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Abstract

The operation of a deletion-directed search
strategy for resolution-based proof procedures is
discussed. The strategy attempts to determine the
satisfiability of a set of input clauses while at
the same time minimizing the cardinality of the
set of retained clauses. E-representation, a new
clause deletion rule which is fundamental to the
operation of the search strategy, is also described.

Descriptive terms

Formal logic, automatic theorem proving,

resolution, heuristic search, clause deletion,
E-representation, deletion-directed search, mate
tables.

1. Introduction

This report describes some new techniques which
can be used by resolution-based proof procedures.
Since all subsequent references will be to resolution-
based procedures, the adjective will be understood.

In addition, familiarity with the terminology and
results of J. A. Robinson’ is assumed.

In order to provide a framework for discussion,
both a structural and an operational description of
a proof procedure will be considered. From a
structural viewpoint, & proof procedure can be
denoted by a triple <T,A,z) where T is a finite,
non-empty set of clause generation rules, A is a
finite (possibly empty) set of clause deletion rules,
and Z is a search strategy i.e. a procedure for
applying the rules in TUfi. A clause generation rule,
e.g. clash resolution?, specifies the conditions
constraining the clauses of an admissible resolution.
A clause deletion rule, e.g. subsumption deletion,
specifies the conditions under which a clause may
be eliminated without affecting the unsatisflability
of a set of clauses. A search strategy, e.g.
diagonal search®, sequences the generation and
deletion of clauses as a proof procedure attempts to
determine the satisfiability of an input clause set.
Within a search strategy, clause generation is
controlled by a generation strategy and clause
elimination by a deletion strategy.

Turning to an operational viewpoint, a proof
precedure can be characterized as a mapping which
associates a finite set of clauses (i.e. the input set)
with a non-empty sequence of clauses and pointers,
called a trace. A trace begins with some ordered
occurrence of the input set. This is followed by an
ordered set of generated clauses and pointers to
deleted clauses. All of the parents of a generated
clause must precede it in the trace and all deleted
clauses must precede their respective pointers.
Associated with each non-input trace element is a set
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of retained clauses which is composed of all of the
clauses in the corresponding partial trace which have
not been deleted i.e. which do not have corresponding
pointers in the partial trace. A trace records the
operation of a proof procedure and in particular its
search strategy on a specific problem.

The search space associated with a set of input
clauses and a proof procedure <T,A,I> can be
represented by a labelled tree in which the input set
labels the root, retained sets label the other nodes
and elements of TUA label the edges. A trace
represents the particular path selected by £ in the
search tree. Note that the elements of TUA are not
well-defined as operators on clause sets but can be
viewed as operator schemata.

Most of the work dealing with resolution has
concentrated on the problem of demonstrating the
unsatisflability of an unsatisfiable set of input
clauses. The problem of demonstrating the
satisfiability of a satisfiable input set has been
largely ignored. This is probably due, in part, to
the fact that no procedure can identify all
satisfiable sets. However, many solvable cases of
the decision problem have been identified® and the
relationship between these cases and resolution-
based proof procedures has not been explored. When
considering applications utilizing resolution-based
proof procedures, such as question-answering systems
or robot planning systemss, situations involving the
absence of sufficient information make the recognition
of satisfiable sets an area of interest.
Satisfiability is indicated by the generation of the
empty set of clauses and its demonstration results
from the utilization of clause deletion rules. A
proof procedure must utilize such rules in order to
maximize the domain of formulas that it can classify.
While deletion rules are theoretically unnecessary
in the domain of unsatisfiable formulas, in actual
practice their use can help to increase the
effectiveness of a proof search. Such rules can be
used to reduce the number of candidate resolutions
while at the same time preserving completeness.
Careful consideration is necessary, however, since
their indiscriminate use may not be cost-effective
and can result in a loss of completeness

In the next section, a new clause deletion rule
is introduced and an example in section 3 shows that
this rule allows a demonstration of satisfiability
not previously possible. The main topic of section 3
is the operation of a deletion-directed search strategy
which is built around the new deletion rule and
attempts to minimize the cardinality of retained sets.

2. E-representation

In order to motivate the formal presentation
below, consider the unsatisfiable set
S - {AB, AB, AC, BC, C}. Notice that each binary
resolution which involves the literal occurrence A
in AB produces a clause which is already in S. This
observation, viewed as a generalization of the notion



of & pure lieersil, suggests that AB can be deleted
from 5 without sffecting unsatisfilability, 4 new
deletion rule, called E-representation, validates
this conjecture and the definitions which follow
formalize the observation which produced it.

Assoclated with every ordered pair {C,D) of
clauses is a finite ser (possibvly empty) of ordered
triples {L,M,N) where L, M, and N are all non-empty
finite sets of literals. These ordered triples are
called key triples of {C,D} and their component
seta satisfy the following properties: (1) L < C
() MCcD (3) B = LEMHn is unifiable with wost
general unifier oy whers Lo and Mp are the
x~standardization and y-standarization of C and D
respectively. A rasolvent of € and P is any ¢lause
of the form: (C-L}Epoyl(D-MInpoy where {L,M,N}
is a_key triple of {C,0}. As en example, let
C = PaPxOxgx and D = PaPfx be two parent clauses.
Their resolvents are QagaPfyy, leQxlglefyl, and
Pagfylgfylpa with_corresponding key triples
{{Pa,Px}, {Pa}, {Pa_,_le}} {{Pe}, {Pa}, {Pa}}and
({Px}s {Pfx}, {Px]_’Pfyl}

The notion of a represented key triple generalizes
the relationship between a key triple and ics
assorciated resclvent to Include any clause which
subsumes that resolvent. Let € and D be two clauses
such that T = {I,M,N) 1s a key triple of {C,D) and
R = {C=L)E gNU(D-H)T]Dc iz the resolvent of C and D
correspund ng to T. If R 15 subsumed by a clause in
a set § of clauses, then T of (¢,D) is represented
in 5.

An occurrence of a liceral 1s termed exhausted
when a particular set of triples is represented. Let
S be a set of clauses. Let E be & literal in a glause
C. Lat P be the set of all key triples T of {C,D},
where D is any clause in 3-{C}, which satisfy the
following conditions: (1) T has the form{{E},M,N)
and (2} the most genersl unifier oy assoclated with
T s such that Inpoy 1s not a tesutology., If all key
triples of P associated with non-tautologous resolvents
are represented in S-{C}, then the occurrence of E in
¢ 18 exhausted in 5. Informally, the idea behind
exhsustion 1is that all of the necessary resolvents
corresponding to a particular literal occurrence
already appear in the current set of clauses i.e. are

represented. A clause € 1s E-represented in a set §
of clauses 1ff some literal in C is exhausted in S.

In other words, 1f (almest) all of the non-tautolopous
resolvents that can be generated from C by only
cancelling instances of E are subsumed in S-{C},

then £ is exhausted and C is E-represented. The
‘almnat' results from the fact that a non—tautologous
tesolvent of C and D which involves a teutologous
unification inscance of D need not be considered.

To clarify the above definitlons, consider the
set § = {PxQyRxy. RxaSx, FxSx, PxSx}. The key triple

* {{Rxyl, {Rxa}, {Rx 1%, BY 81) of {PxQyRxy, RxaSx)
is tepresented in § because %Ex subgumes the
corresponding resolvent Tquanl. Rxy is exhausted
in § because tha only corresponding non-tgutologous
tesolvent Px,QaSxy, is represented in S-{FxGQyRxy}.
Aralogously, is exhausted in 5. Ty is exhausted
in 5 becauas all of its corresponding non-tautologous
resolvents, i.e. none (it is pure}, are represented
in §. Both literals in PxSx are exhaustsd in 5 since
neither has a cerresponding non-tautologous resolvent.
The ¢lausas PxQyRxy, ExaSx and Fx8x are each
E-represented in S because each containg at least one
of the above mentioned exhaustad literals. PxSx is not
E-represented in S.
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The concept of an E-represented clause is
utilized in the E-representation TheoremB which states:
If S is a set of clauses and C is a clause which is
E-represented in S, then S is satisfiable iff S-{C}
is satisfiable. This theorem implies that if any
literal in a clause is exhausted, then the whole
clause may be deleted without affecting
unsatieflability.

In the next section, a search strategy is
described which is built around the notion of
exhaustion. The strategy operates by performing those
resolutions which cause some nearly exhausted literal
occurrence to become exhausted, i.e. the strategy
generates E-represented clauses.

3. Deletion-Directed Search

Consider the following unsatisfiable set of
clauses which resulted from an attempt to prove the
proposition: If a diagonal of a trapezoid bisects a
lower base angle, then the corresponding upper
inscribed triangle is lIsosceles.

1. Tabed S. PwxyzEwxyxyz
2. Eabddbe 6. Exyzxzylxyz
3. Iabd 7. ErstxyzEuvwxyzErstuvw

4, TwxyzPwzxy 8. EuvwxyzEuvwuvw (basic facter of 7)
Let simple binary resolution denote a generation

rule with the constraint that only one literal
occurrence from each parent can be selected for a
unification set, i.e. the first two components of all
key triples are unit sets. Let a basic factor of a
clause C be any clause C6 where O is an mgu of exactly
two literals In C. A proof procedure utilizing basic
factoring, simple binary resolution, E-representation
deletion, and deletion-directed search generated the
following modified trace:

9. Padbc {1,4)
Delete 1 and A by E-rep.
10. Eabdadb (3,8
Delete 3 and 6 by E-rep.

1. Eadbdbe (.9

Delete 5 and 9 by E-rep.
12. EabdxyzEadbxyz
Delete 10 by E-rep.

{,10)

At this point, the set of retained clauses contains
2. Eabddbe_

7. ErstxyzEuvwxyzErstuvw
8. EuvwxyzEuvwuvw

11. Eadbdbc_
12. EabdxyzEadbxyz

Continuation of the procedure yields

{2,12)

¢11,13)

13. Eadbdbe
14, O

The principle which guides deletion-directed
search can be stated as follows: Given a set of
clauses to which no deletion rule can be applied,
attempt to derive another set of clauses by adding
as few resolvents as possible such that at least one
of the original clauses can be deleted from the new
set. The following description of the search strategy
assumes that the associated generation rules are
basic factoring and simple binary resolution. Given
an input set, search is initiated by building a data



structure called a mate table (cf. classification
treesg). Two literals Ly and L, are mates iff there
exist substitutions 0; and 0, such that L,04
L202 are complementary. A mate table is constructed
by attempting to resolve each literal occurrence L
appearing in an input clause C with every other
literal occurrence in the input set. The result is
a set of lists such that every literal occurrence has
an associated, list. Each list has two types of
entries depending upon whether the literal occurrence
resolving with L i.e. L's mate, is in C or outside
of C. An Outside entry is created when all of the
following conditions hold: (1) C resolves on L with
some clause D = C (2) Neither the resolvent of C

and D nor the associated instance of D is a tautology
(3) The resolvent is not subsumed by D. The entry
identifies a mate literal in D and contains the
corresponding” resolvent. An inside entry, on the
other hand, just identifies one of L's mate literals
within C but doesn't contain the corresponding
resolvent.

The pointer portion of the initial mate table for
the last example is represented below.

1.1 2.1 3,1 4.1 4.2 5.1 S.2
4.1 7.1 6.2 L.l 5.1 4.2 6.l
7.2 7.1

8.1 7.2

8.1

6.1 6.2 7.1 7.2 7.3 8.1 8.2
5.2 3.1 2.1 2.1 6.1 2.1 6.1
7.3 5.2 5.2 8.1 5.2 7.1
8.2 8.2 7.3 7.1 7.3 B.1

7.3 7.2 8.2

The proof procedure examines the table looking for
Indications of a double parent elimination
possibility and finds that the first literal in
clause 4 is the only candidate for resolution with
the first literal in clause 1 and vice versa. By
adding the corresponding resolvent which is already
stored in the table to the retained set, a new set
can be created in which both parent clauses contain
an exhausted literal. Since a double elimination is
the best result that can be planned, the
corresponding resolvent is added. After deletion,
the mate table is updated and becomes

2.1 3,1 5.1 5.2 6.1 6.2

7.1 6.2 9.1 6.1 5.2 3.1

7.2 7.1 7.3

8.1 7.2 8.2
8.1

7.3 7.2 3.3 B.1 8.2 9.1

2,1 2.1 6.1 2.1 61 5.1

5.2 5.2 8.1 5.2 7.1

8.2 2.3 7.1 7.3 8.1

7.3 7.2 8.2

™o more double eliminations are detected and the
corresponding resolvents are added to the retained

set. After the addition of clause 11, the table
becomes
2,1 7.1 7.2 7.3 8.1 8.2 10,1 11.1
7.1 2,1 2,1 8,1 2.1 L1 7.3 7.1
7.2 &,7 11.1 10,1 7.3 g__; 7.2
8.1 11.1 7.3 7.1 11.1 B.1
7.3 7.2 B.2

I
|
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At this point no double eliminations are predictable,
but an immediate single elimination results from
adding the resolvent of clauses 7 and 10 to the
retained set and leads to

- .3 8 .
. 102 .
. 12. 12.
1 1

-

8
7
2
2
8

LER RO R

Z 7 .
7 a .
7 2 7.
B 2 1.
12 ? B.

The table now indicates that a minimum of three
resolvents must be added to the retained set before

a deletion by E-rep is possible. The procedure
arbitrarily selects the first literal in clause 12
and adds the shortest resolvent corresponding to a
mate i.e. the resolvent of clause 2. The immediate
testing of all newly added unit clauses (the end test)
yields the null clause.

In the realm of satisfiable sets, consider the
following problem which results when
AT(x,under-bananas,sq) is omitted from a formulation
of the monkey and bananas problem due to C. Green'®.

1. m(monkey.bananaa,x)

2. MOVABLE (box)

3. A‘I(box,]}laca,so)

4. CLIMBABLE (monkey,box %)

5. REACHABLE(x,y,2)HAS (x,v,reach(x,y,z)}

6. AT(n,7,2)CLIMBABLE(w,%,2)AT(x,7,c1imb{w, %, 2))
7. K-f(x.y.z)CLIHBABLE(w,x,z)DN(w.x,climb(w,x,z))

8. AT (box,under~bananas,x}ON {monkey, box, %)
REACHABLE (mankey, bananas, x)

9. AT (w,x,z)MOVABLE(W)AT (8k] (W, %,¥,2}, 712}
AT (w,y,move {monkey,w,v,2))

10. AT(w.x,z)HMOVABLE (w)AT (skl(w.X,¥.2),¥,2)
AT(monkey, y,move {(monkey,w,y,2))

A proof procedure using basic factoring,
binary resolution, E-~representation deletion,
subsumption deletion, and deletion-directed search
produced the following modified trace. All of the
clauses generated while processing the mate table
do not appear in the trace.

simple

&9
G

11. REACHABLE{monkey,bananas,z)
Delete (I,5)

12, AT(box,under-bananas,x)
ON{monkey,box,x)

Delete (B,11)

13. E(box,¥,z) .y
CLIMBABLE (monkey,box,z)

AT (box, under-bananas,climb (monkey, box, 2)}
Dalete (7,12}
14. AT(box,y,z)AT(box,y,climb(monkey,box, z)) (4,8
&d

Delete (6)
15, Eflbul;y.z}

AT (box,under-bananas, climb (monkey,box,2})
Delete (4,13)
16. AT(box,under-bananas,z}AT(box,y,z) (@ﬂslé>
Dalete {15
17. AT(box,under-bananss,z}
Delete {16)

basic factor of 16



(2.9

18. AT(box,x,z)AT(ekl(box,X,¥,2),¥,2)
AT (box,y,move (monkey ,box,v,2))

Delete (9); (10}; {2); (1B)}; (14); (3); (17)

The satisfiability of the input set has been
demonstrated since the retained set is empty. The
notation following clause 18 means that the deletion
of clause 9 causes a literal in clause 10 to be
exhausted and therefore permits the deletion of that
clause. In the same way, the deletion of clause 10
permits the deletion of clause 2, etc.

Although not illustrated by either of the examples
above, deletion-directed search must be constrained
by a level bound. As in the case of the unit
preference strategy11, a level bound must be imposed
in order to avoid an infinite depth-first search.

Now consider whether deletion-directed search can
always find a literal occurrence to exhaust. Can
resolvents always be added to a set of clauses so
that some original clause will be E-represented?
While the answer is "no", e.g. {Pxpfx, PxPgx}, all of
the counter-examples contain neither an all positive
nor an all negative clause and are therefore easily
recognized as satisfiable sets. For all other sets,
which includes all unsatisfiable sets, some
identifiable literal occurrence is exhaustible and the
required resolvents are identifiable and of finite
number. Therefore, for all unsatisfiable sets,
deletion-directed search will always be able to find
an exhaustible literal occurrence.

The preceding examples outlined the operation
of a deletion-directed strategy, but they did not
reveal why and when it works effectively. The
following observations give some insight into these
matters. Consider an arbitrary unsatisfiable set S
of clauses. If some literal occurrence L in a
clause C has only one mate, then a resolution
involving L and its mate (or a descendant of that
mate) must occur in every refutation of S which
contains C. If every refutation of S contains C
(e.g. C is the negation of the theorem) then a
resolution on L is essential to a refutation of S.
In a minimal unsatisfiable set, any resolution which
allows double parent elimination by E-rep is essential
and the eliminations preserve minimality. Any
resolution which allows single parent elimination
by E-rep in a minimal unsatisfiable set is essential
but the elimination may not preserve minimality. A
sequence of resolutions starting from a minimal
unsatisfiable set and culminating in a deletion by
E-rep contains at least one essential resolution.
These observations suggest that deletion-directed
search will be most effective for a minimal
unsatisfiable set containing many single-mate
literals — as in the first example. |Its
effectiveness will diminish, however, as the set in
which it operates becomes increasingly non-minimal
and as the population of literals with only a few
mates decreases.

If necessary, the effect of non-minimality can be
substantially mitigated by using a clause generation
rule which is restricted by set of support
constraints12. The effect of the absence of literals
having only a few mates is much more serious since the
mate structure is the dominant source of guidance
information. When the mate structure doesn't
provide effective guidance, not only is deletion-
directed search blind, but it also fails to
effectively restrict the growth of the set of retained
clauses. The appropriate action in such a situation
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is not clear but the use of some other strategy is
probably the best choice.

The reader who is familiar with the Davis-Putnam
procedure for testing the consistency of propositional
calculus expressions13 may observe that the notion of
deletion-directed search can be viewed as a
generalization to the predicate calculus of their
rule for eliminating atomic formulas. Other approaches
to a general notion of deletion-directed search can be
found in reports by B. Meltzer14 and R. Reiter15.
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