefore meaning-
less to the system. If the user says that this
construction is all right, it is added to the mem-
ory; otherwise the construction is looked up in a
metaphor list or aborted. The system thus employs
a record of what it has heard before in order to
analyze what it is presently hearing.

In order for the system to choose between two
analyses of a sentence both of which are feasible
with respect to the conceptual rules (see Appendix)
a conceptual semantics is incorporated. The con-
ceptual semantics is a data base which limits the
possible conceptual dependencies to statements con-
sonant with the system's knowledge of the real
world. The definition of each concept is composed
of records organized by type of dependency and by
conceptual category of the dependent. For each
type of dependency, semantic categories (such as
animate object, human institution, animal motion)
are delimited with respect to the conceptual cate-
gory of a given concept, and defining characteris-
tics are inserted when they are known. For
example, concepts in the semantic category 'physi-
cal object' all have the characteristic 'shape'.
Sometimes this information is intrinsic to the
particular concept involved, for example, 'balls
are round'.

The semantic categories are organized into
hierarchical structures in which limitations on
any category are assumed to apply as well to all
categories subordinate to it. The system of
semantic categories and a method of constructing
semantic files is discussed more fully in a pre-
vious paper9.

In the present system, the files are con-
structed by incorporating information derived
from rules presented as English sentences. The
program parses each of these sentences, observes
which dependencies are new, and then adds them to
the files.

4. Conceptual Analysis

In the Conceptual Dependency theory on which
our program is based, the parsing procedure begins
by looking up the conceptual category of a word.

If the conceptual category is either PP or ACT,

the concept evoked by the word being considered is
placed directly into the conceptual network.
Otherwise the concept is queued until a permissible
conceptual governor enters the system. Preposi-
tions, conjunctions, and determiners are similarly
queued. A permissible conceptual governor is one
whose category is on the left hand side of a con-

-571-

ceptual rule (see Appendix) and where the depen-
dency effected by the use of that rule is allowed
by the conceptual semantics. 11 (An example of the
conceptual semantics is given in the Appendix.)

If a permissible conceptual governor has been
found for a queued concept, the queued concept is
placed in the network with the appropriate depen-
dency. A governor is not placed directly in the
network unless it satisfies the conceptual seman-
tics with respect to its dependencies.

Ambiguous interpretations of a piece of dis-
course are built up if more than one conceptual
rule may apply. If the conceptual semantics dis-
allows an interpretation, the dependency is
aborted. If more than one network remains after
the conceptual semantics have been checked multi-
ple analyses are built up. Semantic ambiguity
(that is, multiple meanings for a word) is also
handled by the conceptual semantics. If a word
connects to more than one concept, each concept
is checked for the appropriate possibilities of
dependence. The concept that fits according to
the semantics is the word-sense chosen. If more
than one concept fits, more than one network is
built up. The semantics are checked as each de-
pendent is added, so it is possible to abort a
multiple network at a later poin in the parse.

As an example of the strategy employed in the
theory it is illuminating to follow the parse of
an example sentence. Consider:

The tall boy went to the park with a girl1.

The machine tries to simulate the behavior of a
human in perceiving this sentence. Thus, it is
continually operating and making hypotheses as
each word enters the system.

When 'The' enters, it is held in waiting as
it may be a link to a previous mention of the
next PP which will enter the system. That is,
'the' would be replaced by 'a' in an ordinary
dialogue if its specific referent were previously
unmentioned or unknown.

'Tall' is marked as a PA. It is therefore
queued until a rule that uses PA as a dependent
can apply. Since 'boy' is a PP, it is placed
directly in the network. Previous networks gen-
erated by the user are searched for an instance
of 'boy' to which the 'the' refers and a link is
made if one is found. The conceptual rule 'PP <-
PA' is keyed by the realization rule 'PA PP: 2;

1 2 t
1

the numbers are place markers representing rela-
tive position in the piece of discourse. The PA
is below the line to indicate that this dependent
is an attribute of its governor. The PP <- PA'
semantics for 'boy' are checked to see if the con-
junction 'boy « tall' can exist. Since the sys-
tem knows that any animal can have height the
connection is allowed and our network looks as
follows:

Doy
?
tall

(The check with the semantics is made at every
connection but from now on we will only mention it

when it is necessary.)
When 'went' is operated on it is transformed
into *go-p' (p means past) and since 'go' is an

ACT the realization rule that applies will connect
it to a previous PP by a two-way link. The 'p'
modifies the two-way link and is moved over it.
We now have the following:
P
boy ¢ go
t

tall

'To', the next word into the system, is
queued since it may be a preposition or part of an

infinitive. If the next governor encountered is
not an ACT, 'to' is a preposition and is trans-
lated into a 'to' link.

4=

e o= ek egpseseshs geopesitienel dependen-
cy. When the link is written horizontally, it
represents a dependency between an ACT and a PP
where the dependent is not the object of a direct
action. Vertical prepositional dependency
specifies additional information about a concept
that is only indirectly an attribute of that con-
cept (e.g., a location rather than a physical
attribute). Prepositional links may have many
different forms, each represented by a tag (e.g.,
"to", "of") written over the link. Prepositional
dependency is different from simple dependency in
certain specified ways, one being that strings of
prepositionally dependent PP's may exist whereas
this cannot exist with simple dependency.

When 'the' is encountered it is treated as
before. 'Park' is marked as both a LOC and a
PPLOC However, the system will demand the PP
interpretation since 'to LOC' is not allowed; by
definition, LOC's can only modify two-way links.
'Park' is then placed in the network giving:

P to
boy « go 4 park
1
tall
'With' is held in waiting as a link un-

til the PP to which it connects is encountered.
'A' is ignored and the construction 'with

girl'is made. We are are now faced with the prob-
lem of where to attach this construct. A problem
exists since at least two realization rules may
apply:

2 1
'ACT FREP PP: 1 &« 3; 'FP PREP PP # 2
1 2 3 3

The problem is resolved by the conceptual semantics.
The semantics for 'go' contains a list of concep-
tual prepositions. Under 'with' is listed'any
movable physical object' and since a girl is a
physical object the dependency is allowed. The
semantics for 'park' are also checked. Under
'with' for 'park' are listed the various items
that parks are known to contain, e.g., statues,
jungle gyms, etc. 'Girl" is not found so the net-
work (1) is allowed while (2) is aborted.
P o witn
(1) toye go e park « girl
t

tall
P to
{2} voye go & perk
t ft with
tell girl
with
Although ' *= girl' is dependent on 'go' it

is dependent through 'park'. That is, these are
not isolated dependencies since we would want to
be able to answer the question 'Did the girl go

to the park?' affirmatively. In (2) the below-the-
line notation indicates that it is the 'park with
e Eirltas oppeend £ .antther ‘pard’. few it say
well be the cume Thit thie 1z stiat was Intended.
The conceptual semantics functions as an experi-
ence file in that it limits conceptualization to
ones consonant with the system's past experience.

Since it has never encountered 'parks with girls'
it will assume that this is not the meaning in-
tended. It is possible, as it is in an ordinary

conversation, for the user to correct the system
if an error was made. That is, if (2) were the
intended network it might become apparent to the
user that the system had misunderstood and a
correction could easily be made. The system would
then learn the new permissible construct and would
add it to its semantics. The system can always
learn from the user'® and in fact the semantics
were originally input in this way, by noticing
occurrences in sample sentences.”

Thus, the system purports to be analyzing a
sentence in a way analogous to the human method.
It handles input one word at a time as it is en-
countered, checks potential linkings with its own
knowledge of the world and past experience, and
places its output into a language-free formulation
that can be operated on, realized in a paraphrase,
or translated.

5. Implementation

The parser is presently operating in a limited
form. It is coded in MLISP for the FDP-10 and can
be adapted to other LISP processors with minor
revisions. The algorithm used differs from the
theoretical analysis given in the previous section
because a computer program must deal with machine
limitations and must cope with special cases that
may be encountered in the input.

#8ylvia Weber and Eenneth Mark Colby of Stanford
Univeralty prepared mogt of the initial data for
the semantic files,

572-

Rather than building up the network structure
a little bit at a time during the parse, the pro-
gram determines all the dependencies present in
the network and then assembles the entire network
at the end. Thus, the sentence 'The big boy gives
apples to the pig.' is parsed into:

1) boy
T
big

23 boy & give
+ apples

to
LY give « pig

3) gives

and then these are assembled into:

to
boy & glve « apples €« pig
t

big

The input sentence is processed word-by-word.
After "hearing" each word, the program attempts
to determine as much as it can about the sentence
before "listening" for more. To this end, the
network is built up a little at a time as each
word is processed. Furthermore, the program anti-
cipates what kinds of concepts and structures may
be expected later in the sentence. If what it
hears does not conform with its anticipation, it
may be "confused", "surprised", or even "amused".

In case of semantic or syntactic ambiguity,
the program should determine which of several
possible interpretations was intended by the
"speaker". It first selects one interpretation
by means of miscellaneous heuristics and stacks
the rest. In case later tests and further input
refute or cast doubt upon the initial guess, that
guess is discarded or shelved, and a different in-
terpretation is removed from the stack to be pro-
cessed. To process an interpretation, it may be
necessary to back up the scan to an earlier point
in the sentence and rescan several words. To
avoid repetitious work during rescans, any infor-
mation learned about the words of the sentence is
kept in core memory.

The parse involves five steps: the diction-
ary lookup, the application of realization rules,
the elimination of idioms, the rewriting of ab-
stracts,and the check against the conceptual sem-
antics.

The dictionary of words is kept mostly on the
disk, but the most frequently encountered words
remain in core memory to minimize processing time.
Under each word are listed all its senses.
"Senses" are defined pragmatically as interpreta-
tions of the word that can lead to different net-
work structures or that denote different concepts.
For example, some of the senses of "fly" are:

fly. - (intransitive ACT):
does in an airplane

what a passenger

fly, - {intransitive ACT): what an airplane
or bird dees in the air.

f1y3 - {PP}: an insect

t‘lyl+ - (transitive ACT): what a pilot does

by coperating en alrplane.

fly5 - (intransitive ACT -- metaphoric): to
go fast.

flyg - {PP): a flep as on trousers.

If there are several senses from which to
choose, the program sees whether it was anticipat-
ing a concept or connective from some specific
category. Recent contextual usage of some sense
also can serve to prefer one interpretation over
another. To choose among several senses with
otherwise equal likelihoods, the sense with lowest
subscript is chosen first. Thus, by ordering
senses in the dictionary according to their empir-
ical frequency of occurrence, the system can try
to improve its guessing ability.

The realization rules that apply to each word
sense are referenced in the dictionary under each
sense. Most of these rules fall into categories
that cover large conceptual classes and are ref-
erenced by many concepts. Such categories are PP,
PA, AA, PPLOC, PPT> LOC, T, simply transitive ACT,

intransitive ACT, ACT that can take an entire
conceptualization as direct object ("state ACT"),
and ACT that can take an indirect object without a
preposition ("transport ACT"). In contrast to
most concepts, each connective (e.g., an auxiliary,
preposition, or determiner) tends to have its own
rules or to share its rules with a few other words.

A realization rule consists of two parts: a
recognizer and a dependency chart. The recognizer
determines whether the rule applies and the
dependency chart shows the dependencies that exist
when it does. In the recognizer are specified the
ordering, categories, and inflection of the con-
cepts and connectives that normally would appear
in a sentence if the rule applies. If certain con-
cepts or connectives are omissible in the input,
the rule can specify what to assume when they are
missing. Agreement of inflected words can be
specified in an absolute (e.g., "plural") or a
relative manner (e.g., "same tense"). Rules for a
language like English have a preponderance of word
order specifications while rules for a more highly
inflected language would have a preponderance of
inflection specifications.

Realization rules are used both to fit con-
cepts into the network as they are encountered and
to anticipate further concepts and their potential
realizates in the networks. When a rule is sel-
ected for the current word sense, it is compared
with the rules of preceding word senses to find
one that "fits". For example, if "very hot" is
heard, one realization rule for "very" is:

-573-

1
very PA : 1
0 1 0

where the tags "0" and "1" indlcete the relative
order of the word senses in the recognizer and
identify them for reference by the dependency

chart; "O" means the current word. Ome rule for
"hot" 1s:
o
AR PA : ¢
-1 0 -1

The program notices that "very" fits in the "-1"
slot of the "hot" rule end verifies that "hot"
fits in the "1" slot of the "very" rule. There-
fore, the dependency suggested by the chert can
be postulated for the network:

hot{PA)
t
very(ar)

If the rules for two adjacent word senses do
not f£it together, other rules are tried or more
disgtant word senses are checked.

Whenever a dependency is postulated, it is
locked up in an idiom file to see if it is an
idiom or a proper name and should be restructured.
Thus, the construct:

make
t

up

18 reduced to the single concept
make-up.

This idiom will be detected by the parser even if
geveral words intervene between "make” and "up" in
the sentence.

After eliminating idiome from the network,
thare etill may be constructs that do not reflect
langusge-free beliefs. The most consplcuous cases
are caused in English by abstract nouns. Most
such nouns do not correspond to PP's but rather
are abbreviations for conceptuslizations in which
the concept represented iz actually an ACT or a
FA.

The program treats an abstract noun as & PP
temporarily in order to cbtain its dependents, be-
cauge abstract nouns have the syntex not of ACT's
but of FP'g. After obtaining its dependents, the
FP la rewrltten as an entire conceptualization
sccording to rules obtained from an abstract file.
These rules also specify what to do with the de-
pendents of the FP; they may be dependent on the
entire conceptualization, dependent on the ACT
only, or appear elsewhere in the c¢onceptualization.

By way of example, the szantence:

Tom's love for Sue ia beautiful.

leads to the following dependencies:

love{PP) love(PF)
of 1] for
Tom (PP} Sue

After hearing "1s", the program expects no more
dependents for "love" {by a heurietic in the pro-
gram), ec it checks the abstract file and finds
rules for "love" including:

ACT
ot Mfor
FF FP

(a) ()

where "(a)" and "(b)" ildentify concepts without
reference to sentential order. The network is now
rewritten:

{8} & 0 « (b)

Tom
=
Jove
T
Sue

where the horizontal main link represents "is",
weiting for a right-hand concept. When "beauti-
ful" is heard, the network is complete, giving:

Tamn

¢ @ beautiful
love

t
Sue

The network above may be realized alternative~
ly as elther of the paraphrases:

That Tom loves Sue 1s heautiful.
For Tom to love 3Sue is besutiful.

In conceptual dependency theory, connectives like
"tha.t", "fOI‘","tO", and "Of" are cues to the
structure of the network and need not sappear in
the network at all. The network above demonstrates
such a sltuation. Conversely, portlons cof the
network may be absent from the sentence. For
example, the sentence:

It is good to hit the ball near the fence.
is parsed as:

one
¢ = good
hit
T
ball
ft to
fence = place
near

Here, "one" and "place” mre not realized. Notice
that the relevant realization rule for "it" is:

-§T4~

for PPl e p . (al}|one
[(9.0) {u;, o 3 s AgT ?“”2

The square brackete indicate optional words. The
tags "{a0)" and "(al)" indicete that "for" pre-
cedes the "PP" but the whole phrase may cccur in
eny position of the construct. "(al){one" in the
dependency chart mesns that if "(al)", i.e., "for
PP", 15 omitted, and the subject of the action is
not obvious from context, then the concept "one"
is %o be assumed.

The conceptual network should reflect the be~
liefs inherent in the original discoursze in a
language~free representation. The interlingulstic
file of conceptual semantice 1e checked to verify
thet the dependencies are indeed accepteble. This
check is made after abstracts have been rewritten.

After the five parsing steps are completed,
the program proceeds to the next word. At the end
of tha sentence, it outputs the final network in
two dimensioms on a printed page or on s display
console.

6. Examples of Algorithm

Only & few of the relevant realizetion rules
will be shown in the examples.

EBxemple 1

'John saw birds flying to Celifornia.’!

Realizetion Rule Dependencies
Patterns {rectangle
(for possible around new
Words senses) dependencies)
John 1: (all PP patterns;
1: (a1l PP patterns
2{to see, pa.st tense)Mo— PP
PP ACT PP:-1 o 0-—1 (note: "to"
1 0 1 means "tense" of
ACT Number 0)
to
PP ACT by PP:2 @ O—1
=1 ¢ 1 2
3 (to ﬂ“): L
ete.
birds 1:{(all FP patterns)
fiying

l:a} PP ACT-ing:-1#0
10

But now there
are two maln
links on one
line. 8o, go
back and try as
cbject of "see":

'b) =-3PP
-2 ACT-ing:
=JACT O
-3 & -1 birds
-2 see «
Yool fly
=34 O
%]
to 11ACT to PPLOC-l €1 to
=1 0 1 fly ¢ PPLOC
2:to ACT e 1
o 1
etc.

Caiifornia 1:{all PP o pat- to

terns) fly € California

P
Filnal ocutput: John & see«—bﬁrds
fly
te ft
Californie
Example 2

John saw Texas flying to Callfornia

Tords Patterns Dependencies
John 1:{all PP patterns)
s8W (as above) John£ see | P
Texs.s Ll:{all PPy pat-
terns)
flying {as ebove) Texas € fly:
relected by
semantics.
Laugh and go
back and try
(Ip):
P
John|e|ges
t
b
John|e fly

{rest as above)
Final output:
P
John ? see « Texan

P to
John & fly « Californie

Exanmple 3

Jans ate the hamburgers in the park.
Worda Patterns DeMcies
Jane 1:(all PP patterns) .
ate 1(eat-past tenae):

-575-

Words Patterns Dependencies
to
PP ACT PPi-l ¢ Ol eat « PP
=1 ¢ 1
etc.
ete.
hambur-
ger 1:(all PP patterns) eat<hamburgers
in the 0 in
park 1:ACT 1n PP:-lfl eat € park:
=1 0 1 rejected by
semantics
2:FP in FP:-1 hamburgers
<1 01 o fin :
1l park

get agide as
unlikely (would
accept if no

other alterna-
tives)
5:(?9 @ ACT)in PP, .. T
-3 -2 -0 1 John | # eat
ﬂ’ in
-2 park
3 e -1
o
1

7. Examples of Paraes
‘Flying planes can be dangercus'

one
s & dangerous
fly

1
plane

{c denotes condition-
al}

If prompted tc find en alternate paree, the pro-

gram would preduce:
c

planee ¢ dangerous

fly

"The shooting of the hunters was terrible'
Alternste parse;

hunters cne
F14 = terrible § = terridvle
shoot ahoot
1
hunters

'John, who wag in the park yesterday, wanted to
hit Fred in the mouth today'.

John ¢ want
park-éEBI ‘\\. in
Johnwfl hit « Fred # mfc;ug?
be
yeaterday tod Fred

'John was persuaded by the doctor in New York to
be easy to please’.

b
doctor w persuaded +
in
New York one 4y please « John
¥

easy

(A circle around a concept denotes that it ig the
conceptual subject, or toplc, of the network. If
there is nc circle, the conceptual subject is the
item to the left of the first two-way link.)

'The girl I liked left’.

P
girl # leave

I&# like

8. Conclusion

Before computers can understend natural lang-
uage, they must be able to make & declsion as to
precisely what has been said. The conceptual
parser described here is intended to take a
netural language input and place the concepts der-
ivable from that input into a network that expli-
cates the relations between those concepts. The
conceptual network that is then formed is not
intended to point out the syntactic relations
present and there is same guestion as to why any
gystem would want this information. Although
Chomsky's deep structures [1] convey a good deal
more Information than just syntactic reletions, it
is elear that & parser that uses deep structures
for output would be oriented syntactically. We
see no peoint in limiting our system by trying to
test out a previously formulated grammar. The
output of & transformational parser; while making
explicit some important aspects of the meaning of
the gentence, does not meke explicit all the con-
ceptual relationships that are to be found, does
not limit its psrses with & check with reality,
ond most importantly iz symtsx based. The parser
presented here is semantice besed. We sver thet
the system thet humens employ 1s salso semsntics
beged. It seems clear to us that our parser
satisfies the requirements that a perser must
satisfy and in so doing pointe out the edvantages
of regerding lsnguage from a Conceptual Dependency
point of view.

APPENDTX

1. Conceptual Rules (permissible dependencies):

FP @ ACT; FF & PP; PPw PA; ACT « PP;
PP PP ACT PA AA PA
syt 1 ;15151
PP PA AA PA PA PP

ACT & PP;

-576-

*

LOC ACT
H

;35-

II. Reslization Rules

-1

T
I3 t
= = =

The realizetion rules of the theory fall inte
four categories.

1) Those that determine the subject and
vert {or attributive) of & conceptuali-
zatlion.

2) Those that ettach T's LOC's, reasons,
etes to e two-way link.

3) Those that attach objects to the verb.

4) Those that attach dependents below the
line.

These categories play somewhat different
roles in parsing. In a way, the parser uses them
in order: firet, identifying the subject and
placing the mein link; next, modifyirg the main
link; next, finding obLjects; last, qualifying the
concepts invelved in the flrst three steps. How-
ever, the processing of discourse actually pro-
ceeds from left to right, so some amount of guess-
work is necessary, for example, to attach depen-
dents to the subject before identifying it as
such.

The categorlzation of rules alse helps when
a previously unknown word 1s encountered. Depen-
ding on whether the parser's subgeal is to com-
plete a category four rule, a category three
rule, etc., & different rule or rules will be
invoked to guess the category of the new work.

{There are about 100 of these rules, present-
ly. A few are shown here},

PP ACT : 1& 2

1 2
PP ACT to ACT : 1l& 2
1 2 3 +
le d
PAFP 1 23
1 2 t
1

2 3 'ﬂ'e
PP ACT Prep PP : l¢ 24 bior le 2 ;
1 2 3 & 1:3

1l
ACT PP ACT-ing : 1t
1 2 3 2¢ 3

PP who ACT ACT : 1le 3
]
2

IIT. A Sample of the Conceptual Semantics for
'ball'.

ball,

inanimate motion object

«PA
slze any
shape round
color any
texture usually smooth
elasticity bounces
«FP
in phys obj
on phys obj
for phys ob)
by Place
of animel)
at ne
to ne
=ACT
specific bounce
motion object rell, come, spin,
concrete fall,hit « « «
any begin, cause . . .
Bibllogrephy

1. Chomaky, N., Aszpects of the Theory of Syn-
tax, MIT Press, Cambridge, 1965,

2. Colby, K., and Enea, H., "Heuristic Methods
for Computer Underatanding of Netural Lang-

uasge in Context-Restricted On-Line Dialogues,”
Mathematical Biosciences, 1967.

3. Hays, D., "Dependency Theory: A Formelism and
Some Observations”, Language v. 40, 1964,

b. Kay, M., "Experiments with a Powerful Paraer”
BAND, Santa Moniea, California, 1967.

% Klein, 8., "Autometlc Paraphrasing in Essay
Format” Mechanical Translation, 1965.

6. Lamb, 8., "The Sememic Approach to Structural
Semantics", American Anthropologist, 196h.

7. Petrick, 8., "A Recognition Procedure for
Transformational Grapmer" MIT Ph.D. Thesis,
Cambridge, 1965.

=577~

8. Quillian, R., "The Teachable Language Compre-
hender: A Simulation Program and Theory
of Language", Bolt Beranek and Newman, Cam-
bridge, Massachusetts, 1969*

9. Schank, R., "A Conceptual Dependency Repre-
sentation for a Computer-Oriented Semantics”,
Ph.D. Thesis University of Texas, Austin 1969
(Also available as Stanford Al Memo 83,
Computer Science Department, Stanford Univer-
sity, Stanford, California, March 1969)-

10. Schank, R., "A Notion of Linguistic Concept:
A Prelude to Mechanical Translation", Stan-
ford Al Memo 75. Computer Science Depart-
ment, Stanford University, Stanford, Califor-
nia, December 1969*

11. Schank, R., "Outline of a Conceptual Seman-
tics for Generation of Coherent Discourse”,
TRACQR-68-U62-U, Tracor Inc., Austin, Texas
March 1968.

12. Thorne, J., Bratley, P., and Dewar, H., "The
Syntactic Analysis of English by Machine"
in Machine Intelligence 111, University of
Edinburgh, 196b.

13* Walker, D., Chapin, P., Geis, M., and Gross,
L., "Recent Developments in the METRE Syntac-
tic Analysis Procedure", MITRE Corp., Bedford,
Mass., June 1966.

-578-

