
512 Session No. 13 Computer Understanding II (Representatior

A NET STRUCTURE FOR SEMANTIC
INFORMATION STORAGE, DEDUCATION

AND RETRIEVAL*

by

Stuart C. Shapiro
Computer Sciences Department

University of Wisconsin
Madison, Wisconsin, U.S.A.

Abstract

This paper describes a data structure,
MENS (MEmory Net Structure), that is useful for
storing semantic information stemming from a
natural language, and a system, MENTAL (MEmory
Net That Answers and Learns) that interacts with
a user (human or program), stores information
into and retrieves information from MENS and
interprets some information in MENS as rules
tel l ing it how to deduce new information from
what is already stored. MENTAL can be used as
a guestion-answering system with formatted input
/output, as a vehicle for experimenting with
various theories of semantic structures or as the
memory management portion of a natural language
question-answering system.

1. Introduction

In order to develop machines capable of
"understanding" natural language, it is extremely
valuable, if not necessary, to design a method of
organizing a corpus of data to facil i tate the
storage and retrieval of information on many
subjects, some in depth, some in breadth; to
faci l i tate the storage, retrieval and use of the
many complex relationships among real-world
concepts; to faci l i tate the storage, retrieval and
use of information which tel ls how other informa­
tion in the corpus may be used to further explicate
implied relationships among concepts; and to
facil i tate the identif ication from the vast corpus
of data of those pieces of information most directly
relevant to any given topic.

This paper describes a data structure
(MENS) and procedures for manipulating it

The research reported herein was partially sup­
ported by a grant from the National Science
Foundation (GJ-583) and partially by USAF Proj.
RAND (project #1116). Use of the University of
Wisconsin Computing Center was made possible
through support, in part, from the National
Science Foundation and the Wisconsin Alumni
Research Foundation (WARF) through the
University of Wisconsin Research Committee.

(MENTAL) that have been designed to meet the
requirements outlines above. This system is
intended to be used as the memory of a natural
language question answering machine (see
[7;8;9;10]) and could also be used as the memory
of a general theorem prover or problem solver.
Since the system allows its user (either a human
or an outside program) to specify the relations
that w i l l be used for the basic structuring of
information, the system can be used for experi­
menting with data structures suitable for various
contents and purposes. The major features of the
data structure are;

It is a net whose nodes represent con­
ceptual entities and whose edges represent
relations that hold between the enti t ies.

A distinction is made between n-ary rela­
tions about which information and deduc­
tion rules are to be stored and str ict ly
binary relations that are used only to
structure information about other ent i t ies.
The former are represented by nodes in
the net, just like any conceptual enti ty.
The latter relations are the ones used as th
edges of the net.

Some nodes of the net are variables, and
are used in constructing general statement,
and deducation rules.

Each conceptual entity is represented by
exactly one node in the net from which a l l
information concerning that entity is re­
trievable.

Nodes can be identified and retrieved eithe
by name or by a sufficient (though not
necessarily complete) description of their *
connections with other nodes , l ikewise
identi f ied.

The system and data structure described
here follow along the general lines laid out by
such systems as Semantic Memory [11], TLC
[12], Protosynthex II and I I I [14,19,20] , GRAIS
[3] and SAMENLAQ [17,18], but differ mainly in
the clear separation of the two levels of relation,
and in the abi l i ty to store and use general deduc­
tion rules.

All the procedures for storing information
into the data structure, as wel l as a l l those for
expl ici t retrieval and some of those for implicit
retrieval have been programmed in PL/1 and are
running interactively on an IBM System/360. Al
the research reported herein has proceeded both
theoretically and by wr i t ing, checking out,
revising and improving programs in P L / l ,
SNOBOL3 and Burroughs Extended ALGOL.

Session No. 13 Computer Understanding II (Representation) 513

A more detailed discussion of MENS and
MENTAL which also shows their applicabil i ty as
an experimental vehicle is given in [16].

2. Basic Concepts of the Structure

To explain the MENS structure, it is f irst
necessary to explain what is meant by a concep­
tual enti ty. A conceptual entity is anything about
which information can be given. That i s , anything
about which one can know, think, or believe some­
thing; anything we can describe or discuss or ex­
perience. Individual objects, both concrete and
abstract, are conceptual enti t ies, as are classes
of objects, actions and classes of actions. Con­
ceptual entities are really relative to individual
intell igent beings. My concept of a given person,
named John 0. Smith, may be different from yours.
Therefore, "John 0. Smith" names a different
conceptual entity for me than it does for you.
Naturally, a word is not a conceptual ent i ty, but
may designate or refer to zero or more conceptual
entities for each intell igent hearer. MENS has
been designed to store information about con­
ceptual ent i t ies.

The information that is stored about a con­
ceptual entity is semantic information, in that
that meaning of a given conceptual entity for a
given being is whatever that being can say about
the conceptual ent i ty. This includes everything
that being can infer from any further piece of i n ­
formation about the conceptual ent i ty.

The basic goal underlying the design of
MENS has been generality. It was desired to be
able to store any conceptual ent i ty, regardless of
its field of knowledge, and any information about
the conceptual ent i ty. Of course, stored i n -
formayon is useless unless it can be retrieved,
so ease and efficiency of retrieval was a major
goal along with adequacy of representation.

Assuming the above discussion, the basic
motivating factors for the design of MENS were:

1. Unified representation: All conceptual
entities about which information might be given
and questions might be asked should be stored
and manipulated in the same way.

2. Single f i le : All the information about a
given conceptual entity should be reachable from
a common place.

3. Mult ientr ied, converging search: A
search of the fi le should start from as many places
as possible and proceed in paral lel, converging
on the desired information.

4. Storage of deduction rules: Rules
determining how deductions may be made val idly,
even when specific to certain areas or relations,
should be stored in the memory fi le just like other
information, and the system should be able to use
them in directing its deductive searches.

5. Direct representation of n-ary relations:
N-ary relations, for any n, should be as natural
for the system as binary relations.

6. Experimental vehicle: The fi le should be
designed without any commitment to a particular
semantic theory, i . e . the memory system should
be a research vehicle for experimentation on
various ways of structuring the information in i t .

In the rest of this section, we w i l l describe
how these motivating factors led to the particular
structure decided upon.

Unified representation requires that every
conceptual entity have a memory structure repre­
sentation which can be put into relationships with
representations of other conceptual ent i t ies. It
further requires that a l l conceptual entities be
represented in the same way regardless of their
exact relationships to other conceptual ent i t ies.
We w i l l refer to a conceptual entity or to the
logical representation of a conceptual entity as an
Item. When referring to the computer structure
used to implement the representation of a con­
ceptual enti ty, we w i l l use the term item block.
In i l lustrat ions, we w i l l picture an item block as
a rectangle within which we w i l l place an English
word to indicate what concept the item block
represents. If no such word exists some other
symbol may appear so that the item block may be
referred to . The ful l implication of unified
representation is that every word sense, every
fact and event, every relationship that is to be a
topic of discussion between the system and its
human discussant w i l l be represented by an i tem.
Therefore, the items must be tied together by
relationships that are not conceptual ent i t ies.
The reasoning for this is as fol lows. Statements
(e . g . , "Brutus ki l led Caesar.", "The sky is
green.") are conceptual entities since we may say
things about them such as someone believes them
or they are false. Therefore, they must be
represented by items, and such an item must bear
some relation to the items (Brutus, k i l l , green)
that make up the statement. If this latter relation
is a conceptual relat ion, the fact of this rela­
tionship's holding between two items may be d is ­
cussed and thus must be represented by an item
which then must have some relationship to that
relat ion, etc. Eventually there must be some
relation which is not conceptual, but merely

Session No. 13 Computer Understanding II (Representation) 514

structural, used by the system to tie a fact- l ike
item to the terms partaking in i t . We w i l l refer to
a conceptual relation as an item relation or simply
a relation and to a nonconceptual relation as a
system relation, l ink, or pointer. The MENS
structure i s , thus, a collection of items tied to­
gether by system relations into a directed graph
with labelled edges. The nodes of the graph are
the items and the edges are system relations.
The edges are directed to indicate the order of
the arguments of the system relat ion. The edges
are labelled to allow for several different system
relations. The distinction between item relations
and system relations is very important and must
be kept in mind.

Single f i le means that there w i l l be exactly
one item for each conceptual ent i ty. Therefore,
a l l the information about the conceptual entity
w i l l involve its item and be retrievable from its
item block. Since the system relations are the
links that tie items together and thus provide the
information, this means that whenever a l ink
goes from one item to another, there is an associ­
ated link in the reverse direction. Looking at the
fact and event items as records in a record
oriented f i le and at the links going from part ic i ­
pating items to fact and event items, MENS is an
inverted fi le and may be searched as one. How­
ever, it is more than an inverted f i le , since links
go the other way also. In i l lustrat ions, a link
pair is represented by a line connecting two item
blocks. The name of the system relation appears
in the item block where the line emanates, from
i t . Tor example in Figure 2 the system relation
AGENT goes from item 241/00010+023 to the item
representing JOHN.

Mult ientr ied, converging search implies that
items equally identifiable by the human conversant
should be equally identifiable by the system. By
this is meant that any item named by an English
word can be located as quickly (by the same
lookup procedure) as any other item so named,
rather than some being locatable by lookup while
others require an extensive search. Items that do
not have English names, but must be identified by
description w i l l be located via searches that are
quick or involved depending on the complexity of
the description. The lookup is done through a
dictionary which gives the internal names for the
items which represent each of the senses of each
natural language word used in the conversations.
The internal name of an item is its address in
secondary storage, so once looked up the item
block is easily found. Items are connected to
facts (which do not have English names) as
mentioned above and when two items are

connected in the memory structure, each is
reachable from the other since every l ink between
two item blocks is stored in both directions.
Another implication of multientrled, converging
search is that searching the fi le is done by start­
ing at an arbitrary number of item blocks (all those
that can be looked up directly) and converging to
the desired information structures. This involves
repeated intersections of sets of items as w i l l be
explained in section 3. Special care has been
taken to make this search process as efficient
as possible and special constructs have been
developed for this purpose.

Storage of deduction rules implies that de­
duction rules* should be capable of being stored
in and retrieved from the memory structure in the
same way that specific information is stored and
retrieved. This implies that the structures used
to store deduction rules must be basically the
same as those used to store specific information.
It further implies that the executive routines must
include a very general deduction rule interpreter
that is capable of init iat ing searches of the
memory and generating appropriate consequences
based on any stored deduction rule.

Direct representation of n-ary relations
implies that an item representing a relational
statement based on an n-ary relation should have
links to each of its n arguments direct ly, re­
gardless of the value of n. This means that any
item must be capable of having an arbitrary
number of pointers emanating from i t . This number
may even change throughout the l i fe of an item as
the types of system relationships it has with
other items change.

There are several reasons for representing
n-ary relations directly. It makes searching more
efficient than if n-ary relations were stored as
nested binary relat ion. If nested binary relations
were used, item blocks would be introduced that
were not true conceptual ent i t ies. Also Fillmore's
case grammar theory [4,5] in which the deep
structure of a sentence contains a predicate of a

By "deduction rule" is meant any statement
which, properly interpreted, provides informa­
tion as to what statement(s) may be concluded
from what other statement(s). Deduction rules
include (among others) rules of inference of
symbolic logic, general statements and disjunc­
tive statements (any clause may be the conclu­
sion if the negation of a l l the others holds).

Session No. 13 Computer Understanding II (Representation)

verb and n cases is a satisfying theory for a
semantic deep structure and representing n-ary
relations directly in MENS allows for a direct
representation of Fillmore's deep structures.

Experimental vehicle implies that the user
must be given the capability of declaring what and
how many system relations he wi l l use rather than
having a maximum number imposed on him. He
must be able lo decide what w i l l be his conceptual
entities rather than be provided with a closed set
of them. He must be able to decide how items
and pointers w i l l be combined into structures to
represent the information he wishes to work w i th .
He must, f inal ly, not be restricted as to what
deduction rules the system may store and use.

3. Explicit Storage and Retrieval

Both storage into and retrieval from MENS
are accomplished by describing how an item is
(or is to be) connected to other items in the net.
The storage instruction in effect says, "Create
an item and connect it into the net in this way. "
The retrieval instruction in effect says, "Tell
me al l items that are connected in the net in this
way. " Both instructions are expressed in a state­
ment, called a spec , which describes the
item by describing the paths in the net that lead
away from the item. These paths may be quite
complicated, but the edges along the paths must
be expl ic i t ly named system relations.

A subset of the input language sufficient for
discussing the main points of MENS and MENTAL
is defined in f i g . 1 in modified BNF notation.
Underlined words in lower case letters are non­
terminal characters. Strings enclosed in square
brackets are optional. Strings arranged vertically
and surrounded by braces are alternatives—one
must be chosen. Strings followed by an asterisk
may appear one or more times. Strings surrounded
by broken brackets are informal English descrip­
tions of object language strings. represents a
required blank; additional blanks may be i n ­
serted anywhere. The following characters are
delimiters in the language: , 1) (? . : ' = %.
A "character" is any legal character except a
delimiter.

A relspec is used to declare a system rela­
t ion. For example the relspec

$AGENT S *AGENT M

declares a system relation whose forward pointer
is named AGENT and whose reverse pointer is
named *AGENT. It further declares that an item
may point to at most one other via the AGENT

515

pointer, but to an arbitrary number of other items
via the *AGENT pointer. AGENT is therefore said
to be a singular pointer and *AGENT, a multiple
pointer.

After several such relspecs, a user might
input the following buildspecs:

(.AGENT:J0HN,VERB:LøVES,0BJ:JANE)
(.AGENT:JANE,VERB:LǾVES,ǾBJ:JǾHN)
(.AGENT:SUE,VERB:LǾVES,ǾBJ:J0HI\J)

This would cause the structure shown in figure 2
to be bui l t . Symbolic names are shown on those
item blocks that have them. Three item blocks
were built to represent the three facts. These
are shown with their internal names. The s ig­
nificance of the internal name 241/00010+ 023 is
that the block is stored on disk track 10 at an
offset of 23 within the track and that the calcu­
lated specificity measure is 241. The specific] tv
measure is used in deductive processing and wi l l
be discussed later.

Item blocks are stored on disk tracks as
consecutive blocks of records . Each record con­
tains the coded name of a pointer name and, if
the pointer is singular, the internal name of the
item block pointed to. If the pointer is multiple,
the other field of the record is a link to a multiple
pointer l is t which contains the internal names of
a l l the item blocks being pointed to. Each
multiple pointer l ist is ordered on the internal
names it contains (largest first) and is kept on the
same disk tracks as the item block it is for.

Returning to the discussion of explicit
storage and retr ieval, items may be described as
well as named in specs. Tor example the
buildspec

(.A:HENRY,V:SAW,Ǿ:(.A:J0HN,V:HIT,0:JIM))

(assumming the proper relspecs had been given)
would result in the building of the structure of
figure 3. In this case, both the blocks shown
unlabelled in the figure would have been created
in response to the buildspec as well as a l l the
pointers. If we had already input the information
that John hit Jim and wanted to say that Henry
saw that act, we would use the following
buildspec:

(.A:HENRY,V:SAW,0:(?1,1,A:J0HN,V:HIT,0:JIM))

which uses an imbedded findspec.

The findspec causes a l ist of items to be
found that satisfy the given description. In this
case the *A multiple pointer l ist from the block
named J0HN, the *V l ist from HIT and the *0 l is t

516 Understanding

from JIM would be intersected to find the names
of a l l item blocks f i t t ing the description. The
findprefix, " ? 1 , 1 , ", specifies that there should
be at least 1 and at most 1 items found. That i s ,
this findprefix declares the findspec to be a
definite description. To retrieve a l l instances of
Henry's seeing John's hitt ing of Jim, the findspec

(?0 ,#,A:HENRY,V:SAW,0:(?O ,#,A:JǾHN,
V:HIT,Ǿ:JIM))

could be used. The imbedded findspec could here
return a l ist of zero or more items. The union of
the *Ǿ l ists from these items would be intersected
with the *A l is t from HENRY and the *V l is t from
SAW to satisfy the ful l request. Thus, the
unioning and intersecting of ordered l ists is the
basic mechanism for expl ici t retrieval from MENS.

It was thus necessary to develop efficient methods
for taking unions and intersections. These
methods are described in [15],

A more complicated retrieval mechanism is
needed for structures in which there are two or
more separate paths to one unknown item. For
example the structure in figure 4 represents the
information that Narcissus loves himself. To
find a l l items such as the top one, i . e . a l l items
representing the fact that someone loves himself,
the findspec

(?0 ,#,A: %N,V:LǾVES,Ǿ:,N)

could be used. Here N is a variable of the
users language. The items on the *V l is t from
LǾVES w i l l be retrieved and from each one the item

Session No. 13 Computer Understanding II (Representation) 517

pointed to via A w i l l be checked for equality
with the item pointed to via 0. The l is t formed
as a result of the findspec w i l l contain only those
items for which the check succeeded and for each
one, it w i l l be recorded which item was found to
substitute for N. This is done so that in case

the findspec is embedded in another that also
contains N as a variable, checks w i l l continue
to be made to insure that for each structure
retrieved, N represents exactly one item. A
complete analysis of how these checks should be
made and how the union and intersection operations
can be modified to handle them is given in [16].

518

FIGURE 4: A STRUCTURE WITH TWO ITEMS
CONNECTED BY TWO DISTINCT PATHS.

4. Representation of Deduction Rules

In section 3 it was shown how the MENS
structure is used for explicit storage and retr ieval.
In this section we w i l l explain how it can be used
for deduction. Since storage of deduction rules is
a motivating factor of this project, the deduction
method w i l l involve the storing of general deduc­
tion rules and the use of fairly simple theorem
proving techniques. The reason for this is that
we want the system to be as qeneral as possible
and we want to concentrate on the data structure
rather than the executive routines. It would be
possible to build a complex and sophisticated
theorem prover which uses MENS for its data
storage, but this is not our current interest.

In order to allow for complete generality in
what deduction rules could be stored, including
arbitrary orderings of arbitrarily many quantif iers,
it was decided to represent quantifiers and var i ­
ables directly in the structure, and build executive
routines to interpret the deduction rules. These
routines would operate, upon being given a deduc­
tion rule, by carrying out searches required by the
rule and building consequences just i f ied by the
rule. Representing quantifiers and variables
directly seems to be a compromise of the motivating
factor of unified representation since they w i l l
require special routines to deal with them and their
status as conceptual entities is questionable.
However, dealing with the order of quantification
implied by some English sentences is enough of
a problem that at least one l inguist believes that
quantifiers and variables might profitably be com­
prehended by the base rules of English grammar
[] , p. 112]. Besides, including this capabil i ty

Session No. 13 Computer Understanding II (Representation)

extends the use of the system as an experimental
vehicle, another motivating factor.

The decision to allow direct representation of
variables leads to the questions of how to repre­
sent them and what w i l l be allowed to substitute
for them. Considering the second question, the
conclusion is that a variable should be able to
stand for any item but not for any system relat ion.
This is supported by the discussion in section 2
that anything about which information could be
given should be represented by an item, that a l l
items should be equally able to have information
stored about them, and that system relations could
not have information given about them since they are
not conceptual entities . As Quinesays, "The ontol­
ogy to which one's use of language commits him com­
prises simply the objects that he treats as fall ing . . .
within the range of values of his var iables."
[13, p. 118 quoted in 2, p. 2]4] . Since the
ontology of the data structure comprises the set
of items (by definit ion of item), the values of the
variables must be allowed to range over al l the
items, and since the system relations are to be
excluded from the ontology, not allowing them to
substitute for a variable reinforces their exclusion.
Allowing the variables to range over al l the items,
however, brings up the possibil i ty of storing the
paradoxes that were eliminated from formal
languages only with the introduction of types of
variables or restrictions on assertions of existence
(of sets). This possibil i ty w i l l be accepted. We
make no type distinctions among the items and
impose no restraints on item existence, leaving
the avoidance of paradoxes the responsibil ity of
the human informant. We w i l l do the same with
the variables. However, we do use restricted
quantif ication. What is meant by this is that
with each quantifier in a deduction rule w i l l be
included, not only the variable it binds, but also
an indication of the set of items over which the
variable ranges. Woods [2 l] uses restricted
quantification to reduce the time needed to handle
a request by including in the restriction a class
name and a predicate. The class name must be of
a class for which there exists a generator that
enumerates a l l the members of the class one at a
t ime. Each member is tested with respect to the
predicate. Those for which the predicate is true
are acted on by the main body of the request. Our
restrictions may be more general. We w i l l allow
any statement, however complex, about the
variable. This statement w i l l be used as a search
specification to find a l l items in the structure for
which the statement is true. The set of such items
w i l l comprise the range of the variable. Thus,
even omega ordered type theory may be represented
in the structure by entering a statement about
every item giving its type and including type

Session No. 13 Computer Understanding II (Representation) 519

We now return to the question of how
variables should be represented. Each variable
w i l l be represented by its own item block. All
occurrences of the same variable within a given
deduction rule w i l l be represented by the same
item and no such item w i l l be used in more than
one deduction rule. The same item is used for a l l
occurrences of a variable in a deduction rule so
that a substitution made for the variable in one
occurrence w i l l at the same time be made in the
others and so that a l l the information about what
items can substitute for the variable w i l l be
reachable from one place. Different items are
used in different deduction rules to eliminate
the possibil i ty of information about a variable in
one deduction rule becoming associated with a
variable in another. The specification measure
field of the internal name of an item is used to
distinguish variable items from constant items so
that an item can be recognized as a variable
when it is pointed to from another item.

A connective clause is the head of a construction
formed of several clauses joined by one of the
connectives mentioned above. It has an OP
system relation to the connective and one of the
following sets of argument relations:

(i) ARG to the argument if the connective is
unary (NOT)

(ii) ARG1 to the first argument and ARG2 to the
second argument if the connective is
binary (IMPLIES ,IFF)

(i i i) MARG to a l l the arguments if the connective
is associative, commutative and idempotent
(AND,OR,MUTIMP)

The clauses forming the arguments of a connective
clause and those forming the restriction and scope
of a quantifier clause may be any net sub-structure
with the requirement that a clause may contain a
free variable only if a path of converse argument
pointers, converse restriction pointers and con­
verse scope pointers leads to a quantifier clause
in which that variable is bound.

Besides quantifiers and variables, the
connectives NOT, AND, OR, IMPLIES, IFF and
MUTIMP* are also represented as item relations
in the structure and the executive routines that
interpret the deduction rules are designed to
handle them.

Deduction rules are stored using two types
of items that w i l l be recognized by the executive
routines. We w i l l cal l them quantifier clauses
and connective clauses. A quantifier clause is
the head of a quantified general statement and
has four special system relations emanating from
i t . They are:

(0 Q points to the quantifier
(ii) VB points to the variable being bound
(ii i) R points to the restriction on the

variable
(iv) S points to the scope of the quantifier

MUTIMP stands for mutual implication. It is a
predicate with an arbitrary number of arguments
and says that its arguments mutually imply each
other by pairs (are pairwise equivalent). Looked
on as a binary connective, MUTIMP, like AND and
OR and unlike IMPLIES and IFF is idempotent as
well as associative and commutative. A possible
definition of MUTIMP is :

Examples of deduction rules are given below.
Each deduction rule is given first as an English
language statement and then as a buildspec.
names such as 'X represent variable items .

1 . Every man is human.
(.Q:ALL,VB:,X,R:(.AGENT:,X,VERB:MEMBER,
OBJ:MAN),S:(.AGENT:'X,VERB:MEMBER,
OBJ:HUMAN))

2. Every car has-as-part an engine.
(.Q:ALL,VB:,X,R:(.AGENT:,X,VERB:MEMBER,
OBJ:CAR),S:(. Q:EXISTS, VB:'Y,R:(. AGENT:
,Y/VERB:MEMBER/OBJ:ENGINE), S:(.AGENT:
•X,VERB:HAS_AS_PART,OBJ:'Y)))

3. If a male is the child of someone, he is the
son of that person.
(.Q:ALL^rXRrt.AGENTr^VERBrMEMBER,
OBJ:MALE),S:(.Q:ALL,VB:'Y,R:(.ACENT:'X,
VERB:CHILD_OF,OBJ:,Y)S:(.AGENT:,X,VERB:
SON_pF,OBJ:'Y)))

4. John is at home, at SRI or at the airport.*
(.OP:OR,MARG:(.AGENT:JOHN,VERB:AT,

OBJ:JOHNS_HOME),
MARG:(.AGENT:JOHN, VERB:AT,OBJ:

SRI),
MARG:(.AGENT:JOHN, VERB:AT ,OBJ:

AIRPORT_4))

The structure for rule 1 is shown in figure 5.

5. Use of Deduction Rules

There are six operations that can be per­
formed with respect to a deduction rule in MENS.
They are:

* This sentence taken from Green and Raphael [6]

520 Session No. 13 Computer Understanding II (Representation)

HUMAN

(i) It may be used for generating con­
sequences .

(ii) It may be confirmed by exhaustive
induction, i . e . proved F-true in the
universe of the data structure at any
given time.

(i i i) It may be deduced from other deduction
rules.

(iv) It may be refuted by finding a counter-
instance in the data structure.

(v) Its negation may be deduced.
(vi) It may be treated as a specific state­

ment, which includes its use as an
assumption in the deduction or nega­
tion of other rules as in (i i i) or (v).

We w i l l be mainly interested in using a de­
duction rule for generating consequences. In this
process, there are two ways of using a restr ict ion.
They are:

(1) A possible substitution for the variable
may be checked to see if it fu l f i l ls
the restr ict ion,

(ii) The data structure may be searched to
find al l items that fu l f i l l the restr ic­
t ion.

The amount of information that may be de­
duced with any deduction rule depends on more

than the quantifiers and the number of items found
thatare able to fu l f i l l the restrictions. I ta lso de­
pends on the structure of the logica 1 connectives in
the deduction rule . Tor example , a deduction rule
might have a consequent that was the conjunction
of several substructures. Thus, several inde­
pendent substructures might be deduced from each
choice of items to substitute for the variables.
There are, therefore, several different ways we
may use a deduction rule for generating con­
sequences. We may instantiate over a l l items
that satisfy the restrictions or just over those we
are interested i n . Similarly, we may generate a l l
the consequences Justified by the deduction rule
or just those needed to answer a particular ques­
t ion.

In the following sections, we w i l l f irst d is ­
cuss how a deduction rule useful for answering a
particular question is found, and then discuss how
the executive routines interpret the deduction rules
and generate consequences.

6. Finding Deduction Rules

A deduction rule is needed when the number
of items found to satisfy a flndspec (see section 3)
is less then the minimum number required. The
problem then, is to find a deduction rule capable

Session No. 13 Computer Understanding II (Representation) 521

of generating an item that satisfies the findspec.
Say the findspec is

(i) (?0,#,L1 :(I IIm) L : (In 1 Inm))
1 n

where L1. , . .. , L are system relations and
i n

I.11. , . .. ,1nm are specific items (we w i l l assume
n

at first that a substructure only one level deep is
required and consider the case of several level
structures later). In order for a deduction rule to
generate the desired item, it must be headed by a
quantification clause that is connected through a
path of scope and argument pointers to an item
which contains the labels L1 , . .. ,L one or

1 n
more of which point to variable items and the rest
of which point to some item in the appropriate l ist
in (i). We can, therefore, locate the deduction
rule by searching for any item that satisfies the
findspec:
(ii) (?(),#,L.:((I11 Ib)UV) L :

I lm. n

((In1 , I nm) U V)) n l nm n
where V is a l ist of a l l variable items in the data
structure. For the sake of eff iciency, we maintain
an item which we shall cal l VBL. No other item
in the structure contains a pointer to VBL, but
whenever a variable item contains a pointer L to
an item I, VBL also contains a pointer L to the
item I. Thus, the findspec (ii) is equivalent to:

Oil) (?0,#,L. :(VBL,I , , I.) L :

(VBL,In1 Inm)). nl nm n

head of a deduction rule. This w i l l be a deduction
rule capable of generating the consequence we are
interested i n . While following this path a trace
l is t is created. This is a l ist (S , . .. ,S,) where

S, is I, S is pointed to by a scope or argument

pointer from D, and S , 2 < i < k, is pointed to

by a scope or argument pointer from Si-1 . The

trace l is t w i l l be used to l imit the consequences
generated to the ones desired.

In the case of fai l ing to find items matching
a findspec involving several levels, the same
process is carried out, but we must be sure to
allow for al l possibil i t ies of variables replacing
constants. That i s , each level is handled as
above for progressively higher levels, and the
reverse scope and argument pointers are not
followed unti l the highest level has been done.

7. Generate

The routine to generate consequences from a
deduction rule is a recursive procedure that is
in i t ia l ly given the internal name of an item that
heads a substructure with no free variables. It
returns a l is t of items (internal names) that head
substructures representing the consequences that
have been generated. These substructures might
then either be left in the data structure or be
erased. The Generate routine is written to gen­
erate consequences according to the author's
understanding of the meanings of the quantifiers
and logical connectives. It is not designed to
prove theorems, but to use deduction rules and
other data that have been stored and are assumed
to be valid by generating consequences of them.

Note that any item that satisfies (1) must be
an instantiation of any item that satisfies (i i i)
and, further, it is possible to deduce an item that
satisfies (i) only if an item satisfying (i i i) exists
in the data structure.

For each item, I, found satisfying (i i i) we
may record what substitutions we are interested
in for the variables pointed to from I. If I has
a pointer Li to a variable item X1 , we record

that the only items we are interested in sub-
by putting them mitting for X. are I i 1 . . , . I i m

i
in a "possible substitution" l is t for X . They w i l l

later be checked against the restriction on X .

For each item I satisfying (i i i) , we then
follow the paths of reverse scope and argument
pointers unti l coming to an item D that is the

For example, when generating a consequence
headed by a universal quantifier, the restriction
is used to direct a search of the data base which
results in a l ist of items that can substitute for
the bound variable and then the scope is generated
When generating a consequence headed by a
connective clause, the action taken depends on
the connective. For example with a disjunction,
if a l l but one of the disjuncts can be refuted, the
remaining one is generated.

8. Confirm and Refute

The Confirm and Refute routines are used by
the Generate routine to determine if a fact repre­
sented by a structure is true or false in the data
base. It i s , of course, possible for an expression
to be neither confirmed nor refuted. Tor example,
the statement "All men have two arms" would be
neither confirmable nor refutable if we knew of

522

exactly 100 men, of whom 99 had two arms, but
we had no information about the hundredth.

The Confirm and Refute routines also use
the author's knowledge of the quantifiers and
connectives. Tor example a disjunction is con­
firmed if and only if any argument is confirmed
and is refuted if and only if a l l the arguments are
refuted.

9. Substructure Directed Searching

Using a restriction to find a l l the items that
satisfy it and finding an instantiation of a sub­
structure containing free variables in order to con­
firm or refute it require a process similar to the
one used to find an item described by some f ind-
spec. Such general substructures may contain
some items which are connected to the head item
by several different paths. If these items are
constant items, any instantiation of the general
substructure w i l l contain them at the end of
similar paths from the head item. I f , however,
they are variable items or items heading sub­
structures containing variable items, the instan­
tiation substructures w i l l have different items in
their place and we must be sure that no item in
the general substructure is substituted for by
more than one item in any instantiation sub­
structure. This is done in the say way as eval­
uating a findspec which contains vnames which
originally appeared preceded by "%" or in the
find pre f ix .

10. Summary

In retrospect, we can see several s ign i f i ­
cant facets of the MENS structure and the MENTAL
system. First, the work has been developed with
a unified viewpoint grounded in the theoretical
basis represented by the six motivating factors
discussed in section 2. Underlying these have
been the desires to maintain complete generality
and to keep the executive routines as simple and
general as possible. Thus the number of ad hoc
features have been kept to a minimum. The only
departure from building just a structure and those
routines necessary to manipulate the structure
ignoring what information might be stored in the
structure was the establishment of the system
relations and item relations used to store deduc­
tion rules and the executive routines to interpret
them. Once that was done, however, no further
constraints were placed on the deduction rules
so that generality was maintained to a large
degree.

Another significant facet of MENS is the
two levels of relations — system relations and

Session No. 13 Computer Understanding II (Representation)

item relations. System relations are the basic
organizational mechanism of the structure, yet
the user is allowed to define the ones he wants to
use and thus may experiment with different
semantic structures . Item relations are the con­
ceptual, meaningful relations that hold between
other concepts, yet the fact that they are relations
is preserved only by the way they are connected
in the structure, which is determined and inter­
preted by the user. Item relations, as conceptual
ent i t ies, may have stored information about them
as wel l as information using them.

A very important facets of MENS and MENTAL
is the abi l i ty to enter, retrieve and manipulate
deduction rules the same way specific facts are
entered, retrieved and manipulated, yet deduction
rules are used by the system to deduce information
that was not previously expl ic i t ly stored in the
structure. Thus one may explain to the system
what a concept means by giving, in general terms,
the implications of the concept, and one may
give this explanation Just l ike he gives the system
any other information.

The system and structure as presented in
this paper provide an environment in which im­
portant problems in question-answering and com­
puter understanding may productively be invest i ­
gated. Also MENS and MENTAL may be used as
an experimental vehicle for further research in
semantic structures.

References

(I) Bach, E. Nouns and noun phrases .
Universals in Linguistic Theory, Bach, E.
and Harms, R. T. (Eds.), Holt , Rinehart
and Winston, New York, 1968, 90-122.

(2) Carnap, R. Empiricism, semantics, and
ontology. i n [l 0] , 205-221. Originally in
Revue Intern, de Phi l . 4 (1950) 20-40.

(3) El l iott , R. W. A model for a fact retrieval
system, unpublished Ph. D. dissertation,
University of Texas, Austin, Texas, 1965.

(4) Fillmore, C. J. The case for case.
Universals in Linguistic Theory, Bach, E.
and Harms, R. T. (Eds.), Holt, Rinehart
and Winston, New York, New York, 1968,
1-88.

(5) Lexical entries for verbs.
Foundations of Language, 4, 4(Nov. 1968),
373-393.

Session No. 13 Computer Understanding II (Representation)

(6) Green, C. C, Raphael, B. Research on
intelligent question-answering systems .
AFCRL-67-0370, Stanford Research Inst i tute,
Menlo Park, Ca l i f . , May, 1967.

(7) Kaplan, R. M. The MIND system: a
grammar-rule language. RM-6265/1-PR, The
RAND Corporation, Santa Monica, Ca l i f . ,
Apri l , 1970.

(8) Kay, M. The MIND system: a powerful
parser, (forthcoming).

(9) , Martins, G. R. The MIND
system: the morphological-analysis program.
RM-6265/2-PR, The RAND Corp., Santa
Monica, Ca l i f . , Apri l , 1970.

(10) , Su, S. Y. W. The MIND
system: the structure of the semantic f i l e .
RM-6265/3-PR, The RAND Corp. , Santa
Monica, Ca l i f . , June, 1970.

(11) Qui l l ian, M. R. Semantic memory. Semantic
Information Processing, Minsky, M. (Ed.),
MIT Press, Cambridge, Mass . , 1968,
227-270.

(12) The teachable language
comprehender: a simulation program and
theory of language. Comm. ACM 12, 8
(Aug. , 1969), 459-476.

(13) Quine, W. V. O. Notes on existence and
necessity. J. Phil. 40 (1943) 113-127.

(14) Schwarcz, R. M , Burger, J. F. , Simmons,
R. F. A deductive question-answerer for
natural language inference. Comm. ACM
13, 3 (March, 1970), 167-183.

(15) Shapiro, S. C. The l ist set generator: a
construct for evaluating set expressions.
Comm. ACM 13, 12 (Dec. , 1970), 741-744.

(16) A data structure for semantic
information, processing. Unpublished
Ph.D. dissertation, University of Wisconsin,
Madison, Wisconsin, 1971.

(17) and Woodmansee, G. H.
A net structure based relational question
answerer: description and examples.
Proc. In t . Tt. Conf. Art. I n t e l . , Walker,
D. E. and Norton, L. M. (Eds.),
Washington, D. C, 1969, 325-345.

523

(18) Shapiro, S. C, Woodmansee, G. H . ,
Krueger, M. W. A semantic associational
memory net that learns and answers ques­
tions (SAMENLAQ). Technical Report #8,
Computer Sciences Department, University
of Wisconsin, Madison, Wisconsin, Jan.,
1968.

(19) Simmons, R. F., Burger, J. F. A semantic
analyzer for English sentences. SP-2 987,
System Development Corporation, Santa
Monica, Ca l i f . , Jan., 1968.

(20) , , Schwarcz,
R. M. A computational model of verbal
understanding. SP-3132, System Develop­
ment Corporation, Santa Monica, Ca l i f . ,
Apr i l , 1968.

(21) Woods, W. A. Semantics for a question-
answering system. Mathematical Linguistics
and Automatic Translation Report No.
NSF-19 to the National Science Foundation,
The Aiken Computation Laboratory, Harvard
University, Cambridge, Mass . , September,
1967.

