Session 6 Theorem Proving and
Logic: 1

DOING ARITHMETIC WITH DIAGRAMS

Alan Bundy
Department of Computational Logic,
University of Edinburgh,

Edinburgh,

ABSTRACT »

A theorem prover for part of arithmetic in described
which proves theorems by representing them in the form
of a diagram or network. The nodes of this network
represent 'ideal integers', i.e. objects which have all
the properties of integers, without being any parti-
cular intoger. The links in the network represent
relationships between 'ideal integers'. The proced-
ures which draw these diagrams make elementary deduct-
ions based on their built-in knowledge of the functions
and predicates of arithmetic. This theorem prover is
intended as a model of some kinds of human problem-
solving behaviour.

DESCRIPTIVE TERMS.

Theorem Proving, Heuristic Method, Representation,
Psychological Modelling, Semantic Network, Arithmetic,
Ideal Integer, Logic, Semantic: Tableaux.

0. MOTIVATION.

The objective of this work is to investigate human
problem-solving behaviour by trying to simulate it on a
machine. The main source of information about human
behaviour is still self-observation and so the author
has deliberately chosen a domain in which he has some
experience, arithmetic (see 1). Arithmetic hus the
additional advantage that as one of the oldest branches
of mathematics it is rich in proof techniques and
easily stated but difficult theorems (e.g. Format's
Last Theorem). Also an efficient arithmetic theorem
prover is likely to find applications in Program
Correctness Proof3.

1. INTRODUCTION.

This is a report of work in progress. It describes
what is, to the best of the author's knowledge, a new
kind of automatic theorem prover, called SUSS (a System
which Understands Mathematical Symbols). SUMS does
not explicitly use axioms or rules of inference to
prove theorems. Instead it represents the candidate
theorem as a network (or diagram) in which the nodes
are the property lists of arithmetic terms and the
links describe relationships (e.g. = <, |) between
them. Statements are asserted by adding new links and
proved by accessing the diagram. Knowledge about
arithmetic is built into the procedures that draw the
diagram so that when links are added to it, elementary
deductions are made (and more links added) automat-
ically.

The domain of SUMS is the Elementary Theory of Natural
Numbers (i.e. the arithmetic of the non-negative
integers). At present it can only handle the classes
of terms and formulae defined below;

(a) An arbitrary skolem constant or natural
number is a term.

(b) If A and B are terms then SUC(A) ;
A +B; A-Band A x. B are terms.

Pre(A);

130

Scotland.

(e) If & snd B ere terms then A = B; 4 £ B;
A<B; A>B; A=3B; A«<B; AP and A f B are
atomic formulaa, {Fote that for each predicate
pymbol, S, there iz a symbol ?)au- 1 that

wr

A 8(Xysenan) 4 B p0aeeX

n

(d) 4an atomic formula is a formula,

{e) If P and Q are formulae then-P;
PvQd; P—-Q and P %>Q sre formulas,
¥here Suc and Pre are the successor and predecessor
functiona.

P&Q;

ieee Sucfh) -~ & + 1 apd Pre(A) = 4 2 3

and = , the modified difference function, is just
ordinary subtraction modified ac that its result is
always a natural number

L ~-B
{ o
2. EXAMPLES.
Before degeribing the represeatation of the diegram and

the procedures which draw il, it is beat to illustrate
how the theorem prover worke with some cxamples.

. ir B«4
l1.8. ﬁ"'B

if A= B

(i} The Asaccistive Law of Addition.

6+ (b+c) =(a+1)+e {1)

3IMS always starts by conctructing nodes for O and 1
and drawing the appropriate linkas between them (e.g.
D414, 0= 1, 1|0, ete.) New nodes are always
appropriately related to O and 1. However, since
these links play no part in the proof which follows
they have been omitted for clarity.

The machine then crostes nodes for each of the subterms
invelved in {1) and draws in the appropriate linke.

Fig. 1.

The links in the sbove diagram are distance and direc-
tion links, e.g. 'a' is a8 distence 'b + o' lese than
‘a+ (b+ e)', When a new link is added to & node it
is conpared With the old links to see if mny coenclusion
can be drawn.

For inetence in Fig. 2 the link from 's' to 'a + b' is
compared with the link from *'a' to 'a + (b + ¢)', whieh
causea the diatance label *b' t¢ be compared to the
distance label 'b + o'. The nods 'b' is found to be a
diptance 'c' less than the node 'b + ¢' in the diagram;:
g0 SUM3 deduces that 'a + ' must be a distance 'c!
less than 'a + (b + ¢)', und draws in the appropriate
1ink {detted).

Fig. 3.

Pinally the node for '{a + b) + c' iz created but as

the first link is being dreawn {dotted in Fig. 3) it is
compared with the link sonnecting 'a + b' to'a + (b + ¢
and found to be of equal length.

SUMS deduces that 8 + (b + ¢} = {a + b) + ¢ und achieven
this by merging the twe nodes and not sdding the new
link (Fig. 4).

a+ (b+c)
(a+b)+c

‘Fig. 4.

SUMS now proves the theorem by mecepsing the diagram
and discovering that thess two terms have the same node.

{ii)} Commutativity of Maximum.
a+(b2a)=0b+{ald) (2)

If we define max(x,y} ag x + (y 2 x), (2) becomes the
commutative law of maximum.

As before SUMS creates nodes for ewch of the subterme
involved in (2}, except that this time it considers two
cases. OUMS always draws terms of the formm 4 - B by
first interropating the diagrsm to see if either of
the cases A< B or B < & hold, Otherwise it dupli-
catep the disgram, asserts A — B in cne and B < A in
the other and then tries to prove the theorem in both
cAses,

30 in thiz example the final diagrams are:

Case 8 < b
a
a b=a
b
0 :.Ii a+ (b *a)
a-b b+ (&b
b
t-a
Fig. 5

Cage b< &

-‘=| : a+ (b* a)
b+ (a2

S, 8=b

Fig. 6.

A link of the form

Fig. 7.

means that A = B. These links are not needed in this
example but are included for completeness. They occur
because asserting B < A involves asserting both B <A
and B / A. "

3. THE REPRESENTATION OF THE DIAGRAM.

The diagrams are represented using lists and POF-2
records. We find records convenient, but they could,
if necessary, be replaced by Lists or arrays.

Each diagram is a record with 6 components (or slots)
in which information is recorded. These slots are
called and contain:

(a) Title: a formula in list notation which says
which case the diagram represents, e.g. [LESS A B].

(b) Contra: a 1 or 0 according as the diagram
has or has not been found contradictor;'.

(c) Network:
below)

a list of the entries (defined
in the diagram.

(d) Nought and Unity: 2 redundant slots pointing
to the, frequently used, entries for 0 and 1
respectively.

(e) Eile: a list of terms which were not
represented in the diagram when wanted, but which SUMS
may decide to represent later.

Every term is represented, in the diagram, by a unique
record with 3 slots, called an entry. These slots
are called and contain:

(a) Label:
in list notation,

The name of the term being represented
e.g. [ADD A [DIFF B A]]

A record of type 'node' which
When two

(b) Proplist:
contains all the links to the other entries.
terms are made equal all the information from the first
term's 'proplist' (property list) is put into the
second term's 'proplist', which then replaces the first
wherever it appears. Thus equal terms share 'proplists’
which justifies the adoption of the name 'nodes' for the
'proplist' rather than the entries. This method of
dealing with equality is more convenient than using
equality links, because: it makes checking for
equality more efficient (the 'proplists’ must be EQ) ;
the equality axioms are automatically incorporated,

and all the information about a single node is kept in
one place.

(c) Replace: A slot used in the copying of
diagrams.

STRUCTURE _OF DIAGRAM

TITiE

chmu
/

CONTHA NETWORK

|

NOUGHT UNITY

FILE

formula in ‘_/

1ist fornat

l
Truth value/ /
0 aor 1 ;

i i
Entry / Entry ;

for O

for 1

o

—

st of entries

ERTRY v tunsvennnrnnonsnens, ENTRY

typical
entry

list of terms

Term in list format

'3"-(ENTRY
/

PROPLIST

REFLACE i
i .

(EERH,.........................,TERH

Tero in for diasgram
list format aopying
NODE SMALLER BIGGER UNEQUAL FADTOR MULTIPLE MARE
:_ } \ i 3 / /
/ \ ,/ 'Lfor
N making
liet of pairs Similar to marks
" oraller"

list of entries
|

lPMR,........................,PAIR' \\H'|E_N‘J.'RY,......................,ENTRYI

typical
pair
Fig. 8.
(PA‘IR FRCONT BACK
) L
entry of \ entry of
gmaller term difference term
| FIRST LAST FIRST LAST
ELE“W"...'.’WM (DETA'ORD CCHPDNENT se A BT T AR R E R A TR A NN RN COHPONENI'

notation for liate

132

notation for records.

Each node is a record with 6 slots called and cont-
aining:

(a) Smaller: A list of pairs of entries. The
front of each pair represents a term smaller than the
present one; the back represents the distance between
them.

(b) Bigger: Similar to (a) except that the front
of each pair is the entry of a term bigger than the
present one.

{c) Unequal: A list of entries representing terms
known to be unequal to the present one.

(d) Eactor: Similar to (a) except thnt the front
of each pair is the entry of a term which exactly
divides the present one, and the back is the entry
representing the quotient produced.

(e) Multiple: Similar to (d) except that the front
of each pair is the entry of a term which the present
term exactly divides.

(f) Mark; A slot used for markers when measure-
ments are being made in the diagram.

4. THE PROGRAM.

In order to distinguish functions in SUMS from
functions in Arithmetic, we will call the former
procedures.

There arc four classes of top level procedures
arranged roughly in a hierarchy. They are:

(a) Logical Procedures: which analyse the
original formula and decide which atomic formulae to
assert and which to prove.

(b) Drawing Procedures: which analyse the terms
in the formulae, draw them in the diagram and assert
relationships between them.

(c) Asserting Procedures: which make relationships
between terms hold in the diagram by adding links.

(d) Interrogating Procedures: which discover
whether relationships between terms hold by accessing
the diagram.

(i) The Logical Procedures.

After the initial diagram has been created all
negations are eliminated from the candidate tliooreni by
passing them down to, and absorbing them .into, the
atomic formulae. i.e. each negated atomic formula
-S(x1,...xn) is replaced by #(x1. ... xn) . The
candidate, P, is then passed to the procedure 'Prove'
whose description follows.

To prove P:

(a) If P is a conjunction of atomic formulae, its
terms are drawn in the diagram, which is then interro-
gated to see if P is true.

(b) If P is of the form Q & R then a copy of the
diagram is made. Q is proved in the first diagram
and R in the second.

(c) If P is of the form Q v R (or Q - E) then we
assert -Q (Q) in the diagram and prove R.

(d) If P is of the form QR then a copy of the
diagram is made. In the first diagram, Q is asserted
and R is proved; in the second R is asserted and ft

133

proved.

To assert a formula in the diagram the following
procedure is called.

To assert P:

(a)

procedure

(b) If P is already false the diagram is closed,
by making it contradictory, and the procedure exited.

(c) If F is atomic, its subterms are drawn, and
it i-. made true in the diagram by calling an approp-
riate asserting procedure.

(d) If P is of the form Q & R then both Q and R
are asserted.

(e)

If P is already true in the diagram then the
is exited.

If P is of the form Q v R, (Q - R) then:

R is asserted;
[-Q is asserted);

If Q is false (Q is true),
If R is false, Q is asserted

Otherwise a copy of the diagram is made and Q is
asserted (- Q is averted) in the first diagram and R
in the second,

(f) If P is of the form Q <--> R then:
If Q is
If R is
IfQ is
If R is

true, R is asserted;
true, Q is asserted;
false, - R is asserted;
false, - Q is asserted;

Otherwise a copy of the diagram is made and Q and R
are asserted in the first diagram and -Q and -R am
asserted in the second.

The referee has pointed out the similarity of these
procedures to Beth's Semantic Tableaux (see). The
main difference;; are that:

(a) SUMS cannot yet handle arbitrary quantifi-
cation. Semantic Tableaux provides some valuable
clues as to how to correct this defect.

(b) in SUMS the left (valid) and right (invalid)
columns of Beth's tableaux have been combined in u
single diagram, making a neater and more powerful
procedure.

(c) At present SUMS does not assert the negation
of the theorem to be proved, a practice which would
certainly lead to an increase in power.

(d) Before dividing into 2 cases SUMS checks the
present diagram to see if either of the new diagrams
would be contradictory (see the checks in (e) and (f)
above, and in the drawing procedure for - below).
This limits the number of cases to be considered, but
is not perfect, and unnecessary cases are sometimes
considered.

(e) Most importantly, the assertion of an atomic
formula, in SUMS, is not just the passive addition of
the formula to a list, but an act which may have wide
repercussions within the diagram.

(if)

Between them the drawing and asserting procedures are
mainly responsible for drawing the diagram. Their
general philosophy is to limit the number of nodes
the diagram to those representing terms mentioned
the candidate theorem, but to draw as many links

The Drawing Proceduren.

in
in

CONTROL OW __CHART
{NOT TO BE TAKEN TOO SERIOUSLY)

START

\

REWRITE FORMULAE
REMOVING NEGATIONS

IKITIALIZE
DIAGRANM

| |
FREAK DOWN
LOCICAL CONNECTIVES,

Y

4]

CREATING SUB-CASES
AND
MAKING ASSERTION.

Fig. 9.
DRAW TERMS
CONTATNED IN
ATOMIC FORMULAE
A¥D
MARE ASSERTIONS
4 YSER DRAWS
TERMS
y
15 THEOREM WO <y JVILE
USER
TRUE 1IN
HELP 2 1ES
TES THIS
ASE
HO

134

between these nodes as possible. Thus the diagram is
prevented from exploding, since only a finite number of
links is possible between a finite number of nodes, but
quite sophisticated relationships are deduced between
the nodes that are represented. This kind of heuri-
stic is quite common in mathematics for instance as
advice to students proving theorems in Euclidean
geometry, to deduce as much as possible about a diagram
without constructing any further points (ef. 3), The
only exceptions to this rule are;

(a) the creation of nodes for 0 and 1, often
needed because they are the identity elements for
addition and multiplication.

(b) the limited creation of nodes needed to label
links between existing nodes, e.g. if a< b is one of
the premises of the candidate theorem and b - a is not
already represented, then we represent it.

(c) the creation of new nodes as part of a proof
strategy (sec Section 6).

(d) the suppression of those clauses of links
which do not appear to be necessary to prove the
theorem, e.g. multiplicative links in a theorem only
involving addition.

(a) and (b) only produce a strictly limited number of
extra nodes.

We now turn to a description of the procedures them-
selves. A formula is drawn in the diagram by
creating entries for each of its subterms which do not
already have them, from the bottom up, and then passing
these entries to procedures which extract information
from the term's function symbols. There is one of
these drawing procedures for each arithmetic function
symbol, and the procedure receives every term beginning
with this symbol. It assumes that the term's argu-
ments have already been represented. If necessary it
can use the interrogation procedures to discover the
state of the diagram before using its knowledge of
arithmetic to assert relationships with the asserting
procedures.

As an example we describe the procedure for terms of
the form A - B:

If A g B then make A < B equal to 0.
else if B < A then make 4 = B less than or
equal to A by an amount E.
eloe
Copy the present diagram.
If P is the title of the old disgram make
F & A=<PB the title of the o0ld one &nd
P & B < A the title of the new one.
In the old diagram
create sn entry for B =~ A if one does not
already exist.
make 4 less than B by amount B 2 4
make & Z B equal to O.
In the new diesgrem
meke 4 -~ P unequsl to ©
make 4 = B lesa than A by amount B,
end.

These drawing procedures are sufficiently close to the
original function definitions to make one feel optim-
istic about having the machine 'learn' a new function
by constructing its drawing procedure from its
definition. The creation of an entry for a term
involves constructing a new entry, inserting the term
in its 'label' slot and a new node in its 'proplist’
slot and adding this entry to the diagram's 'network’
slot. The property list is then filled with as much
information as possible. For instance, all terms are

This has not yet been implemented.

135

made bigger than 0 and divisible by 1. In addition if
the term is a natural number we compute and record,
subject to the normal limitations, its relationships to
all previously created natural numbers. e.g. 2 is
made bigger than 7 by an amount 1 and unequal to 0 and
1 etc. This is still non-explosive if the number of
nodes is strictly controlled, and ensures that all
nodes relevant in a particular situation can be
conveniently recovered.

(iii) The Assorting Procedures.

There is an asserting procedure for each predicate
symbol. These procedures update the property lists of
the entries in the diagram thus creating new links in
the network. Before and after these links are created
various ‘'antecedent' procedures (cf. 4) are called,
which examine the local state of the diagram to see
whether any further facts can be deduced. In parti-
cular a contradiction may be detected in some diagram
and then registered by assigning 1 to the diagram's
‘contra’ slot.

These antecedent procedures contain a pood deal of the
arithmetic knowledge which is built into the theorem
prover. They are constantly evolving as new infor-
mation is included or neater ways. of achieving the
same effect are discovered, und so it. would be mis-
leading to over-emphasise their present state by
describing one in detail. However, wo can give some
examples of their action.

Suppose that an asserting procedure is making A divide
C with quotient B (i.e. A x B =C). LetA, Band C
be represented in the diagram by the entries Ae, Be
and Ce respectively, and in general if X is a term,

let Xe be the entry representing it. Before adding any
new links between Ae, Be and Cc, SUMS compares,for
instance, Ce and Be with each of the pairs, (Ee.l)e),
the 'multiple’ slot of Ae. We illustrate this situ-
ation in the following diagram, in which the double
arrows indicate that the links are multiplicative.

in

i,

I7 any B ig equal to D then hechuse:

(A xB=C&AxD_E&BE=D} ~C -8

C is made equal to E und the procedure is exitled,
Adding the new links involven conoing the pairs

(Ae.Be) and (Be.Ae) onto the list vontained
in the 'factor' alot of Cey
(Ce.Ae) onte the list contmined i, the
'multiple’ alot of Be and
(Ce.Bei onte the list ceontained in the
‘multiple® alot of Ae.
The redundancy of this method of link storage ia
justified by the convenience of having all the
information about a particular node stored in that
node.

After the links have been added, for instance, Ce and
Be are again compared with each of the pairs (Ee.De)
in the 'multiple' slot of Ae. If, say, A is known to
be unequal to 0 and C exactly divides E with quotient
P. then B is made to divide D exactly with quotient F.
Because:

(AxB=C&AXDalabtd0&CxF =E)
~BxF =D (8

Again if, say, B ia smaller than D by an amount P and
there ia a term, G, equal to A x F represented in the
diagram then D is made less than E by an amount C.
Because:

(hXB:C&KID=E&B+?=D&&XF=G)
-0 4 0 =R (5)

Formulae like (3), (4) and (5) are the mainstay of the
antecedent procedures. Although apparently arbitrary,
they often have a simple geometric interpretation and
turn out to be surprisingly powerful in antecedent
mode. In general the asserting and antecedent proc-
edures fall into the following pattern:

(a) Check whether the relationship already holds.

If so, exit without adding any more links.

(b) Check whether the opposite relationship already
holds. If so, declare a contradiction and exit.

(c) Otherwise add all new links.

(d) Now do a lot of very cheap (in time and space)
checks to discover the current local state of the
diagram. Deduce and assert as many new facts as
possible without creating any new nodes in the diagram.

(iv) The Interrogating Procedures.

There is an interrogating procedure for each predicate
symbol. They are used to settle all questions about
the relationships between terms and they do thi3 by
accessing the diagram. Because they are used so
frequently the present procedures are designed, for
efficiency, to do very little searching. For instance,
the procedure which asks whether A is equal to B
returns true if and only if A and B have the same node
stored in their 'proplists’'. The procedure which asks
whether A is less than B starts at A and climbs up
through the 'bigger' slots, marking its passage, until
either it comes to B and returns true or it exhausts
all possibilities and returns false. It would be
possible to design procedures which tried a lot harder
than this, but their use would have to be selective.

There is a subclass of the interrogating procedures,
called the measuring procedures, and there are measuring
procedures corresponding to most of the function symbols.
For instance, the measuring procedure for + takes as
arguments two entries, Ae and Be, (say) representing
the terms, A and B, and returns true if and only if it
finds an entry for a term equal to A + B, in which

case it also returns this entry. It does this by
looking in the 'bigger' slot of Ae for a pair whose
back is equal to Be and returns the corresponding front
if successful. This procedure may well succeed even
if A+ B is not represented. e.g. B + A may be
represented or in a diagram where a z b, A is a and

B is b - a we may return the entry for b. If the

procedure does not succeed the term A + B is stored in
the diagram's 'file' slot where it may be used at a
later date as grounds for constructing a node for A + B.

5. RESULTS.

74 of the 86 theorems which have been attempted so far
were drawn from , which contains about 700 formal
theorems. The remaining 12 were invented to test SUMS
ability to deal with particular numbers (see numbers

14 15 and 20 below). SUMS can now prove 64 of them
with times ranging from 0.125 sees, of C.P.U. time
(number 13) to 45.94 secs. of C.P.U. time (number 12).
There follows a selection of 15 of these 64 successfully

136

proved theorems together with 5 of the 22 failures.

(1) Successes,

Thegrem Time Speny
in =seca.
of C.P.U.
Time)
1.a+(bere) alas b)+e 3.5
2.a+{bZa) =b+{ain 4,625
3.a=(b+c)=(a2b) 2c 12,0
4. (a+bB) 2c=(a2¢) +{b2(c2a)) 23.38
5. O < Sus(a) 1.06%
6. (b= m) v {a < b) 0.9379
Te 8 # 0 = (Pre(a)< a & a = Sue(Pre(a})) 5,375
8. 2 < b %«*Sucla) < Suc{b) 11.81
9, (a+ b= o) g~z (n <o 2 D) 11,63
1. ex{bxc) ={axbh x¢ 3,813
11, axl(b+ec)=azxb+axe 4,188
2.172{a+b) =01 2a) x (1 20 45.94
13. ala 0.125
14, 24 2 =4 3.5
15. a+a8a=22xa %.188
Failures.
Theorem Time Spent
{befo're
automatic
termination)
6o ab&ogd=a+cxb+d 8.938
17. 2<8a&2<b—8a+b<axh 19,69
18, a|b & ale = al{b + o) 54813
19, alb & a|Sve{bd) ~a =1 9.25
20, (a+2) x{a+3) =axn+5xn+b 24,38
Most of these theorems are quite difficult to prove
from the Peano axioms of arithmetic. For instance,

the normal proof of number 1 involves two induction
steps. Although normalization algorithms might be
used to prove some of them, it is extremely difficult
to see how such a method would deal with number 4,
number 7 or number 12.

6. GOALS.
In order to prove the remaining 636 theorems in , SUMS
requires abilities outside its present scope. Plans

for adding some of these abilities are well advanced
and only await implementation; others are further in
the future. A description of these plans follows.

(i) FEurther Arithmetic.

In order to tackle more sophisticated arithmetic
formulae, SUMS needs to be able to deal with the
quotient; remainder; exponential; nth odd prime;
greatest common divisor; is-a-prime and other functions
and predicates. All these abilities require a drawing
procedure for each new function, an asserting and an
interrogating procedure for each new predicate and its
negation, and new slots in the property lists. These
will be added soon.

(ii) Quantification.

At present SUMS
formula that would contain existential
it were written in Prenex normal form. Beth's
Semantic Tableaux? and Robinson's Resolution® both
provide valuable clues as to how to correct this
deficiency. There follows a proposed solution.

is not capable of dealing with any
quantifiers if

replace any call of the procedure 'To prove Pt
by a call of 'To assert -P' and

Firstly,
described in Section 4,

then the theorem is proved when all the diagrams
become contradictory. Non-contradictory diagrams will
be used to suggest counter-examples or will be candi-
dates for more strenuous proof strategies (see next
sub-section).

Secondly, update the 'to assert P’
adding:

procedure by

(g) If P is of the form V x Q(x) then an entry of
type 'variable' is created for x. X is added to a
local variable list 'vars' and Q(x) is asserted.

(h) If P is of the form 3x Q(x) then an entry of
type 'skolem function' is created for x. X is made
dependent on all the variables :in the current value
of 'vars' and Q(x) is asserted.

Thirdly, during the course of the proof we may
'substitute’ for a variable x, any term A, which is
not dependent on x. This involves making a copy of
any entry containing x, replacing each occurrence of x
in each copy by the term A and making equal any terms
with the same label. The ability to substitute needs
to be handled with the same circumspection as the
other proof strategies mentioned in the next sub-
section.

(iii)

With the additions mentioned above, SUMS should be able
to prove a wide class of straightforward theorems.
However, it performs no search and always terminates
wit!) or without a solution after it has represented
the candidate theorem. To prove more sophisticated
theorems SUMS needs to have and to know how to use, a
store of proof strategies (PLANNER consequent
theorems*).

Proof Strategies.

For instance, it may decide to try mathematical
induction, to construct some new terms, to make a
substitution, to divide into cases, to use some
previously proved theorem or to set up some inter-
mediate sub-goals. All these abilities are
relatively straightforward to apply once a decision
about how to use them has been made, but deciding on
what to use and how is difficult. Our intention,
therefore, is to implement this stage in two parts.
The first task will be to make SUMS interactive.
Procedures will be written to correspond to the
mathematical use of such instructions as: Try

induction on...; Consider the term...; Substitute...
for...; Consider the cases...; Use...; First
prove...: etc. Then SUMS will be led through the

proofs of some moderate]ly difficult theorems in
Number Theory. The second task is to use this
experience to evolve a language for classifying
candidate theorems and selecting and applying
suitable proof strategies.

Some progress has now been made on the first task. |If
SUMS fails to prove a theorem it asks for help in
constructing new terms and offers the contents of the
diagram's 'file' slot as evidence. The user may then
tell SUMS to construct some terms before continuing
with the proof. For instance, after representing
a< b & c<d -» a+c < b+d (number 16 in
Section 5) in the diagram, and failing to prove it,
SUMS asks for help and suggests the constructions:
a+d; c+b; (d-c) + band (b -a) + d.

If the user orders a+ d or c + b to be constructed
a proof is immediate. If instead he chooses

(d-c¢) +b or (b-a)+ d, help is requested again.
On the initial trial run through the 22 previous
failures (see Section 5), 16 were proved using this
method - 7 on the basis of the proffered evidence
alone. Of the remaining 6 theorems 3 were abandoned

and 3 produced stack overflow because the length of
deductions got too deep.

7. CONCLUSION.

This theorem prover uses an analogical representation
of arithmetic and lets this representation do all the
work. In the traditional representations of mathe-
matical theories, e.g. a set of axioms in a resolution
theorem prover, it is quite easy to assert a contra-
dictory set of formulae without this situation being
readily detected. |In the present representation
assertions once made are readily accessible and any
new assertion causes all sorts of conclusions to be
drawn and asserted so that contradictions are usually
Spotted quickly.

In ® Gelernter achieved a similar effect by usi.ng two
representations: a syntactic one for proving theorems
with rules and axioms, and a diagram to guide this
proof. His 'syntax computer' discovered groups of
sub-goals which would imply the present goal, and his
'diagram computer' vetted those sub-goals, rejecting
those that were false in the diagram. The diagram
was also used to prove certain very basic sub-goals
{see 3 p. 42 No. 7) but this is a risky process,
because although precautions were taken to prevent
spurious coincidences entering into the diagram, there
were still statements, true in the diagram, hut not
provable from the hypothesis of the candidate theorem.
The analogue of Celernter's diagrams in arithmetic
would be to substitute particular numbers for the
variables in some subgoal, and then compute the truth
or falsity of the resulting formula.

SUMS arose from an attempt to represent in the machine
the concept, fairly common among mathematicians (see
for instance 2) , of an 'ideal (or typical) integer’,
i.e. an object with all the properties of an integer
(e.g. being equal to, less than, not equal to or a
divisor of some other interer) but which is not any
particular integer (e.g. 3, 13 or 53). In a 'diagram’
composed of 'ideal integers' no spurious coincidences
arise, so that anything true in the diagram is provable
from the hypothesis of the theorem and anything false
is not provable. So this diagram can be legitimately
used for rejecting and proving sub-goals. Of course
something may be neither true nor false in the diagram.

Does SUMS prove theorems or does it check their
validity? It certainly does not produce proofs in a
formal logical system, but neither does it exhaustively
test the candidate theorem in some model. Nor, of
course, does the practising mathematician confine him-
self to cither of these techniques. Rather he is
prepared to use a variety of methods to achieve his
ends (sec °). To convince himself, and others, of the
soundness of his final proof, he produces a protocol.
Formal logical systems were introduced to analyse and
justify this procedure, and not to replace it as a
method of discovery. SUMS is designed to simulate the
behaviour of mathematicians. During the course of a
proof it 'proves' many facts (i.e. convinces itself of
their truth) and records these as true; it also
produces a protocol which is intended to convince
others of their truth (i.e. a proof).

It is the author's hope that the method of theorem
proving outlined in this paper will prove applicable
not just to arithmetic, but to all mathematical
theories, especially classical systems with a single
standard model, like analysis, geometry and set theory.
In fact similar systems for geometry and set theory are
now being built by Aaron Sloman and Mike Liardet
respectively.

The author also hopes that this representation may make

137

some contribution to the study of Psychological

Modelling. In particular, maybe it sheds some light

on the curious blackboard diaerams which mathematicians

use to help them ‘'understand' problems.

ACKNOWLEDGEMENTS.

7
My debt to the M.I.T. Progress Report will be

obvious. Not quite as obvious, but equally important,

are the conversations with my colleagues - Aaron

Sloman, Bob Boyer, J Moore, Mike Liardet and numerous

others.

REFERENCES.

Bundy, A. 'The Metatheory of the Elementary
Equation Calculus'. Ph.D. Thesis. University
of Leicester, England. 1971.

Beth, E.S. 'Semantic Entailment and Formal
Derivability'. Mededelingen der Ron. Med.
Akad. v. Wet. New Series, Vol. 18 No. 13,
Amsterdam, 1955.

Gelernter, H. 'A Geometry Theorem Proving Machine’,

Computers and Thought pp. 134-52, McGraw Hill,
1963.

Hewitt, C. 'PLANNER: A Language for Manipulating

Models and Proving Theorems in a Robot'.

Proceedings of 1st IJCAIl. Washington D.C., 1969.

Robinson, J.A. 'A Machine Oriented Logic based

on the Resolution Principle1. J.Assoc.Comput.
Mach. 12. pp. 23-41, 1965.
Sloman, A. 'Interactions between Philosophy and

Artificial Intelligencer The Role of
Intuition and Non-Logical Reasoning in
Intelligence'. Proceedings of 2nd IJCAI, pp.
270-6, The British Computer Society, 1971, also
Artificial Intelligence 2, pp. 209-25* North
Holland Publishing Co., 1971.

Minsky, M. and Papert, S. 'Project M.A.C. Process

Report', pp. 129-244, M.1.T., 1971.

