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"It is part of our thesis that concepts in the
strict sense of the term, as we know them - which,
since Euler, the great mathematician (1707-1.783),
ore represented by circles, a fact which means far
more than meets the eye - are foreign to the
Chinese mind." - Gustav Herdan, Linguistics No. 28

Summary
In this paper w. present a general data
structure for a semantic memory, and we give a
definition of "analogy" between items of semantic
information. We then construct an inductive process
in which general laws are formulated and verified

on the basis of observations of individual cases.

I Introduction

The model described in this paper represents
on attempt to formalize a number of general cog-
nitive processes. Although these processes may be
said to be "simple" in the sense of being primitives
of cognitive behavior, they are by no means simple
to make explicit in their full generality. Within
the confines of this paper we could not begin to
discuss all of the intricacies of modeling these
processes, and if we could, the reader could not
begin to sort out the main ideas underlying the
model. Therefore we have chosen to present the
elements of the model in an oversimplified form
designed to bring out the major ideas they embody;
(Sections 11.C, 111.B,

and V.B) we indicate what elaborations must be made

then in separate sections

in order for the model to be truly general. |In
Section V.B we also discuss the formidable problems

that arise in validating a model such as this one.

Relation to Other Research

We will briefly indicate where the present
model stands with respect to other semantic systems

which are currently under development. Obviously
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it is unjust to characterize such complex models in

a phrase or two, but it is impossible to compare
them in detail here.

Most of the semantic memory systems that have
been proposed are designed around the problem of
dealing with natural language. A primary component

of the "understanding" of an input text is its

translation into some formal, language-free repre-
sentation. In the systems of Quillian [1,2] and
[31.
directly into a format consistent with the rest of

A distinctly different

Simmons et al the input is translated
the general semantic memory.
approach is being pursued by Kellogg [4], Woods [5],
and Kochen [6], who divide their semantic systems
into two components: a data base (in a non-general
format) and a procedural programming language which
operates on this data base. In these systems the
input text is translated into an appropriate pro-
gram in the procedural language, and then this
(rather than added) to the data
The semantic system which we will present
The

semantic memory is a single structure in a format

program is applied
base.
here contains elements of both approaches.
which is claimed to be general, but this format is
itself procedural.

The formalism is also closely allied to the
predicate calculus representation adopted by many
workers who are concerned with preserving deductive
capacity within the system,
McCarthy [8], and Black [9].

have striven to maintain consistency with what

e.g. Green and Raphael [7],

At the same time, we

little is known of the psychology of human memory,
as discussed by Bartlett [10] and Oldfield [11],
and with the belief-system simulations of Colby [12],
and Abelson and Carroll [33]-

The notion of "analogy" appears to have
received extremely little attention in the tech-
Evans [14]

taker of course deals with the concept,

nical literature. in his analogy-test
but only in

a very constrained context. Much deeper studies

-655-



into analogic reasoning have been made by Kling [15] A. Consequence and Criteriality

in his analysis of analogies between mathematical
proofs. Although Kling' s investigations also are
limited to a highly restricted problem domain, they
are in many respects richer than those reported in
the present paper (see Section II1.B).

There have been any number of schemes proposed
under the name "induction", with the paradigm of
sequence extrapolation gaining perhaps the greatest
amount of attention (including an empirically-based
model by Simon and Kotovsky [16] and an exhaustive
analysis by Persson [17]). Unfortunately, it is
difficult to find any useful relationship between
these "induction" models and the "generalization-
over-cases" process described in the present paper.
One striking difference is that in our model the
general law is manufactured directly out of the
instances from which it is inferred, rather than
being selected from some narrowly-specified set or
grammar of possible laws. The two procedures which

seem closest to our generalization-over-cases are

Before introducing the syntax of the memory
structure, we will discuss the two notions which
most sharply differentiate it from other models
which have been proposed: that of "consequence"
and that of "criteriality".'

Consequence. The principal unit of infor-
mation in this model, called the Rule, contains an
arrow 'W, whose function is to introduce serial
order as a primitive of the data structure. The
number of reasons for desiring such a primitive is
so large that we can give only a sampling of them
here. The idea of "consequence" in an expression
such as "lightning =» thunder" has at least four
possible interpretations: (l) temporal sequence,
(2) causal law, (3) logical implication, and
(4) behavioral response (e.g. "given lightning,
predict thunder"). What is important is that we
can store this item of data in a noncommittal

fashion by means of the "=»" primitive, and leave

the precise interpretation up to the processes

the generalization techniques discussed by Evans [14] which operate on the item. Thus, a given Rule may

and Doran [18]. These are certainly noteworthy
studies, but again in these models there is a fixed
set of dimensions along which generalization can
occur.

Finally, there is a considerable literature on
the process of "concept formation", including
detailed simulations by Hunt et al [19]. Since our
generalization process falls sligitly short of
being concept formation (see Section IV.A), we will
not attempt any comparison with concept-formation

models here.

I'l. The Semantic Memory Structure

In this section we will describe the semantic
structure which is the basis of the present model.
What is defined here is actually a reduced version
of the syntax of the structure; the necessary
elaborations are given in Section I11.C. Throughout
the paper we make the convention of capitalizing a
word if it is used as a formally-defined term
rather than in its usual English meaning

(e.g. "Situation").

at one time behave as a predicate calculus formula,
and at another time as a "pattern-operation" rule
or "production-language" procedure for behavior.
This use of serial order as a basic feature of
memory is of course consistent with almost every
psychological observation or theory, from
Associationism to Stimulus-Response. A particularly
insightful discussion of its importance is given
by Lashley [21].

Criteriality. Given formal structures A and B
such that B is a sub-structure of A, we will want
a measure of the degree to which the presence of
B in A is responsible for the distinctive identity
of A. This we will call the "criteriality" of B
with respect to A. For example, if it is irrelevant
whether or not B is present in A, then B may be
said to have zero criteriality with respect to A.
The formal utility of such a notion will become
clear in Section 1V; at this point we may give an
informal motivation in terms of the phenomenon of

"attention". When we perceive the world, various

The idea of criteriality was introduced by
Quillian [20], but has been relegated to a
minor role in his latest model, Quillian [2].
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aspects of the situation at hand receive varying
degrees of attention. These variations must be
recorded in the semantic memory, for they clearly
affect the recall and further processing of our
perceptions. Criteriality, at least in its
initial assignment, is merely the frozen record of

attention.

B. Description of the Memory Structure

The "objects" in this memory system are
actually graph structures (i.e. pointer nests), but
it is generally more convenient to work with them
in a notation which disguises their net-like nature.
The reader must bear in mind (as when programming
in LISP) that the notation does not tell the full
story, and that an "occurrence of an object" is
identically the same as a pointer to some graph
structure.

Two types of objects, Facts and Rules, are
used to encode the content of any assertion,
situation, or event. We will begin by describing
the pieces from which Facts and Rules are built up.

The Node.
pointers.

A Node is a nest of two-way

Two Nodes are equal if and only if they
Thus, the Node is
the "atom" of the system, like the Atom in |ISP

are identically the same Node.

except that here the pointers are two-way. Intui-
Sore of these
distinct entities

tively, Nodes represent "concepts".
are bound to individual,
(e.g. Eugene-McCarthy, Paul-Bunyan), while others
may be considered as classes of other Nodes

(e.g. Minnesotan, hero). We will usually denote
Nodes by English words, but this notation is for
convenience only, and bears no relation to the
representation of English words within the model.
When we need to discuss Nodes for individual objects
which, unlike Eugene McCarthy, do not have names
assigned to them already, we will invent names of
the form AA, BB, etc.

symbol "@", which designates "the Situation in

We will also use a special

which this symbol occurs" (a "Situation" is defined
below).

The Kernel.
of Nodes, where to each Node is assigned an integer
between 0 and 6, called its (Node-)Criteriality.
The Kernel is interpreted as an (n-l)-ary predicate

A Kernel is an ordered n-tuple
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and arguments (i.e. its presence indicates the
assertion of that relation), where the first Node
is the predicate name. The integers exhibit

A Node of zero

Criteriality is called a Dunmmy. For convenience

criterialities on a 7-point scale.

in the examples presented in this paper, we will
conventionally attach a Criteriality of 3 "to a Node
unless we have a particular reason to do otherwise.
In the notation, Kernels will be enclosed in pointy
brackets, and Node-Criterialities will be written
as superscripts, e.g. <give;' I‘-i:\.x5 Olgao M5> .
The Situation.
set of Kernels, where to each Kernel is assigned

A Situation is an unordered

an integer between -6 and 6, called its (Kernel-)
Criteriality.
conjunction of the statements made by its Kernels.

The Situation is interpreted as the

The negative Criterialities indicate the importance
of the absence of a given condition; they serve to
In the
notation, Situations will be enclosed in wavy

introduce a scaled logical negation.

brackets, and Kernel-Criterialities will be written
after the Kernels, preceded by a colon, e.g.:

{@ease? Willy Twinky> :3 }
dnanbelj 'I.‘Uink}}' pm.keet3> i2 (i)
On occasion (e.g. Figure 6) we will write a Kernel
outside of the Situation to which it belongs, with
a two-way arrow joining it to its proper location
within the brackets.

Weights.
be complete,

In order for a semantic memory to
it must store with each item of infor-
mation a considerable number of data about that
item, for example: the subjective probability that
it is true, its degree of surprisingness or incon-
sistency given the rest of the information in
memory, its trace-strength or possibly the time
elapsed since it was last referred to, its degree
of pleasantness, etc. In the modeling of cognitive
processes, this "meta-information" about an item
must play a role second only to its content in
determining what is done with the item in a given
process. Unfortunately, this role is difficult to
describe, and the notation for many weights is
messy. Therefore in this paper we will consider
only the behavior of the weight for Subjective

Probability in any detail. We will note points in



(<bas® Percy Fldo> i3] =

<Qus Agnes TMAo> i3
<:r:a.uses5 Percyz' @5> 12

@rille Percy &> i1 (2)

Section IV at which the absolute likelihood of an
item is critical in determining the course of its
processing.
We now introduce the two types of unit in
which information is stored, the Fact and the Rule.
The Fact.
The term "Fact" merely distinguishes

A FEact is, syntactically, simply a
Situation.
those Situations which stand free, from those
which occur in Rules.

The Rule.
It is interpreted as asserting that

A Rule is an ordered pair of
Situations.
the second Situation (called the Right Half) is a
"consequence" of the first (called the Left Half),
in the unspecified sense discussed in Section Il.A .
In the notation, the two Situations are written
between square brackets, with an arrow between

Any Dummy which
occurs in the Left Half of a Rule is implicitly
universally quantified; any Dummy which appears
only in the Right Half of a Rule is implicitly

them, as in Figure 2 (above).

exist entially quantified. Thus we have translations
such as the following:

3)

Y . v {g.. ] becomes:

xeA yeB "xy

6 0,6
{Qnember6 2 16 .6} PN W S
<member y B > :6

h > J

v

xeh EI:,re:]i {q’)qy] becames:

[ 6 06 ..)]
(menes® 0 % 167+ | meober’ ¥ B>:6}
<p x y>»:6

F Recall that each occurrence of the special symbol

"@" denotes the Situation in which it appears.
The Rule in Figure 2 records the event expressed
by "Percy gives Fido to Agnes". This could also
be represented statically as a Fact, namely
{<gives Percy Agnes Fido>} (cf. Section II.C).

(See Step 4.3, Section IV.B, for justification of
these conventions.) Finally, attached to each Rule
is a number between 0 and 1, interpreted as the

Subjective Probability that the Right Half actually

In the notation,

is a consequence of the Left Half.
we may display this "S.P." to the right of the Rule,
but in most cases we will suppress it.

C. Elaborations of the Syntax

For the purpose of simplicity in this presen-
tation, we have shorn the data format of the
several forms of recursive nesting it must have if
it is in fact to be able to represent arbitrary
information.
Fact or Rule (in the way that "@" denotes a

A Node must be able to denote any
Situation). A Situation must be able to contain
Facts and Rules as well as Kernels, and this leads
to the need for a canonical form for Situations.
And Rules may be composed out of other Rules, as
well as Situations.

The latter form of nesting allows us to define
a notion of equivalence of representations, whose
role in the completed model is extremely significant.
For the present we will content ourselves with
giving an example of what can be done. We can
essentially define the Node "gives" by creating two
Rules which expand a Situation involving "gives"
into a Rule composed of more primitive predicates.
This "definition" might look something like
Figure 4 (below).

-/ Such expansions of single predicates into more
basic terms raise the interesting issue of the
existence of "semantic primitives". The matter
is still very much open; see Bendix [22] for
the most thorough discussion to date.

Y

In Figure 4 we use a double arrow 'V merely as
a notational device to express two distinct
Rules (one each way) in the same diagram.

6000>:6} - {<has~ x

[<gives” x ¥y =z

6 0 z°> 6] =

<.‘m.36 yo zo> 16
<causes® x° &% :5

1116 L 6% b (%)
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As an additional extension of the syntax, the
Rule must be redefined to be a sequence
(of Situations and Rules) of awy_length.

Il
We will give a semi-formal definition of the

Analogy between Situations

notion of an analogy between two Situations,
discuss the features and inadequacies of this
definition, and then consider the role of analogy
formation in cognitive processing.

A, Basic Definition of Analogy

The intuitive idea we are striving to capture
is that an analogy between two situations is a
motivated correspondence between the elements of

the situations. In essence, then, an Analogy
between two Situations S and S, is defined to be
a one-to-one mapping of the Kernels of S; onto the
Kernels of S, . Each Kernel-to-Kernel pairing
induces a mapping of the Nodes in one Kernel onto
the Nodes in the other; we will denote such mappings
({ay0); +vele

We require that all of the Node-to-Node mappings be

in set-theoretic notation of the form

consistent (i.e. that their union be one-to-one).
To formalize the idea that these mappings be
"motivated", we further require that for each non-
identical pair of Nodes nlesl and n2e52 mapped into
each other, we be able to exhibit some further
information which will "justify" the identification
of ny with A, . More precisely: we require the
existence of a Situation zl containing ny, and a
Situation 22 containing ru, such that, given the
identification (nl,nE), £, and £, are themselves

Analogous. There are two possible sources of each

item of Justifying Information Ei, namely as a sub-
Situation of the given Situation Si, or as an
independent Fact retrieved from memory.

An example may serve to clarify this
discussion. Su_p_pose that memory contains the Fact
Fau {enemberz' '.I‘wirpyj pe.rakeet5> t3}, and we are

presented with:

Bt (<teases® Willy Twirpy'> :3)

8yt f<tesses Willy Tvinky> 3 }
<nenber’ Twinky parskest > :2 (5)

A reasonable Analogy between S;. and S, will match

the Kernel <teases Willf Twirp;y’> of Sl with
the Kernel <teases® Willy’ Twinky’> of §, . This
match induces the identification (Twirpy,Twinky).
According to the definition, we must now seek
further information about Twirpy and Twinky which
will justify our mapping these Nodes into each
other. The Fact F presents itself as information
about Twirpy; the sub-Situation of S, consisting
of the Kernel -dm:embe.:'5 Twiml(:yj pa.ra.kheet§>
constitutes a Fact about Twinky. The definition
requires that these two Facts be Analogous, given
the identification (Twirpy,Twinky), which is the
case since they in fact become identical under
that substitution. We may diagram the Analogy
between S; and S, as:

8y:  [<.. Twirpy>) (€oee TWATDY ewad} F

8yt <o ’I‘wiInk}D l
{ -.—}—-i:«t... Twinky >.i (6)

Here the Justifying Information is on the right,
and the vertical arrows denote correspondences
between Nodes. Expressed in English: Willy's
teasing Twirpy is analogous to Willy's teasing
Twinky in that both Twirpy and Twinky are parakeets.
It is important to note that our definition

of Analogy is recursive (at the point where }:l and
L, are required to be Analogous, given the proposed
identification). The insistence that the Node-to-
Node mapping be one-to-one makes "is Analogous to"
a symmetric relation by giving each Analogy a well-

defined inverse. The definition can easily be

extended into a definition of analogy between Rules.

B. Elaborations of the Definition

As complex as the definition above may seem,
it is still far too simple to be adequate for the
analogy-formation situations that arise in the
actual modeling of cognitive processes. Below we
will mention several extensions which must be made
to this definition. None of these elaborations
will be pursued in the present paper.

It may occur that two Situations will match
closely except for a corresponding pair of Nodes
such that no additional information is available

for one or both of these Nodes. In such a case one
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would probably want to risk identifying the two
Nodes, especially if they were of low Criteriality.
It will also occur in general that only a subset

of one Situation can be mapped into a subset of the
other. Whether or not the presence of unmatched
Kernels voids the analogy must depend on their
number and their Criterialities. We see, then,
that a working definition of analogy must actually
be based on a complex scoring function involving
the number of matched and unmatched objects, their
Criterialities, the depth to which the recursion
must be pushed, and so on.

The intricacies of this definition multiply
when we consider the need for recognizing similar-
ities which transcend simple Kernel-to-Kemel
matching. For example, the conjunction of the
Kernels <eat55 M3 BBB> and
mm? M5 h'umzm}> should certainly match
a single Kernel of the form <devour!3 003 DD3> .

In fact,

a single Kernel may even paraphrase a
whole Rule. Clearly the notion of equivalence
illustrated in Section H.C must be used to
supplement the simple one-to-one mapping of Kernels
on which our original definition was based.

There are other ways in which situations may
be said to be analogous, besides corresponding

directly. They may, for example, have similar

consequences: eating cyanide and jumping off a
bridge are very different activities, but they are
analogous inasmuch as they have similar results.
Or two situations may have similar antecedents: a
rainbow and a puddle are quite dissimilar, yet
both betoken the occurrence of rain. Since these
other types of analogy involve the notion of
consequence, they too may be defined in our system.
An inherent limitation of all the various
definitions we have discussed is that they are only
syntactic; they cannot ensure that the analogies
produced will be semantically meaningful - i.e. that
the Justifying Information will in fact be
"relevant". These definitions must be regarded
merely as the syntactic "necessary conditions" for
analogy, where the mustering of truly relevant
information is the responsibility of the larger
process which makes use of analogy formation as a
seem

subroutine. The investigations of Kling [15]
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to offer the best insight so far available into

what makes an analogy "meaningful” and useful.

C. Uses of Analogy Formation in Cognition

We may distinguish two major functions which
analogies can perform in cognitive processing:
they provide a means of dealing with novel situ-
ations, and they serve to arrange semantic infor-
mation in an organized structure suitable for
further processing. These two uses of analogy
formation are of course aspects of one and the same
process, but we may discuss them separately.

Response to Novel Situations. We have mentioned

(Section Il.A) that a Rule may be regarded as a
routine for behavior written in a "pattern-operation"
language. If we pursue such a notion, we soon

realize that "left-half matching" for Rules is not

at all a straightforward process, since we very
seldom encounter the same situation twice, and we
are often called on to respond to situations which
are only vaguely similar to those we have met

before. Evidently this idea of "vaguely similar
situations" can be made precise by our definition
of Analogy between Situations. This suggests the

following prediction paradigm for dealing with

novel Situations:

Given Situation: {===} [=«=} :Predicted Situation
M Wt

[(-%e) = (===]]

We make an Analogic mapping M between the given

(7)

Situation and the Left Half of a Rule taken from
memory. We then apply the inverse of the Analogy
to the Right Half of the Rule, to obtain a
prediction of what will happen next.

Exactly the same operation can be applied to
as soon as we are provided
That is,

denote an instruction to a

derive overt responses,
with a formalism for representing them.
)

perceptor or effector,

if we let "(—

then we have:

Given S it u a {m==} {«==}t i 0 n Performed

" ML
(-2} = (e

We might consider this as a crude model of

Existing Rule: (8)

"Stimulus-Response" behavior, including the

phenomenon of "stimulus generalization". The



paradigm might also be said to model the
"assimilation of schemata" central to Piaget [23],
where we identify the notion of "schema" with that
of "Rule".

Organizing Information from Memory. As can

be seen from Figure 6, an Analogy, once formed,

presents a goodly amount of information in a very
organized structure. This structure grows in an
orderly way as levels of recursive Analogies are
applied to the Justifying Information; the sets g
become strung out in what we may call the Path of
the Analogy. For example, a diagram such as
Figure 6, if extended by two levels of recursion,

would look like:

L]

2 2 (9)
The simplest way of gleaning information from such
a Path is to take the unions SlUZIU... and
SELJEEU...
the meaning of SiAEiA... s since a Situation is

Note that semantically, SiUEiU... has

interpreted as the conjunction of the Kernels it
contains. We will call the process of taking such

unions Path Compression.

The information provided by an Analogy is
structured enough to serve as a starting point for
many cognitive processes, including deduction. In
the next section we will examine in detail the
role played by Analogies in a process of inductive

generalization.

IV. The Modeling of an Inductive Process

A. A Sketch of the Process
The cognitive behavior which we would usually

term "generalization" is in general a complex
problem-solving process, involving strategies of
guessing, deductions from "general principles”,
and so on. In this section we will be discussing
an operation which is very much simpler and more
primitive, but which nevertheless seems to merit
being called "inductive". We may describe this
process very schematically as follows:

and

Suppose that are two properties,

behaviors, etc., and that for a number of entities

X we observe Py and 'kx to co-occur. If enough

such cases accumulate, and especially if 9 and t
are a. priori unlikely individually, we might
attempt to explain their co-occurrence by postu-
lating that one entails the other, e.g. that

¢ =¥ . That is, we generalize over the
individual cases X to postulate: ¥x {q -—wx] .
This proposed law may be tested by finding new
cases Y for which 9y and noting whether or not
the prediction of WY is satisfied. The formation
and testing of such generalized implications will

be called the Generalization-over-cases process.

If the induced rule is in fact successful, a
logical next step is to consider the two new
entities: ¢ = {x| r,px] and ¥ = {x| v{rxj « The
generalization may now be rewritten as
Yx [xe® - xe¥ ] , which can be neatly compressed
to: ¢y
entities, they are "concepts" in the traditional

Since & and ¥ are classes of

psychological sense, and the process we have just
described is evidently a meaningful form of

concept formation. Note that in the expression

¥ we have attained a "higher-order" relation
which may be considered without reference to the
This
compression of an implication into a single

individual cases from which it arose.
higher-order predicate (in this case, "&") is
mediated by an equivalence of precisely the sort
illustrated in Section II.C . We will not discuss
concept formation further in this paper, but it
clearly can be represented within our formalism.
Although the above description may seem rather
straightforward, the complete modeling of
Generalization-over-cases is actually a very
complex matter. Rather than attempt to present an
immense algorithm abstractly, we will content
ourselves with following in detail how the process
might work in a particular example. This form of
exposition has its perils, of course. The example
probably would not work as described. It is some-
times difficult to distinguish properties of the
particular example from the general behavior of
the algorithm. And it is often not clear why, at
a given point, one thing is done next and not
another. For these deficiencies we can only beg
the reader's indulgence. With respect to the last

objection we may note that in cognitive processes
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the factors which determine precisely what is
operated on next need not be closely relevant to
the operation itself (nor very interesting:
e.g. the precise connectivity of the semantic

memory at the time the process takes place).

B. Example of Generalization-over-cases

For the purpose of clarity in our example, we

(Cyrus,Wilfred)

the Kernels

is Justified by F5 and 17'1 « Sad to
say, <time @ Thursday> of F, and
<location @ Peoria>» of Fh map neither into each
other nor into anything else.

When a Kernel is not immediately matched in

willnotindicateNode-Criterialitiesexceptwherewith"swewouldforexanplesearchmemory

we have particular interest in them. Where they
are omitted,

conventional value 3

Phase I: The flrst structurmg of information.

the reader may assume they have the or

what is an other wise Promising Analogy, a search is
instituted for information that will correspond

if possible, the dtermine whether
not F, "“®° ocurring on a Thursday. If such

information is unavailable and the Kernel must
remain unmatched, this fact must duly be taken

“into account ‘in sé%?‘ing ﬁﬁnéllg\%%logyn‘(recall

Synop3|s Three Fac F F d e,F" in Section . . I11.B Even , if the Analogy ., Analogy. is .accepted , ,
Synopsis Section I11.B). Even if the Analogy is accepted,
memory. A new Fact is found to be Analogous to this failure ... to, matchc , will affect ,further.
memory b Analogous to this failure to match will ffect further
F with ¥ and F serving as Justifying Infor- (Sten 3.3.) Let us that
2’ 1 3 processing (Step 3.3). Let us assume that in our
mation. By Path Compression two new Facts are example these two Kernels i unmatched . but
example these two Kernels go unmatched, but the
F = F2AF » and Fﬁ - FhAFHG Analogy is accepted anyhow.
Steps 1.1- 1 3: At various times the following The mere construction , . of , the Analogy does |,
Steps The mere construction of the Analogy does not
three Frpl: { ﬁer‘hfil:[’red £ 3} memory: itself , produce anvthiing that, would . willing
ory : in itself produce anything that we would be willing
F2: <N¥earg Wilfred AA> :3 to call the "understanding" of the new Situation.

<member AA suspenders> :2
<property A4 red- :2
<time @ Thursday> :2

F,: {<member Cyrus fireman> :3)

3" (10)

Step1.4: At some time, presumably while visiting

Peoria, we notice that:

F|: | <wears Cyrua BBE>» :3
<membar BB suspenderg> :2
<property BB red> :2
<locatlon @ Peoria> :2

It would be possible simply to record this new Factconjuction.

possible®

without analyzing it farther,

input without trying to "understand" it. One

aspect of understanding a novel situation is to
relate it to something already known. In our
model, this means to find an Analogy with some
Situation already in memory.

Step 1.5: We seek an Analogic match forFl.; in
memory, and propose F2 as a candidate, with

M = {(BB,AA);(Cyrus,Wilfred)) .
ence (BB,AA) is justified by member BB

The correspond-

and <member AA suspenders (also by the shared

property of redness), vhile the identification

(11) least by recording a new Fact which

but we seldom record

suspenders

Synopsis:

What is significant is the structuring of the four
Fh: {aen C¥TUS 204} msmeresmee [, CYTUE .44} :F3

For {oee Wilfred .o }——{... Wilfred ...} :Fy (45

Our Analogy, in relating F, to F

Step 1.6: 1
suggests that these two Facts about Wilfred may

somehow be "relevant" to each other. It seems

reasonable to commemorate this relationship at
is their

conJun(F =F2/\F e note that
that,
syntactically F5 is merely the union of F, and F

)

and SO we A JUSt performed the apmt+m of

Con5)ression defined in Section I c.

written explicitly, FS is:

F_: | <wears Wilfred AA> :3

> <member AA suspsnders> :2
<property AL red> :2
<time & Thursday> :2
<mepber Wilfred fireman> :3 (13)

Analogously, we form F6 e Fh”j «

Phase. t1nhe Analogy perpetuates itself.

A new Fact P, is encountered and found

A synopis A new formation of the new
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Analogy is facilitated by a remnant of the old
1 embedded in F ),
which allows the prediction of a Fact F_ which
A new Path

Analogy (namely the copy of F

serves as Justifying Information.
Compression forms Fg = FBAF.? .

Step 2.1:
F'i’: (<member Rupert fireman> :5)

At some point we record that:

Step 2.2: Later, at the Firemen's Ball, we are

keeping tabs on Rupert when we suddenly notice that:

FB: <wears Rupert CC» :3
<member CC suspenders» :2
<property CC red> :2
<dances-with Rupert Maude> :2

Presumably this observation is sufficiently striking

that we will attempt to "understand" it.

Step 23: A search is made through semantic memory
for Situations resembling Fg . Let us suppose that
Fs. happens to present itself as a candidate for
matching.
Step 2.4:

Fs there are three unmatched Kernels:

In constructing an Analogy between Fg and
<dances-with Rupert Maude> in Fg, and
<time @ Thursday> and member Wilfred fireman>
As noted in Step 1.5,

induces a search through memory for corresponding

in s each of these

information. In this case, the first two left-
overs presumably find no match, but happily the
<mnember Wilfred fireman> does retrieve an
The Path which

(Rupert,Wilfred) is

Kernel

item from memory, namely ¥, .

7

justifies the identification

therefore:

F8= {.. Rupert ,,)}——= ., Rupert ,,.») :F.

Y
Fgt feo Wilfred ..
. [ <ev. Wilfred o> (15)

There is a significant improvement in the way in
which the "firemanhood" Justifying Information was
found here, in contrast with Step 1.5 < In "the
Phase | Analogy, the Facts relating Cyrus and
Wilfred were turned up by a poorly-guided or non-
on the other

guided search. In this new Analogy,

hand, the Kernel <member Wilfred fireman> served
as a clue to search for a specific item, namely the

corresponding Fact {<member Rupert fireman>}

Recall that this Kernel was descended of F; via the

(1%)

Phase | Analogy. Thus the old Analogy has greatly
facilitated the formation of a new Analogy similar
to it.

Step 2.5: A new Path Compression gives us yet

another Fact: Fg = FBAF7 .

Phase I11;

implication.
of F
F5, F6, and F

Conjunction is restructured into

Synopsis: The successful prediction
triggers a re-examination of the Facts
s which are found to be mutually-

9

Analogous conjunctions. The conjunction is split
up and reorganized as two tentative implications
(Rules) R. and R, one going each way. The
Criterialities within Ry and R, are based on
information provided by the Analogies among

Fq, Fﬁ, and I‘q .

Step 5.1: The successful search for F, in Step 2.4
may be regarded as a "prediction" that Rupert is a
fireman. Since "Rupert" and "fireman" are both
low-frequency concepts, the success of this
prediction may be so surprising as to cause us to
5 and Fg

In particular, we search memory for

re-examine the conjunctions which F
represent.
other similar (Analogous) items, and turn up Fg .

Step 5.2: We reconstruct the three Analogies among
F5’ F6, and F9 « The three are parallel to each

other, thus:

F5 = FEAFl Wilfred AR

F6 = F4AF3 Cyrus BB

Fg = Fg\l‘? Rupert ce (16)

Step 3.3" Picking one of these Facts as typical,

say Fg, we now convert its conjunction into a pair
9

of implications, thus implicitly following the

reasoning of Section IV.A ¢« These implications
We will

- F,r-qFa and

will of course be represented as Rules.

have basically, but not exactly: R

1
R2 - Fs-{"_‘, + We must now consider the modifi-
cations to be made to F, and Fa before they are

7

-< The arbitrariness of this choice, and of many
other aspects of the process we describe here,
reflect the almost total lack of psychological
data on which to base the algorithm. Hopefully,
future studies along the lines of Posner and
Keele [2k] will eventually enable us to make
far more accurate models of when and how
generalization takes place.
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L

{Qnem'berh Rupert2 fireman > :4} =

combined into R. (the story is identical for r2).
Analogies, as we have said, are a superb source
of information, and there is a great deal of infor
mation left in the Analogies made in Step 3.2 that
can contribute to the content of R,
examination of these Analogies will determine the

Criterialities of the various parts oR

103 S

follows.

Node-Criterialities: The three Facts Fg: Fg. and
Fy differ significantly only in the two triplets
of corresponding Nodes:
and AA, BB, CC .
which the Analogies generalize over.
that the presence of one or another of these Nodes

Wilfred, Cyrus, Rupert;
Clearly these are the cases
It appears

is not crucial to the general law which unites the
three Facts. Therefore, by definition these Nodes
are less criterial to Rl than those Nodes which
are constant over all three Facts.
Kernel-Criterialities: The Kernels which never
found Analogic matches have shown themselves to 'be
dispensable in, or perhaps even irrelevant to the
generalization which underlies the three Facts.
They thus are less criterial to R; than those
Kernels which found mates in all three Analogies.
Thus, in assembling R from F and Fg we
increase the Criterialities of those structures
which through their constancy give evidence of
being relevant to the Rule, and decrease the
Criterialities of those structures whose presence
Given that all
of the Node-Criterialities were originally 3> "the

shows signs of being inessential.

new Rule R will be as shown in Figure 17 (above).
We should mention that these adjustments of
Criterialities, like everything else in life, are
fallible.
that by coincidence both Wilfred and Rupert were

It might have happened, for instance,

observed to wear red suspenders on a Thursday.
We assume that with the accumulation of evidence
(as in Phase IV below), such coincidences will
wash out of the inductions.

------- e e e i e e e o e

In particular,

rears’ lituj[:ce.t"t2 oe®> sk

dnanberh 002 suapendersh> 13
Cpropertyh 002 redu> 13

ﬁmces-withh R'Llpez't2 l-h.udeh> sl

Step 3.4: The data structure requires that the new
Rules Ry and R; be assigned Subjective Probabilities,
Since we have as yet no reason to prefer one of
these Rules over the other, their initial S.P.'s
should be equal. We might assign initial values

of 1/4 , and thereafter treat the S.P. as the ratio

of Number of successes \hon the Rule is used

number of predictions
predictively (as below). This particular treat-
ment of S.P.'s, and the particular scheme we use
in adjusting Criterialities, were concocted for
illustrative purposes in presenting this example;
the actual manipulations must of course be more
subtle.

Phase 1V; New evidence argues for a generalization.

Synopsis: A new Fact F is matched Analogically
with the Left Half of Ry .

Analogy is applied to the Right Half of Ry to

The inverse of the
obtain a predicted Situation. This Situation is in
fact observed, and R; is rewarded for its success.
Step 4.1: At some arbitrary time after Phase |11
has taken place, a new Fact comes to our attention:
F : {<member Otis fireman> :3} ,

Step 4.02: In an attempt to understand F,o, we seek
an Analogic match for it in memory. Suppose that
the Left Half of Ry comes up as a candidate for
matching. Although we have no Justifying Infor-
mation for the identification (Otis,Rupert), the
Situations are otherwise identical, so we may
assume that the Analogy is accepted.

We are now in a position to follow the
"prediction paradigm" of Figure 7. That is, we may
apply the inverse of our Analogy, namely the mapping
ML . ((Rupert,otis)} , to the Right Half of R, to
obtain a Situation which we may expect to observe
or to find already recorded in memory.

Step 4.3. The application of M'l to the Right Half
of Rl encounters an interesting difficulty. This
Right Half contains a Node, CC, whose low Criter-
iality indicates that it has been generalized over.
We would expect the Analogy M'l again to mgp CC
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into some other Node, but M ™ in fact provides no

such Node. Hence in this and similar cases we are

led to predict the existence of an entity in the

new Situation, corresponding in this case to CC.
(Note that the translations of quantifiers in terms
of Dummies (Figure 3) arise from just this sort of
argument.) We may optimistically create a name
for our new entity, say XX. We thus predict a
Situation of the form:

<rears Otis 00 i (4)

<member XX suspenders> :(3)

<property XX red> :(3)

<dances=with Otis Maude> :{1) (18)

The Kemel-Criterialities here, which are
taken from those in the Right Half of R,, assume a
new role: they indicate the zeal with which we
should seek a realization of the given Kernel.

That is, the dominant Criteriality of

<wears Otis XX» tells us that our main job is to
look for something Otis wears; the low Criteriality
of <dances-with Otis Maude> suggests that we
should not give much concern to finding such a
condition, since this Kernel is under suspicion of
being irrelevant to the prediction.

Step 4.4: We may search for the predicted Situation

in our semantic memory or in the real world. If it
is in fact true that all firemen wear red suspenders,
then we will indeed find such a Situation. We will

find an object to which we can attach the name XX,
and in all likelihood there will be no match for
the Kernel <dances-with Otis Maude> .

Step 4.5: This successful prediction gives us
valuable information with which we may adjust the
Rule Ry .

Kernel-Criterialities in accordance with the

We may raise and lower Node- and

Analogy formed between the Right Half of Ry and the
predicted Situation. In particular, the unmatched
Kernel <dances-with Rupert Maude> attains a
Criteriality of 0 and disappears, since a Kernel of
The

successful prediction of course increases the

zero relevance has no place in a Situation.

Subjective Probability that the Rule is a valid
Thus from R,
in Figure 19 (below).

we derive a new Rule R!

one.
L

s Shown
Steps 4.6+: After enough recurrences of
Steps 4,1-4,5, our successful induction will
approach the form shown in Figure 20 (below). Here
the zero Criterialities of the Nodes "Rupert" and
"CC" indicate that these occurrences have completely
Like
dimy variables in mathematical notation, these

lost their identities and become Dummies.

Nodes could be replaced (consistently, of course)
by any symbols, e.g. "x" and "¥", In view of the
translation between Dummies and quantifiers given
in Figure 3, R‘i expresses precisely the proposition:
\ a

XGfireman yesuspenders [Wears(x,y) A

Property(y,Red)]
Which is to say, "Firemen wear red suspenders."

(21}

Phase V: New evidence may argue against a

generalization. We recall that a Rule RE was formed
along with Rl, and is its converse. The statement
made by Ry is that "If a person wears red

Although this

proposition is false in the absolute,

suspenders, then he is a fireman".
it will be
worth retaining if its statistical validity is
significantly greater than zero. Therefore we will
reward this Rule as per Phase IV when it succeeds,
simply adjust its Subjective Probability when it

fails, and expunge it if the Subjective Probability

RI: <rears’ Rupert® co> :5
[<:mem:l:uaz'5 Ru‘pertl fireman’> 5] = dnambers cct suspenderss> th
<‘.:pr0perty5 oot rea®s th 8.p. -%— {1
[ 6. .0 ]
R} <wears® Rupert® cc®> :6
[dnanbers Ruperto !.’:I.remn6> 16) = members cc? mapend.ers6> :5
q:roperl:ys ac® rad6> 15 B.Po m 1 (20)
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falls below some threshold. In this way our model

becomes capable of retaining "half-truths" - a
capacity which is very valuable to a semantic
memory (among other things, it allows the storage

of contradictory information).

V. Discussion

A. The Relation Between Analogy and Generalization

If we examine the Generalization-over-cases
process closely, we find that an interesting
statement can be made of the relation between
analogy and generalization. In Step 3.3 we saw
how a great deal of information supplied by
Analogies was incorporated into the representation
of the generalized Rule. Thus,

But in Phase IV we found that

analogy takes part
in generalization.
the induced Rule led to the search for a Situation
which was in fact Analogous to previously-known
Facts, and which might have gone unnoticed if the
Thus,

generalizations facilitate the finding of new

inductive generalization had not existed.

analogies. In fact, the search for the new Analogy
was guided by precisely that information which had
been contributed to the Rule by the old Analogy
(i.e. Criterialities, see Steps 3.3 and 4.3), so we
might say that analogies perpetuate themselves via
generalizations. On the other hand, we could also
summarize Phase IV by saying that generalizations
perpetuate themselves via new analogies. In any
case, we have certainly shown that analogy and

generalization are mutually reinforcing processes

which can hardly be separated from each other.

B. Problems in Modeling Cognitive Processes

We are at present attempting to construct a
computer implementation (in the LISP language) of
the processes outlined in this paper. Such an
effort necessarily leaves one sadder but wiser
with regard to the prospects for formulating and
testing explicit cognitive models. In this section
we will discuss some of the more forbidding
We feel that the
problems brought out below correspond not to
(although

heaven knows), but

obstacles we have encountered.

deficiencies in our particular model
there are enough of those,

rather to major dilemmas attending the construction

of any general cognitive model in a large semantic
memory system.

We have already mentioned that the choice of
"what to do next" in a cognitive process is often
Because of the extreme scarcity
the

model builder is confronted with a small infinity

poorly specified.

of psychological data regarding such choices,

of arbitrary decisions in designing an algorithm.
The cumulative effect of these low-level choices
may well wash out the central theoretical propo-
sitions that the model was designed to test.

There are other factors which complicate the
issue of what should be done when and for how long.
In the first place, many cognitive processes
contain no inherent termination condition. Like
memory search or the construction of Analogies
according to a recursive definition, they are
bounded only by the size of semantic memory. In
the second place, a cognitive operation is seldom
totally successful or totally unsuccessful. As in
our discussion of Analogies, success must be
defined by a scoring function and threshold. These
considerations would seem to imply that a general
cognitive process cannot be represented as an
orderly succession of tidy operations, but instead
must be couched in a welter of effort-limiting and
evaluation heuristics.

Of all of the issues we have sidestepped in
Sections Il and IV, certainly none is more
worrisome than the problem of memory search. Not
only must relevant information be brought forth,
but this must be done without exhaustive search
rapidly), despite the fact that 99% of the

contents of memory will be irrelevant to the given

(i.e.

search. Moreover, the phenomena of "set" and

"effect of context" show us that in human memory

the memory structure (or, equivalently, the means

of search access into it) is continuously adapting
in response to ongoing cognitive activity.
Certainly no process involving a large, general
semantic memory can be adequately modeled until
some progress is made on this most refractory set
of problems.

The necessary size and intricacy of a semantic
memory create a host of methodological problems in

validating the algorithms which operate in such a
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system. It becomes extremely time-consuming to
construct a suitable data-base on which to test an
algorithm - especially if that data-base is to be
realistic in being 99# irrelevant to the test
problem.  Sometimes it becomes very difficult to
distinguish which properties of a program's
behavior are inherent in its algorithm, and which
stem from its interaction with the particular test
data-base used. In addition, any algorithm will
contain dozens of arbitrarily-set parameters and
one would

arbitrarily-made decisions. Ideally,

evaluate these by varying them one at a time, using
a large number of test data-bases, but such a
procedure is out of the question in practice.
The ultimate problems in validation arise
to charac-

when one strives, as we have striven,

terize general "subroutines" of cognitive behavior,
rather than attempting to build a beginning-to-end
model of a particular type of performance in a

well-defined cognitive task. The processes of

Analogy formation, Generalization-over-cases, and
the prediction paradigm of Section III.C are not
by themselves sufficient to model any particular
cognitive behavior. They are intended rather to
represent elementary sub-processes which may be
observed to participate in a very wide range of
psychological phenomena, from sensory perception
to natural language understanding. Our approach
is in accord with the venerable programming dogma
that the best and often the only way to come to
grips with a complex process is to decompose it
into easily-conceptualized subroutines. Certainly
this law must apply to that most complex of
processes, human cognition. But the question
immediately arises of how one is to validate a
proposed algorithm for a "cognitive subroutine'".
It is essentially impossible for experimental
techniques to provide data on a single cognitive
sub-process taken in isolation from all others.
But with no data as to how the subroutine is
supposed to perform, one cannot even debug a
proposed algorithm, much less validate itl
in a scientific

Is it not intolerable,

investigation, to be asked to consider models for
which empirical validation is next to impossible?

We think not. Consider the situation in

linguistics. The linguist (not to be confused with

the metatheorist, or prophet) spends his time
trying to model particular aspects of a particular
language, e.g. negation or nominalization. He
does not have a complete grammar of the language
available to him, nor does he attempt to construct
one. He knows that his limited model is guaranteed
not to be fully consistent with empirical obser-
vations of language, because in language too it is
impossible in reality to isolate one aspect from
all the others. In the face of a host of counter-
examples, exceptions, and phenomena not covered by
his model, the linguist calmly decides to judge
the worth of his theory by subjective criteria
such as internal elegance and explanatory power.

He is happy with a model if it gives him a better

understanding than he had before.

We hope that the model presented in this
paper gives the reader a better understanding than
he had before.
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