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Abstract 

This paper describes a data structure, 
MENS (MEmory Net Structure), that is useful for 
storing semantic information stemming from a 
natural language, and a system, MENTAL (MEmory 
Net That Answers and Learns) that interacts with 
a user (human or program), stores information 
into and retrieves information from MENS and 
interprets some information in MENS as rules 
tel l ing it how to deduce new information from 
what is already stored. MENTAL can be used as 
a guestion-answering system with formatted input 
/output, as a vehicle for experimenting with 
various theories of semantic structures or as the 
memory management portion of a natural language 
question-answering system. 

1. Introduction 

In order to develop machines capable of 
"understanding" natural language, it is extremely 
valuable, if not necessary, to design a method of 
organizing a corpus of data to facil i tate the 
storage and retrieval of information on many 
subjects, some in depth, some in breadth; to 
faci l i tate the storage, retrieval and use of the 
many complex relationships among real-world 
concepts; to faci l i tate the storage, retrieval and 
use of information which tel ls how other informa­
tion in the corpus may be used to further explicate 
implied relationships among concepts; and to 
facil i tate the identif ication from the vast corpus 
of data of those pieces of information most directly 
relevant to any given topic. 

This paper describes a data structure 
(MENS) and procedures for manipulating it 
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(MENTAL) that have been designed to meet the 
requirements outlines above. This system is 
intended to be used as the memory of a natural 
language question answering machine (see 
[7;8;9;10]) and could also be used as the memory 
of a general theorem prover or problem solver. 
Since the system allows its user (either a human 
or an outside program) to specify the relations 
that w i l l be used for the basic structuring of 
information, the system can be used for experi­
menting with data structures suitable for various 
contents and purposes. The major features of the 
data structure are; 

It is a net whose nodes represent con­
ceptual entities and whose edges represent 
relations that hold between the enti t ies. 

A distinction is made between n-ary rela­
tions about which information and deduc­
tion rules are to be stored and str ict ly 
binary relations that are used only to 
structure information about other ent i t ies. 
The former are represented by nodes in 
the net, just like any conceptual enti ty. 
The latter relations are the ones used as th 
edges of the net. 

Some nodes of the net are variables, and 
are used in constructing general statement, 
and deducation rules. 

Each conceptual entity is represented by 
exactly one node in the net from which a l l 
information concerning that entity is re­
trievable. 

Nodes can be identified and retrieved eithe 
by name or by a sufficient (though not 
necessarily complete) description of their * 
connections with other nodes , l ikewise 
identi f ied. 

The system and data structure described 
here follow along the general lines laid out by 
such systems as Semantic Memory [11], TLC 
[12], Protosynthex II and I I I [14,19,20] , GRAIS 
[3] and SAMENLAQ [17,18], but differ mainly in 
the clear separation of the two levels of relation, 
and in the abi l i ty to store and use general deduc­
tion rules. 

All the procedures for storing information 
into the data structure, as wel l as a l l those for 
expl ici t retrieval and some of those for implicit 
retrieval have been programmed in PL/1 and are 
running interactively on an IBM System/360. Al 
the research reported herein has proceeded both 
theoretically and by wr i t ing, checking out, 
revising and improving programs in P L / l , 
SNOBOL3 and Burroughs Extended ALGOL. 
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A more detailed discussion of MENS and 
MENTAL which also shows their applicabil i ty as 
an experimental vehicle is given in [16]. 

2. Basic Concepts of the Structure 

To explain the MENS structure, it is f irst 
necessary to explain what is meant by a concep­
tual enti ty. A conceptual entity is anything about 
which information can be given. That i s , anything 
about which one can know, think, or believe some­
thing; anything we can describe or discuss or ex­
perience. Individual objects, both concrete and 
abstract, are conceptual enti t ies, as are classes 
of objects, actions and classes of actions. Con­
ceptual entities are really relative to individual 
intell igent beings. My concept of a given person, 
named John 0. Smith, may be different from yours. 
Therefore, "John 0. Smith" names a different 
conceptual entity for me than it does for you. 
Naturally, a word is not a conceptual ent i ty, but 
may designate or refer to zero or more conceptual 
entities for each intell igent hearer. MENS has 
been designed to store information about con­
ceptual ent i t ies. 

The information that is stored about a con­
ceptual entity is semantic information, in that 
that meaning of a given conceptual entity for a 
given being is whatever that being can say about 
the conceptual ent i ty. This includes everything 
that being can infer from any further piece of i n ­
formation about the conceptual ent i ty. 

The basic goal underlying the design of 
MENS has been generality. It was desired to be 
able to store any conceptual ent i ty, regardless of 
its field of knowledge, and any information about 
the conceptual ent i ty. Of course, stored i n -
formayon is useless unless it can be retrieved, 
so ease and efficiency of retrieval was a major 
goal along with adequacy of representation. 

Assuming the above discussion, the basic 
motivating factors for the design of MENS were: 

1. Unified representation: All conceptual 
entities about which information might be given 
and questions might be asked should be stored 
and manipulated in the same way. 

2. Single f i le : All the information about a 
given conceptual entity should be reachable from 
a common place. 

3. Mult ientr ied, converging search: A 
search of the fi le should start from as many places 
as possible and proceed in paral lel, converging 
on the desired information. 

4. Storage of deduction rules: Rules 
determining how deductions may be made val idly, 
even when specific to certain areas or relations, 
should be stored in the memory fi le just like other 
information, and the system should be able to use 
them in directing its deductive searches. 

5. Direct representation of n-ary relations: 
N-ary relations, for any n, should be as natural 
for the system as binary relations. 

6. Experimental vehicle: The fi le should be 
designed without any commitment to a particular 
semantic theory, i . e . the memory system should 
be a research vehicle for experimentation on 
various ways of structuring the information in i t . 

In the rest of this section, we w i l l describe 
how these motivating factors led to the particular 
structure decided upon. 

Unified representation requires that every 
conceptual entity have a memory structure repre­
sentation which can be put into relationships with 
representations of other conceptual ent i t ies. It 
further requires that a l l conceptual entities be 
represented in the same way regardless of their 
exact relationships to other conceptual ent i t ies. 
We w i l l refer to a conceptual entity or to the 
logical representation of a conceptual entity as an 
Item. When referring to the computer structure 
used to implement the representation of a con­
ceptual enti ty, we w i l l use the term item block. 
In i l lustrat ions, we w i l l picture an item block as 
a rectangle within which we w i l l place an English 
word to indicate what concept the item block 
represents. If no such word exists some other 
symbol may appear so that the item block may be 
referred to . The ful l implication of unified 
representation is that every word sense, every 
fact and event, every relationship that is to be a 
topic of discussion between the system and its 
human discussant w i l l be represented by an i tem. 
Therefore, the items must be tied together by 
relationships that are not conceptual ent i t ies. 
The reasoning for this is as fol lows. Statements 
( e . g . , "Brutus ki l led Caesar.", "The sky is 
green.") are conceptual entities since we may say 
things about them such as someone believes them 
or they are false. Therefore, they must be 
represented by items, and such an item must bear 
some relation to the items (Brutus, k i l l , green) 
that make up the statement. If this latter relation 
is a conceptual relat ion, the fact of this rela­
tionship's holding between two items may be d is ­
cussed and thus must be represented by an item 
which then must have some relationship to that 
relat ion, etc. Eventually there must be some 
relation which is not conceptual, but merely 
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structural, used by the system to tie a fact- l ike 
item to the terms partaking in i t . We w i l l refer to 
a conceptual relation as an item relation or simply 
a relation and to a nonconceptual relation as a 
system relation, l ink, or pointer. The MENS 
structure i s , thus, a collection of items tied to­
gether by system relations into a directed graph 
with labelled edges. The nodes of the graph are 
the items and the edges are system relations. 
The edges are directed to indicate the order of 
the arguments of the system relat ion. The edges 
are labelled to allow for several different system 
relations. The distinction between item relations 
and system relations is very important and must 
be kept in mind. 

Single f i le means that there w i l l be exactly 
one item for each conceptual ent i ty. Therefore, 
a l l the information about the conceptual entity 
w i l l involve its item and be retrievable from its 
item block. Since the system relations are the 
links that tie items together and thus provide the 
information, this means that whenever a l ink 
goes from one item to another, there is an associ­
ated link in the reverse direction. Looking at the 
fact and event items as records in a record 
oriented f i le and at the links going from part ic i ­
pating items to fact and event items, MENS is an 
inverted fi le and may be searched as one. How­
ever, it is more than an inverted f i le , since links 
go the other way also. In i l lustrat ions, a link 
pair is represented by a line connecting two item 
blocks. The name of the system relation appears 
in the item block where the line emanates, from 
i t . Tor example in Figure 2 the system relation 
AGENT goes from item 241/00010+023 to the item 
representing JOHN. 

Mult ientr ied, converging search implies that 
items equally identifiable by the human conversant 
should be equally identifiable by the system. By 
this is meant that any item named by an English 
word can be located as quickly (by the same 
lookup procedure) as any other item so named, 
rather than some being locatable by lookup while 
others require an extensive search. Items that do 
not have English names, but must be identified by 
description w i l l be located via searches that are 
quick or involved depending on the complexity of 
the description. The lookup is done through a 
dictionary which gives the internal names for the 
items which represent each of the senses of each 
natural language word used in the conversations. 
The internal name of an item is its address in 
secondary storage, so once looked up the item 
block is easily found. Items are connected to 
facts (which do not have English names) as 
mentioned above and when two items are 

connected in the memory structure, each is 
reachable from the other since every l ink between 
two item blocks is stored in both directions. 
Another implication of multientrled, converging 
search is that searching the fi le is done by start­
ing at an arbitrary number of item blocks (all those 
that can be looked up directly) and converging to 
the desired information structures. This involves 
repeated intersections of sets of items as w i l l be 
explained in section 3. Special care has been 
taken to make this search process as efficient 
as possible and special constructs have been 
developed for this purpose. 

Storage of deduction rules implies that de­
duction rules* should be capable of being stored 
in and retrieved from the memory structure in the 
same way that specific information is stored and 
retrieved. This implies that the structures used 
to store deduction rules must be basically the 
same as those used to store specific information. 
It further implies that the executive routines must 
include a very general deduction rule interpreter 
that is capable of init iat ing searches of the 
memory and generating appropriate consequences 
based on any stored deduction rule. 

Direct representation of n-ary relations 
implies that an item representing a relational 
statement based on an n-ary relation should have 
links to each of its n arguments direct ly, re­
gardless of the value of n. This means that any 
item must be capable of having an arbitrary 
number of pointers emanating from i t . This number 
may even change throughout the l i fe of an item as 
the types of system relationships it has with 
other items change. 

There are several reasons for representing 
n-ary relations directly. It makes searching more 
efficient than if n-ary relations were stored as 
nested binary relat ion. If nested binary relations 
were used, item blocks would be introduced that 
were not true conceptual ent i t ies. Also Fillmore's 
case grammar theory [4,5] in which the deep 
structure of a sentence contains a predicate of a 

By "deduction rule" is meant any statement 
which, properly interpreted, provides informa­
tion as to what statement(s) may be concluded 
from what other statement(s). Deduction rules 
include (among others) rules of inference of 
symbolic logic, general statements and disjunc­
tive statements (any clause may be the conclu­
sion if the negation of a l l the others holds). 
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verb and n cases is a satisfying theory for a 
semantic deep structure and representing n-ary 
relations directly in MENS allows for a direct 
representation of Fillmore's deep structures. 

Experimental vehicle implies that the user 
must be given the capability of declaring what and 
how many system relations he wi l l use rather than 
having a maximum number imposed on him. He 
must be able lo decide what w i l l be his conceptual 
entities rather than be provided with a closed set 
of them. He must be able to decide how items 
and pointers w i l l be combined into structures to 
represent the information he wishes to work w i th . 
He must, f inal ly, not be restricted as to what 
deduction rules the system may store and use. 

3. Explicit Storage and Retrieval 

Both storage into and retrieval from MENS 
are accomplished by describing how an item is 
(or is to be) connected to other items in the net. 
The storage instruction in effect says, "Create 
an item and connect it into the net in this way. " 
The retrieval instruction in effect says, "Tell 
me al l items that are connected in the net in this 
way. " Both instructions are expressed in a state­
ment, called a spec , which describes the 
item by describing the paths in the net that lead 
away from the item. These paths may be quite 
complicated, but the edges along the paths must 
be expl ic i t ly named system relations. 

A subset of the input language sufficient for 
discussing the main points of MENS and MENTAL 
is defined in f i g . 1 in modified BNF notation. 
Underlined words in lower case letters are non­
terminal characters. Strings enclosed in square 
brackets are optional. Strings arranged vertically 
and surrounded by braces are alternatives—one 
must be chosen. Strings followed by an asterisk 
may appear one or more times. Strings surrounded 
by broken brackets are informal English descrip­
tions of object language strings. represents a 
required blank; additional blanks may be i n ­
serted anywhere. The following characters are 
delimiters in the language: , 1 ) ( ? . : ' = %. 
A "character" is any legal character except a 
delimiter. 

A relspec is used to declare a system rela­
t ion. For example the relspec 

$AGENT S *AGENT M 

declares a system relation whose forward pointer 
is named AGENT and whose reverse pointer is 
named *AGENT. It further declares that an item 
may point to at most one other via the AGENT 
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pointer, but to an arbitrary number of other items 
via the *AGENT pointer. AGENT is therefore said 
to be a singular pointer and *AGENT, a multiple 
pointer. 

After several such relspecs, a user might 
input the following buildspecs: 

(.AGENT:J0HN,VERB:LøVES,0BJ:JANE) 
(.AGENT:JANE,VERB:LǾVES,ǾBJ:JǾHN) 
(.AGENT:SUE,VERB:LǾVES,ǾBJ:J0HI\J) 

This would cause the structure shown in figure 2 
to be bui l t . Symbolic names are shown on those 
item blocks that have them. Three item blocks 
were built to represent the three facts. These 
are shown with their internal names. The s ig­
nificance of the internal name 241/00010+ 023 is 
that the block is stored on disk track 10 at an 
offset of 23 within the track and that the calcu­
lated specificity measure is 241. The specific] tv 
measure is used in deductive processing and wi l l 
be discussed later. 

Item blocks are stored on disk tracks as 
consecutive blocks of records . Each record con­
tains the coded name of a pointer name and, if 
the pointer is singular, the internal name of the 
item block pointed to. If the pointer is multiple, 
the other field of the record is a link to a multiple 
pointer l is t which contains the internal names of 
a l l the item blocks being pointed to. Each 
multiple pointer l ist is ordered on the internal 
names it contains (largest first) and is kept on the 
same disk tracks as the item block it is for. 

Returning to the discussion of explicit 
storage and retr ieval, items may be described as 
well as named in specs. Tor example the 
buildspec 

(.A:HENRY,V:SAW,Ǿ:(.A:J0HN,V:HIT,0:JIM)) 

(assumming the proper relspecs had been given) 
would result in the building of the structure of 
figure 3. In this case, both the blocks shown 
unlabelled in the figure would have been created 
in response to the buildspec as well as a l l the 
pointers. If we had already input the information 
that John hit Jim and wanted to say that Henry 
saw that act, we would use the following 
buildspec: 

(.A:HENRY,V:SAW,0:(?1,1,A:J0HN,V:HIT,0:JIM)) 

which uses an imbedded findspec. 

The findspec causes a l ist of items to be 
found that satisfy the given description. In this 
case the *A multiple pointer l ist from the block 
named J0HN, the *V l ist from HIT and the *0 l is t 
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from JIM would be intersected to find the names 
of a l l item blocks f i t t ing the description. The 
findprefix, " ? 1 , 1 , ", specifies that there should 
be at least 1 and at most 1 items found. That i s , 
this findprefix declares the findspec to be a 
definite description. To retrieve a l l instances of 
Henry's seeing John's hitt ing of Jim, the findspec 

(?0 ,#,A:HENRY,V:SAW,0:(?O ,#,A:JǾHN, 
V:HIT,Ǿ:JIM)) 

could be used. The imbedded findspec could here 
return a l ist of zero or more items. The union of 
the *Ǿ l ists from these items would be intersected 
with the *A l is t from HENRY and the *V l is t from 
SAW to satisfy the ful l request. Thus, the 
unioning and intersecting of ordered l ists is the 
basic mechanism for expl ici t retrieval from MENS. 

It was thus necessary to develop efficient methods 
for taking unions and intersections. These 
methods are described in [15], 

A more complicated retrieval mechanism is 
needed for structures in which there are two or 
more separate paths to one unknown item. For 
example the structure in figure 4 represents the 
information that Narcissus loves himself. To 
find a l l items such as the top one, i . e . a l l items 
representing the fact that someone loves himself, 
the findspec 

(?0 ,#,A: %N,V:LǾVES,Ǿ:,N) 

could be used. Here N is a variable of the 
users language. The items on the *V l is t from 
LǾVES w i l l be retrieved and from each one the item 
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pointed to via A w i l l be checked for equality 
with the item pointed to via 0. The l is t formed 
as a result of the findspec w i l l contain only those 
items for which the check succeeded and for each 
one, it w i l l be recorded which item was found to 
substitute for N. This is done so that in case 

the findspec is embedded in another that also 
contains N as a variable, checks w i l l continue 
to be made to insure that for each structure 
retrieved, N represents exactly one item. A 
complete analysis of how these checks should be 
made and how the union and intersection operations 
can be modified to handle them is given in [16]. 
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FIGURE 4: A STRUCTURE WITH TWO ITEMS 
CONNECTED BY TWO DISTINCT PATHS. 

4. Representation of Deduction Rules 

In section 3 it was shown how the MENS 
structure is used for explicit storage and retr ieval. 
In this section we w i l l explain how it can be used 
for deduction. Since storage of deduction rules is 
a motivating factor of this project, the deduction 
method w i l l involve the storing of general deduc­
tion rules and the use of fairly simple theorem 
proving techniques. The reason for this is that 
we want the system to be as qeneral as possible 
and we want to concentrate on the data structure 
rather than the executive routines. It would be 
possible to build a complex and sophisticated 
theorem prover which uses MENS for its data 
storage, but this is not our current interest. 

In order to allow for complete generality in 
what deduction rules could be stored, including 
arbitrary orderings of arbitrarily many quantif iers, 
it was decided to represent quantifiers and var i ­
ables directly in the structure, and build executive 
routines to interpret the deduction rules. These 
routines would operate, upon being given a deduc­
tion rule, by carrying out searches required by the 
rule and building consequences just i f ied by the 
rule. Representing quantifiers and variables 
directly seems to be a compromise of the motivating 
factor of unified representation since they w i l l 
require special routines to deal with them and their 
status as conceptual entities is questionable. 
However, dealing with the order of quantification 
implied by some English sentences is enough of 
a problem that at least one l inguist believes that 
quantifiers and variables might profitably be com­
prehended by the base rules of English grammar 
[ ] , p. 112]. Besides, including this capabil i ty 
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extends the use of the system as an experimental 
vehicle, another motivating factor. 

The decision to allow direct representation of 
variables leads to the questions of how to repre­
sent them and what w i l l be allowed to substitute 
for them. Considering the second question, the 
conclusion is that a variable should be able to 
stand for any item but not for any system relat ion. 
This is supported by the discussion in section 2 
that anything about which information could be 
given should be represented by an item, that a l l 
items should be equally able to have information 
stored about them, and that system relations could 
not have information given about them since they are 
not conceptual entities . As Quinesays, "The ontol­
ogy to which one's use of language commits him com­
prises simply the objects that he treats as fall ing . . . 
within the range of values of his var iables." 
[13, p. 118 quoted in 2, p. 2 ]4 ] . Since the 
ontology of the data structure comprises the set 
of items (by definit ion of item), the values of the 
variables must be allowed to range over al l the 
items, and since the system relations are to be 
excluded from the ontology, not allowing them to 
substitute for a variable reinforces their exclusion. 
Allowing the variables to range over al l the items, 
however, brings up the possibil i ty of storing the 
paradoxes that were eliminated from formal 
languages only with the introduction of types of 
variables or restrictions on assertions of existence 
(of sets). This possibil i ty w i l l be accepted. We 
make no type distinctions among the items and 
impose no restraints on item existence, leaving 
the avoidance of paradoxes the responsibil ity of 
the human informant. We w i l l do the same with 
the variables. However, we do use restricted 
quantif ication. What is meant by this is that 
with each quantifier in a deduction rule w i l l be 
included, not only the variable it binds, but also 
an indication of the set of items over which the 
variable ranges. Woods [ 2 l ] uses restricted 
quantification to reduce the time needed to handle 
a request by including in the restriction a class 
name and a predicate. The class name must be of 
a class for which there exists a generator that 
enumerates a l l the members of the class one at a 
t ime. Each member is tested with respect to the 
predicate. Those for which the predicate is true 
are acted on by the main body of the request. Our 
restrictions may be more general. We w i l l allow 
any statement, however complex, about the 
variable. This statement w i l l be used as a search 
specification to find a l l items in the structure for 
which the statement is true. The set of such items 
w i l l comprise the range of the variable. Thus, 
even omega ordered type theory may be represented 
in the structure by entering a statement about 
every item giving its type and including type 
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We now return to the question of how 
variables should be represented. Each variable 
w i l l be represented by its own item block. All 
occurrences of the same variable within a given 
deduction rule w i l l be represented by the same 
item and no such item w i l l be used in more than 
one deduction rule. The same item is used for a l l 
occurrences of a variable in a deduction rule so 
that a substitution made for the variable in one 
occurrence w i l l at the same time be made in the 
others and so that a l l the information about what 
items can substitute for the variable w i l l be 
reachable from one place. Different items are 
used in different deduction rules to eliminate 
the possibil i ty of information about a variable in 
one deduction rule becoming associated with a 
variable in another. The specification measure 
field of the internal name of an item is used to 
distinguish variable items from constant items so 
that an item can be recognized as a variable 
when it is pointed to from another item. 

A connective clause is the head of a construction 
formed of several clauses joined by one of the 
connectives mentioned above. It has an OP 
system relation to the connective and one of the 
following sets of argument relations: 

(i) ARG to the argument if the connective is 
unary (NOT) 

(ii) ARG1 to the first argument and ARG2 to the 
second argument if the connective is 
binary (IMPLIES ,IFF) 

(i i i) MARG to a l l the arguments if the connective 
is associative, commutative and idempotent 
(AND,OR,MUTIMP) 

The clauses forming the arguments of a connective 
clause and those forming the restriction and scope 
of a quantifier clause may be any net sub-structure 
with the requirement that a clause may contain a 
free variable only if a path of converse argument 
pointers, converse restriction pointers and con­
verse scope pointers leads to a quantifier clause 
in which that variable is bound. 

Besides quantifiers and variables, the 
connectives NOT, AND, OR, IMPLIES, IFF and 
MUTIMP* are also represented as item relations 
in the structure and the executive routines that 
interpret the deduction rules are designed to 
handle them. 

Deduction rules are stored using two types 
of items that w i l l be recognized by the executive 
routines. We w i l l cal l them quantifier clauses 
and connective clauses. A quantifier clause is 
the head of a quantified general statement and 
has four special system relations emanating from 
i t . They are: 

(0 Q points to the quantifier 
(ii) VB points to the variable being bound 
(ii i) R points to the restriction on the 

variable 
(iv) S points to the scope of the quantifier 

MUTIMP stands for mutual implication. It is a 
predicate with an arbitrary number of arguments 
and says that its arguments mutually imply each 
other by pairs (are pairwise equivalent). Looked 
on as a binary connective, MUTIMP, like AND and 
OR and unlike IMPLIES and IFF is idempotent as 
well as associative and commutative. A possible 
definition of MUTIMP is : 

Examples of deduction rules are given below. 
Each deduction rule is given first as an English 
language statement and then as a buildspec. 
names such as 'X represent variable items . 

1 . Every man is human. 
(.Q:ALL,VB:,X,R:(.AGENT:,X,VERB:MEMBER, 
OBJ:MAN),S:(.AGENT:'X,VERB:MEMBER, 
OBJ:HUMAN)) 

2. Every car has-as-part an engine. 
(.Q:ALL,VB:,X,R:(.AGENT:,X,VERB:MEMBER, 
OBJ:CAR),S:(. Q:EXISTS, VB:'Y,R:(. AGENT: 
,Y/VERB:MEMBER/OBJ:ENGINE), S:(.AGENT: 
•X,VERB:HAS_AS_PART,OBJ:'Y))) 

3. If a male is the child of someone, he is the 
son of that person. 
( .Q:ALL^rXRrt.AGENTr^VERBrMEMBER, 
OBJ:MALE),S:(.Q:ALL,VB:'Y,R:(.ACENT:'X, 
VERB:CHILD_OF,OBJ:,Y)S:(.AGENT:,X,VERB: 
SON_pF,OBJ:'Y))) 

4. John is at home, at SRI or at the airport.* 
(.OP:OR,MARG:(.AGENT:JOHN,VERB:AT, 

OBJ:JOHNS_HOME), 
MARG:(.AGENT:JOHN, VERB:AT,OBJ: 

SRI), 
MARG:( .AGENT:JOHN, VERB:AT ,OBJ: 

AIRPORT_4)) 

The structure for rule 1 is shown in figure 5. 

5. Use of Deduction Rules 

There are six operations that can be per­
formed with respect to a deduction rule in MENS. 
They are: 

* This sentence taken from Green and Raphael [6] 
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HUMAN 

(i) It may be used for generating con­
sequences . 

(ii) It may be confirmed by exhaustive 
induction, i . e . proved F-true in the 
universe of the data structure at any 
given time. 

(i i i) It may be deduced from other deduction 
rules. 

(iv) It may be refuted by finding a counter-
instance in the data structure. 

(v) Its negation may be deduced. 
(vi) It may be treated as a specific state­

ment, which includes its use as an 
assumption in the deduction or nega­
tion of other rules as in ( i i i ) or (v). 

We w i l l be mainly interested in using a de­
duction rule for generating consequences. In this 
process, there are two ways of using a restr ict ion. 
They are: 

(1) A possible substitution for the variable 
may be checked to see if it fu l f i l ls 
the restr ict ion, 

(ii) The data structure may be searched to 
find al l items that fu l f i l l the restr ic­
t ion. 

The amount of information that may be de­
duced with any deduction rule depends on more 

than the quantifiers and the number of items found 
thatare able to fu l f i l l the restrictions. I ta lso de­
pends on the structure of the logica 1 connectives in 
the deduction rule . Tor example , a deduction rule 
might have a consequent that was the conjunction 
of several substructures. Thus, several inde­
pendent substructures might be deduced from each 
choice of items to substitute for the variables. 
There are, therefore, several different ways we 
may use a deduction rule for generating con­
sequences. We may instantiate over a l l items 
that satisfy the restrictions or just over those we 
are interested i n . Similarly, we may generate a l l 
the consequences Justified by the deduction rule 
or just those needed to answer a particular ques­
t ion. 

In the following sections, we w i l l f irst d is ­
cuss how a deduction rule useful for answering a 
particular question is found, and then discuss how 
the executive routines interpret the deduction rules 
and generate consequences. 

6. Finding Deduction Rules 

A deduction rule is needed when the number 
of items found to satisfy a flndspec (see section 3) 
is less then the minimum number required. The 
problem then, is to find a deduction rule capable 
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of generating an item that satisfies the findspec. 
Say the findspec is 

(i) (?0,#,L1 :(I IIm ) L : ( In 1 Inm )) 
1 n 

where L1. , . .. , L are system relations and 
i n 

I.11. , . .. ,1nm are specific items (we w i l l assume 
n 

at first that a substructure only one level deep is 
required and consider the case of several level 
structures later). In order for a deduction rule to 
generate the desired item, it must be headed by a 
quantification clause that is connected through a 
path of scope and argument pointers to an item 
which contains the labels L1 , . .. ,L one or 

1 n 
more of which point to variable items and the rest 
of which point to some item in the appropriate l ist 
in ( i). We can, therefore, locate the deduction 
rule by searching for any item that satisfies the 
findspec: 
(ii) (?(),#,L.:((I11 Ib )UV) L : 

I lm. n 

((In1 , I nm ) U V)) n l nm n 
where V is a l ist of a l l variable items in the data 
structure. For the sake of eff iciency, we maintain 
an item which we shall cal l VBL. No other item 
in the structure contains a pointer to VBL, but 
whenever a variable item contains a pointer L to 
an item I, VBL also contains a pointer L to the 
item I. Thus, the findspec (ii) is equivalent to: 

Oil) (?0,#,L. :(VBL,I , , I. ) L : 

(VBL,In1 Inm )). nl nm n 

head of a deduction rule. This w i l l be a deduction 
rule capable of generating the consequence we are 
interested i n . While following this path a trace 
l is t is created. This is a l ist (S , . .. ,S, ) where 

S, is I, S is pointed to by a scope or argument 

pointer from D, and S , 2 < i < k, is pointed to 

by a scope or argument pointer from Si-1 . The 

trace l is t w i l l be used to l imit the consequences 
generated to the ones desired. 

In the case of fai l ing to find items matching 
a findspec involving several levels, the same 
process is carried out, but we must be sure to 
allow for al l possibil i t ies of variables replacing 
constants. That i s , each level is handled as 
above for progressively higher levels, and the 
reverse scope and argument pointers are not 
followed unti l the highest level has been done. 

7. Generate 

The routine to generate consequences from a 
deduction rule is a recursive procedure that is 
in i t ia l ly given the internal name of an item that 
heads a substructure with no free variables. It 
returns a l is t of items (internal names) that head 
substructures representing the consequences that 
have been generated. These substructures might 
then either be left in the data structure or be 
erased. The Generate routine is written to gen­
erate consequences according to the author's 
understanding of the meanings of the quantifiers 
and logical connectives. It is not designed to 
prove theorems, but to use deduction rules and 
other data that have been stored and are assumed 
to be valid by generating consequences of them. 

Note that any item that satisfies (1) must be 
an instantiation of any item that satisfies (i i i) 
and, further, it is possible to deduce an item that 
satisfies (i) only if an item satisfying (i i i) exists 
in the data structure. 

For each item, I, found satisfying (i i i ) we 
may record what substitutions we are interested 
in for the variables pointed to from I. If I has 
a pointer Li to a variable item X1 , we record 

that the only items we are interested in sub-
by putting them mitting for X. are I i 1 . . , . I i m 

i 
in a "possible substitution" l is t for X . They w i l l 

later be checked against the restriction on X . 

For each item I satisfying ( i i i ) , we then 
follow the paths of reverse scope and argument 
pointers unti l coming to an item D that is the 

For example, when generating a consequence 
headed by a universal quantifier, the restriction 
is used to direct a search of the data base which 
results in a l ist of items that can substitute for 
the bound variable and then the scope is generated 
When generating a consequence headed by a 
connective clause, the action taken depends on 
the connective. For example with a disjunction, 
if a l l but one of the disjuncts can be refuted, the 
remaining one is generated. 

8. Confirm and Refute 

The Confirm and Refute routines are used by 
the Generate routine to determine if a fact repre­
sented by a structure is true or false in the data 
base. It i s , of course, possible for an expression 
to be neither confirmed nor refuted. Tor example, 
the statement "All men have two arms" would be 
neither confirmable nor refutable if we knew of 
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exactly 100 men, of whom 99 had two arms, but 
we had no information about the hundredth. 

The Confirm and Refute routines also use 
the author's knowledge of the quantifiers and 
connectives. Tor example a disjunction is con­
firmed if and only if any argument is confirmed 
and is refuted if and only if a l l the arguments are 
refuted. 

9. Substructure Directed Searching 

Using a restriction to find a l l the items that 
satisfy it and finding an instantiation of a sub­
structure containing free variables in order to con­
firm or refute it require a process similar to the 
one used to find an item described by some f ind-
spec. Such general substructures may contain 
some items which are connected to the head item 
by several different paths. If these items are 
constant items, any instantiation of the general 
substructure w i l l contain them at the end of 
similar paths from the head item. I f , however, 
they are variable items or items heading sub­
structures containing variable items, the instan­
tiation substructures w i l l have different items in 
their place and we must be sure that no item in 
the general substructure is substituted for by 
more than one item in any instantiation sub­
structure. This is done in the say way as eval­
uating a findspec which contains vnames which 
originally appeared preceded by "%" or in the 
find pre f ix . 

10. Summary 

In retrospect, we can see several s ign i f i ­
cant facets of the MENS structure and the MENTAL 
system. First, the work has been developed with 
a unified viewpoint grounded in the theoretical 
basis represented by the six motivating factors 
discussed in section 2. Underlying these have 
been the desires to maintain complete generality 
and to keep the executive routines as simple and 
general as possible. Thus the number of ad hoc 
features have been kept to a minimum. The only 
departure from building just a structure and those 
routines necessary to manipulate the structure 
ignoring what information might be stored in the 
structure was the establishment of the system 
relations and item relations used to store deduc­
tion rules and the executive routines to interpret 
them. Once that was done, however, no further 
constraints were placed on the deduction rules 
so that generality was maintained to a large 
degree. 

Another significant facet of MENS is the 
two levels of relations — system relations and 
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item relations. System relations are the basic 
organizational mechanism of the structure, yet 
the user is allowed to define the ones he wants to 
use and thus may experiment with different 
semantic structures . Item relations are the con­
ceptual, meaningful relations that hold between 
other concepts, yet the fact that they are relations 
is preserved only by the way they are connected 
in the structure, which is determined and inter­
preted by the user. Item relations, as conceptual 
ent i t ies, may have stored information about them 
as wel l as information using them. 

A very important facets of MENS and MENTAL 
is the abi l i ty to enter, retrieve and manipulate 
deduction rules the same way specific facts are 
entered, retrieved and manipulated, yet deduction 
rules are used by the system to deduce information 
that was not previously expl ic i t ly stored in the 
structure. Thus one may explain to the system 
what a concept means by giving, in general terms, 
the implications of the concept, and one may 
give this explanation Just l ike he gives the system 
any other information. 

The system and structure as presented in 
this paper provide an environment in which im­
portant problems in question-answering and com­
puter understanding may productively be invest i ­
gated. Also MENS and MENTAL may be used as 
an experimental vehicle for further research in 
semantic structures. 
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