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Abstract

A natural language question answering system is

presented. The system's parser maps semantic para-
phrases into a single deep structure characterized by

a canonical verb. A modeling scheme using semantic
nets and STRIPS-like operators assimilates the se-

quence of input information. Natural language respon-

ses to questions are generated from a data base of

semantic nets by "parsing" syntactic rules retrieved
from the lexicon.
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Introduction
In natural language processing, the problems of

representing factual material, making inferences,
Solving problems and answering questions may be sig-
nificantly reduced if identical meanings expressed by
diverse surface structures can be represented by a
single conceptual construct. A major cause of surface
structure diversity is the existence of a wide variety
of "surface verbs" for describing basically the same
situation. For example, "buy," "sell," and "cost,"
etc., all describe essentially the same event. Schank
(1) and others have posited the existence of "deep" or
"canonical" verba which unify in the deep structure
meaning common to possibly many aurface verbs used
ordinary speech. Given a canonical event such as
EXCHANGE, the participants (e.g. the BUYER, the
SELLER) are ordered in the surface structure, but
dependent upon the choice of surface verb and voice
(active or passive). This paper describes a language
processing system which employs semantic network
depictions of canonical events as its fundamental
representation of meaning.

in

The language processor consists of three basic
modules as shown in Figure 1. The Parser is used to
map English surface structures into a semantic repre-
sentation utilizing canonical verbs. The sequence of
events presented to the language processor over sev-
eral sentences s woven into a unified knowledge
Structure by the Modeling System, which builds a
STRIPS robot-like model of the situations described.
Again, as in the Parser, the canonical event provides
the basis of representation. When a question is pre-
sented to the system, the Generator is used to produce
English output directly from the canonical semantic
net built (sometime in the past) by the Modeling
System.
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A Schematic of the Language ProceBsing System

The Paraer

The mapping from English into a canonical con-
stituent structure is accomplished by a variant of the
Augmented Finite State Transition Network system des-
cribed by Woods (2). Since the operation of the sys-
tem is generally well known, attention will be con-
centrated on the mechanism which allows for direct
translation into canonical structures. The key to
this operation is the inclusion of certain Information
in the Lexicon (Table 1), The property list of each
surface verb form (infinitive, past, etc.) contains
a reference to a central GENSYM-ed atom which serves

as the lexical entry for all forms of a given verb.
For readability, these "central" forms will be desig-
nated by L-verb, where "verb" is the usual infinitive
form. The property list of each central verb contains
two special entries (in addition to various others):
the attribute CANON-VB Indicates the canonical verb
(event) associated with, the given surface verb; the

P-RULES attribute relates the surface noun phrases and
prepositional phrases used in conjunction with the
given surface verb, to the deep case structure asso-
ciated with the corresponding canonical verb. This
attribute Is a list of triples; the first entity in
each triple indicates the manner in which an event
participant is specified in the surface sentence. If
the participant is specified simply as a noun phrase,
the first entry of the triple is "OK." If the parti-
cipant is specified by a prepositional phrase, then
the corresponding preposition appears In place of OK.
The third entry in the triple names the deep case

relation associated with the event participant. For

example, consider:
JOHN BOUGHT THE CAR FROM MARY
In Table 1 it may be seen that FROM is associated with

the deep case SELLER with respect to the verb BUY.
The second entry in each triple is a list of semantic
classes: a participant must belong to one of the
semantic classes specified by the second triple entry
in order to satisfy the deep case relation specified
by the third triple entry. This semantic class infor-
mation is used to help disambiguate the deep cases of
sentence components which otherwise appear similar.
(This process is also aided by the ordering of the
triples.)



L-BUY
WORDCLASS VERB
CANON-VE EXCHANGE
INF BUY
5G3 BUYS
PAST BOUGHT
-EN BOUGHT
- IRG BUYING
PRULES { (OK (HUMAN ORGANIZATION) BUYER)
(OK (PHYSOBJ) THINGBT)
(FROM (HUMAN ORGANIZATION) SELLER)
(FOR (MONEY) THINGGIVEN)
(AT (PLACE) LOC)
(IN {PLACE) LOC)
(OK (DAYPART) TIME)
) (I8 (DAYPART) TRME) )
GRULES { (BUYER ACTIVE THINGBT (FROM SELLER)
{FDR THINGGIVEN) )
(THINGBT PASSIVE (FROM SELLER})
{FOR THINGGIVEKN) ) )
L-COST
WORDCLASS VERB
CANON-VE EXCHANGE
INF cosT
GRULES ( (THINGBT ACTIVE (BUYER) THINGGIVEN) )
L-PAY
WORDCLASS VERB
CANON-VB EXCHANGE
INF PAY
GRULES { (BUYER ACTIVE (SELLER) (THINGGIVEN)
(FOR THINGBT) ) )
1-MAN
WORDCLASS NOUN
s MAN
PL MEN
SPOSS MAN'S
PLPOSS MEN'S
MER (HUMAN)
L-WHEN
WORDCLASS QWORD
1 WHEN
MKR {DAY DAYPART)
EXCHANCE
SURF-VB {1L~BUY L~SELL L-PAY L-COST)

TABLE 1
Some lexical structures

Since semantic class
in determining deep cases,
lexicon contains a special attribute (MKR) on its
property list; this specifies the semantic classes
vhich the noun belongs. Interrogative pronouns and
adjectives (QWORDS) also have the attribute MKR.

information will be useful
each noun entry in the

to

The application of the
sing grammar to an input
in the case of questions)
For example:

WHO BOUGHT A CAKE AT THE NEW BAKERY FROM THE BAKER,
will cause the production of the intermediate struc-
tures:

transition network par-
sentence produces two
intermediate structures.

(three,
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Yerbal constituent:

(CANON-VR EXCHANGE MODAL (TENSE PAST MOOD INTERROG
CASE AFFIRM) )

NP=PP conatituents:

{ (OK {PHYSOBJ) (TOK L-CAKE DET INDEF NEBR §))
(AT (PLACE) (TOX L~-BAKERY DET DEF
HER S MOD (AGE L-NEW)))
(FROM (HUMAN) (TOK L-BAKER DET DEF HNBR $)) )

QWORD constituent:

(OK {HUMAN) (TOK L-WHO))

The Verbal constituent indicates
underlying the sentence as well

ity. The NP-PP constituents
PP components of the

the canonical verb
as the sentence modal-
list specifies the NP and
input sentence in the order in
which they appeared. Each such component is repre-
sented by a triple: the first entry in the triple
indicates the syntactic form (PP, or OK in the case of
NP) in which the component appeared; the second entry
indicates the semantic classes associated with the
component (copied from the lexicon); the third entry
is an even-order list describing the nature of the
component (as given in the input sentence). The
appearance of a QMORD in an interrogative sentence
will cause a QMORD constituent to be produced: this
is a triple having the same form as a (single) NP'PP
constituent.

The final stage in mapping English sentences
canonical structures consists of correlating the
entries in the NP-PF constituents list, and the QMNORD

into

constituent if present, with the PRULES associated
with the Surface verb. Basically, for each NP-PP con-
stituent a search is made through the first entries of

successive PRULES for a preposition or OK which matches
the first entry of the NP-PP constituent; when a candi-
date is found, the rule's second entry is matched
against the second entry of the constituent: if the
two lists (sets) of semantic markers have a non-null
intersection and the deep case indicated by the third
entry of the PRULE triple is not already assigned,

then that deep case is associated with the constituent
as shown below. Once the NP-PP constituents have been
assigned their appropriate cases, the QMORD constituent
(if any) is considered; the matching process is essen-
tially that described above, except that all the unas-
signed cases which match are collected in a list to be
paired with the attribute ARGS. The resultant struc-
ture is assigned the pseudo deep case label Q. Thus
the final structure ("canonical structure") produced
by the parser for the indicated input sentence is:

(CANON-VB EXCHANGE MODAL (TENSE PAST MOOD INTERROG

CASE AFFIRM)
SELLER (TOK L-BAKER DET DEF NBR S)
THINGBT (TOK L-CAKE DET INDEF NBR S)
LOC (TOK L-BAKERY DET DEF NBR S MOD
Q (ARGS (BUYER) TOK L-WHO) )

(AGE L-NEW))

The purpose of the parser
expressive "front end" to the modeling system; the ver-
sion described is (so far) limited to (possibly con-
joined) simple, active sentences without embeddings.
Work is in progress to extend the parser to include
passives and several types of embedded sentences.
ural extensions include: (1) more complex PRULES,
which explicitly express the order of NP's and PP's in
the constituents list; (2) a more intelligent correla-
ting algorithm, which is able to recognize NP comple-
ments and relative clauses; (3) PRULES for nominalized
verbs and nouna modified by PP's; and (4) a richer
variety of syntactic and semantic markers.

is to provide a simple,

Nat-
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The Modeling System

The purpose of the modeling system is to inte-
grate the collection of facts or concepts presented to
the system through the parser. Three distinct types
of concepts must be encoded: (1) objects; (2) rela-
tionships between objects; and (3) changes in rela-
tionships with respect to time. The modeling system
uses an encoding procedure analogous to that used in
motion pictures, recording changes in relationships
with respect to time by a sequence of "still photo-
graphs.” The "still photos" of the modeling system
are graphs (nets) representing the state of the world
at an instant in time. Nodes in the graph stand for
objects, and arcs represent static (binary) relation-
ships between objects. (No time relationships are
included.)

Figure 2 is an example of a state-of-the-world
graph (SWG). Node names beginning and ending with
asterisks (depicting GENSYM atoms) represent particu-
lar objects in the real world. Other node names are
words in the system's lexicon. Consider the node
labeled *JOHN*. *JOHN* is an element of L-JOHN and
L-GROCER. L-JOHN is the set of all Johna, a subset of
L-MAN, the Set of all men. L-GROCER is the set of all
grocers. Hence, *JOHN* is a node representing a par-
ticular man who is a John who is a grocer. ThiB John
owns a particular house, *JHOUSE*. Further, John is
at that house, owns an old, red car and is fat.

To model changes in relationships with respect
to time, a sequence of SWGs, analogous to the sequence

of still photographs of motion pictures, is defined.
The sequence of events causing changes in the state of
the world is recorded on a time line (see Figure 3).
Each node on the time line corresponds to an event.
Beginning with some initial state, the state of the
world following any event may be determined by consid-
ering the sequence of events along the time line.
Associsted with each event are a list of relationships
which held before the event took place but which are
no longer valid after the event (the delete list) and
a list of relationships which did not hold (or at least
were not known to hold) before the event took place but
which are valid after the event (the add list). Thus,
each node on the time line models a Bet of changes in
the state of the world produced by the occurrence of
some event. When known, a canonical verb and a set of
parameters which describe the event causing the changes
are also associated with a time line node. Not all
event parameters need be known ("John bought something
st the bakery."), but the more parameters which are
known, the better the event is specified.

The language processing system begins operation
with a SAMG depicting only lexical information. As des-
criptions of events are given as inputs, nodes are
added to the time line. With each new event, certain
relations (those on the event's delete list) are de-
leted from the current SAMG and new relationships (those
on the add list) are added, transforming the old pic-
ture of the state of the world into a new picture show-
ing conditions after the event. To answer questions
about relationships in the past, the "movie" may be run
backwards by considering the sequence of events in
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reverse order and deleting the adds and adding the "precondition list" which the robot uses in determin-
deletes. Once a question is answered, an analogous ing a legal sequence of operations. Since our system
forward process resets the SMG to reflect current receives a chronological accounting of events, the
conditions. necessity of precondition lists for determining event
sequence is eliminated. There is, however, a related
Questions regarding the nature of events them- problem:  suppose that part of the input to the lan-
selves (as opposed to questions concerning relation- guage processor is "John bought a clock at the hard-
ships which are altered by events) are answered by ware store. Then John bought a cake at the new bak-
consulting the record of events on the time line. ery." Note that John was at the hardware store when
he bought the clock. The next event has him buying
As an example of a time line node, consider how a cake at the new bakery. Before the event at the
the event "John traded his car to Tom for Tom's boat" bakery could take place (as a precondition to the
would change the SAMG of Figure 2. The relationships bakery event), John must have gone (perhaps by a com-
(OWNS *JOHN* *CAR*) and (OWNS *TOM* *BOAT*) would no plex route) from the hardware store to the bakery.
longer be true. (OWNS *JOHN* *BOAT*) and (OWNS *TOM* Thus, the necessity of satisfying preconditions clearly
*CAR*) would become true. Hence, a time line node remains a problem even when the event sequence is
like the left node of Figure 4 would be produced. given. The precondition problem has become the problem
of determining the nature of unspecified Intermediate
Events as operators events which Bet the stage for the accomplishment of

Since an event transforms one state of the world specified events.

into another, It Is reasonable to think of events as

operators. Pursuing this notion, a canonical verb The nature of these unspecified intermediate
becomes the name of an event procedure (or operation) events may, to a large ex‘ge'nt, be determined bY the
which transforms the state of the world (an implicit preconditions of the specified events. Returning to
parameter) and a set of explicit event parameters into the example, before "John bought a cake at the new
a new state of the world. The event procedures to be bakery" some event must have occurred which deleted
presented here closely parallel the operators used by the relation that he was at the hardware store and
the STRIPS robot (3). added the relation that he was at the bakery. (In
general, EXCHANGE events must be preceded by events
An integral part of any STRIPS operator is the which bring the participants in the event to the place
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of exchange, etc.)

In the place of the preconditions used by STRIPS
robot operators, an event procedure substitutes the
add and delete lists of an unspecified intermediate
event which transforms any state of the world into a
state satisfying the preconditions of the main event.
That auch an event must have occurred la implied by
the sequence of specified events. Thus, a call to an
event procedure causes two events to be incorporated
into the model, creating two nodes on the time line.

An example of an event procedure, a simplified
version of EXCHANGE, is shown below.

procedure call
EXCHANGE(seller buyer thingbt thinggiven loc)

list
(AT thingbt *)

Intermediate event delete
((AT seller *) (AT buyer *)
(AT thinggiven *)

OWNS * thingbt) (OWNS * thinggiven))

add list

intermediate event
((AT seller loc) (AT buyer loc) (AT thingbt loc)
(AT thinggiven loc) OWNS seller thingbt)

OWNS buyer thinggiven))

main _event delete list
(OWNS buyer thinggiven) (OWMS seller thingbt))

main event add list
(OWNS buyer thingbt)

OWNS seller thinggiven))

Consider the actions performed by the event pro-
cedure EXCHANGE if the system is presented with the
event "At the new bakery John bought a cake from the
baker" while in the state shown In Figure 2. By a
mechanism to be discussed shortly, the system finds
the SAG node *JOHN* which represents the particular
John under discussion and creates nodes *BAKERY*,
*CAKE* and *BAKER* to represent the bakery, the cake
and the baker. Relationships integrating these new
nodes into the original graph are also produced. With
these nodes aa arguments, procedure EXCHANGE Is
entered by the call

EXCHANGE(*BAKER* *JOHN* *CAKE* NIL *BAKERY™)

where NIL represents the unspecified parameter

"thinggiven." The effect of the call on the time
line Is shown in Figure 5, Stepping through the
procedure:

1) A time line node is created for the inter-
mediate event. Since the nature of the event Is un-
known, no canonical verb or event parameters are

linked to the node.

2) Working down the intermediate delete list of
the event procedure, (AT seller *) is considered first.
An attempt is made to match this relationship against
those encoded in the SWG. The asterisk is allowed to
match anything, but "seller" is bound to *BAKER*.
Thus a matching relation must be of the form
(AT *BAKER* --). Since no auch relation exists in
the SWG, no action is taken. The next relationship
on the delete liat is (AT buyer *) wich matches
(AT *JOHN* *JHOUSE*> in the SWG. Hence,

(AT *JOHN* *JHOUSE*) is deleted from the SAG and Is
put on the delete list of the time line node. The
relationships (AT thingbt *), (AT thinggiven *),
OWNS * thingbt) and (OM\S * thinggiven) match noth-
ing in the SAG and hence cause no action.

3) Working down the intermediate add list,

(AT seller loc) causes (AT *BAKER* *BAKERY*) to be
added both to the SAG and to the intermediate time
line node add list. Likewise, (AT *JOHN* *BAKERY*)
and (AT *CAKE* *BAKERY*) are added. Since thinggiven
is bound to NIL, (AT thinggiven Loc) causes no
action. Proceeding down the add list,

OMS *BAKER* *CAKE*) is added while the relation
(OWMNS buyer thinggiven) causes no action.

4) A time line node 1B set up for the main
event. Labeled arcs are created to link the event
node to event parameters and the canonical verb
EXCHANGE.

5) By working down the main delete list of the

event procedure, (OMS *BAKER* *CAKE*) is deleted.
6) By working down the add list,

OMS *JOHN* *CAKE*) is added.
By this procedure the original SAG is trans-

formed into an intermediate state in which John and
the baker are at the bakery and the baker owns the
cake. This intermediate state is then transformed
into a state in which John and the baker are still
at the bakery, but John owna the cake.

Linking the parser to the modeling system
To see how parser output la utilized by the
modeling system, consider the input sentence

"At the new bakery John bought a cake from the
baker,"

which

(CANON-VB EXCHANGE
MODAL (TENSE PAST
SELLER (TOK L-BAKER

ia parsed into

MOOD INTERROG CASE AFFIRM)
DET DEF NBR SING)
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BUYER (TOK L-JOHN NBR SING)
THINGBT (TOK L-CAKE DET INDEF NBR SING)
LOC (TOK L-BAKERY DET DEF NBR SING

MOD (AGE L-NEW)))

The CANONVB indicates which event procedure
must eventually be called. Each deep case argument
cited explicitly by the parser output indicates an
event parameter which must be bound to some node in
the SWG, (Other event parameters are set to NIL.)

If no appropriate SAG node exists, one must be created.
To do this a routine, FOC (find or create), is called
with a parameter's property list as its argument. If
the parameter's determiner is indefinite, then FOC
simply creates a new node in the SAG satisfying the
other properties on the property list. Thus, when

"a cake" is-mentioned, FOC creates a new cake and
does not concern itself with whether or not this new
cake is some cake already modeled in the system.
(Should it later be determined that two nodes actu-
ally model the same entity, a special COLLAPSE func-
tion is used to merge them.) |If the parameter's
determiner is definite (or unspecified), then FOC
attempts to find an existing node in the graph satis-
fying the description of the noun. Thus, when FOC is
to return the name of a node corresponding to "the
new bakery" it assumes that a new bakery has been
talked about before and it looks for a node in the
SAG which could be representing that bakery. If more
than one such node is found, the last one mentioned

is returned. (Each time a node is used a use-time is
associated with it.) If no such node is found, one
is created.

The value of the attribute TOK on a parameter's
property list is assumed to be the name of a node
representing a set of entities of which the value of
the parameter is an element. In the case of the
parameter SELLER, L-BAKER is the name of a set of
which the value of SELLER must be a member. Words
such as L-BAKER, L-JOHN, L-CAKE, etc., are entered in
both the system's lexicon (for use by the parser) and
the SAG before processing begins. Certain primitive
relationships among the sets named by these words are
also preset. For example, the relation (SUBSET
L-JOHN L-MAN) is preset in the SWG  Thus, whenever
a John is mentioned he becomes an element of the set
L-JOHN, a subset of L-MAN, and is therefore known to
be a man.

The parameters for "At the new bakery John
bought a cake from the baker" are processed from the
parser output as follows:

1) The SELLER is determined. FOC looks for an
x in the SAG such that (ELEMENT x L-BAKER). Finding
no such x, one is created (call it *BAKER*) and it
becomes the value of SELLER. (During this process
(ELEMENT *BAKER* L-BAKER) is encoded in the SWG.)

2) The BUYER is determined. FOC looks for an
x such that (ELEMENT x L-JOHN). It finds *JOHN*
which becomes the value of BUYER

3) The THINGBT is determined. Since the deter-
miner is Indefinite, FOC creates a new node, *CAKE*
such that (ELEMENT *CAKE* L-CAKE).

4) The LOC is determined. In this instance
the job of FOC Is complicated by the presence of the
modification. FOC looks for an x such that
(ELEMENT x L-BAKERY) and (AGE LNEW x). Finding none,
FOC creates such an x and makes it the value of LOC.

Once the values of parameters have been deter-
mined, the system calls the event procedure EXCHANGE
to encode the event. It is important to note that
relationships encoded in the SAG during the process
of defining new nodes to serve as parameters are not
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entered on the add or delete lists of the event's time
line nodes. Thus, the new nodes are not eradicated if
the model's time frame is backed up over the event.

For example, the model will always know who "the baker"
is.

Processing interrogative sentences

The processing of Interrogative sentences closely
parallels that of declarative sentences so far as the
determination of parameters is concerned. Of course,
rather than direct the system to change the SAG and
extend the time line, questions cause the SAG and time
line to be examined. There are three basic types of
questions the system can answer.

An example of the first type is "What man bought
a cake at the bakery?" Questions of this type are
answered by examination of the time line. For the
current example, a search down the time line (toward
the past) is conducted until an event is found whose
event class is EXCHANGE and whose LOC parameter has
the value *BAKERY*. When such a node is found a test
Is made to see if the value of the THINGBT parameter
Is an element of L-CAKE. This test being passed
another test is performed to determine if the value
of BUYER is an element of L-MAN. If this test is
passed then the value of BUYER is the answer to the
question. Either the value of BUYER (a noun entity
node) or the parent event node may be passed to the
response generator. The generator, as will be seen
shortly, produces either a noun phrase or a complete
sentence answer, respectively.

An example of the second type of question is
"What did the baker own before John bought something
at the bakery?" The parser splits the question into
two parts. A search similar to the one just described
is used to find a node on the time line corresponding
to the event "John bought something at the bakery."
The SAG Is then backed up to just before that event
and the system Investigates the SAG for an x such that
OMS *BAKER* x). If such an x is found, it is the
answer to the question.

An example of the third type of question iB "What
did the baker own before John owned a cake?" To
answer this question the SAG is stepped back until a
state is found in which OMS *JOHN* x) and
(ELEMENT x L-CAKE) are true. Then the SAG is stepped
back until one of these relationships is no longer

true. Finally, the SAG is stepped back until
OWNS *BARER* z) is true for some z. |If such a z can
be found, it is the answer to the question.

The Generator

The generation of English responses from the
semantic nets produced by the modeling system is accom-
plished with another AFSTN grammar. In parsing, the
input string (English) controls the transitions of an
AFSTN parsing program which produces a canonical struc-
ture as a side effect. In generation, the transitions
are similarly controlled by a "sentence;" the side
effect in this case is an English string. The genera-
tor, like the parser, makes use of special lexical
information: this information may be regarded as the
inverse of CANONVB and PRULES. Associated with each
canonical verb is the attribute SURF-VB which links
the canonical verb to surface verbs which may be used
to express it; in order to relate deep case structures
(semantic nets) to the syntactic patterns of surface
verbs, each surface verb has the attribute GRULES on
its property list. Table 1 contains some examples of
generation rules (GRULES).



The use of SURF-VB and GRULES is probably best
illustrated by example -- consider the second semantic
net fragment (in time) in Figure 4, based on the
canonical verb EXCHANGE. From the SURF-VB property of
EXCHANGE (ref. Table 1), such an event may be seen to
be expressible as "buying," "selling," etc. In any
desired fashion (perhaps by random choice) any one of
these verbs may be selected. Suppose L-BUY is chosen.
The lexical fragment in Table 1 shows two GRULES
associated with L-BUY: the first --

(BUYER ACTIVE THINGBT (FROM SELLER)
(FOR THINGGIVEN)) --

is chosen. This then becomes the control "sentence"
to be "parsed" by the generation grammar.

The first element in the rule, BUYER, Indicates
that an NP is to be generated (as what is commonly
called the subject of the sentence) from the node
satisfying the deep case relationship BUYER with
respect to the event node (in Figure 4); *MARY*.

By some method to be discussed later, this NP genera-
tion produces the string MARY, The second element in
the rule, ACTIVE, indicates the voice in which the
sentence is to be generated. The Verb String genera-
tion -- discussed by Simmons and Slocum (4) -- pro-
duces (for instance) BOUGHT. The next element in the
rule, THINGBT, indicates that an NP is to be generated
from the node satisfying the deep case relationship
THINGBT with respect to the event node in Figure 4.
*BOAT*. This NP string might be THE BOAT. The next
element, (FROM SELLER), indicates that the node *JOHN*
may (parentheses indicate optionality) be generated,
and if so, as a pp using the preposition "from." This
might result in FROM JOHN. The last element in the
rule, (FOR THINGGIVEN), allows the node ~DOLLAR* to be
generated as a PP with the preposition "for," result-
ing in FOR 50 DOLLARS. Since the entire GRULE has
now been "parsed," the generator simply concatenates
these intermediate resultB and returns the sentence:

MARY BOUGHT THE BOAT FROM JOHN FOR 50 DOLLARS.

Without going into detail, it can be seen that the
choice of L-PAY and the rule (BUYER ACTIVE (SELLER)
(THINGGIVEN) (FOR THINGBT)), when applied to the
identical deep structure, would result in the output
sentence:

MARY PAID JOHN 50 DOLLARS FOR THE BOAT.

It is also worth noting that the choices L-COST and
the rule (THINGBT ACTIVE (BUYER) (THINGGIVEN)) might
produce the sentence;

THE BOAT COST MARY 50 DOLLARS.

This obviously contains less information than the
underlying structure as seen in Figure 4, but note
that the verb "cost" does not allow the inclusion of
the SELLER.

Now consider the problem of generating a sentence
from an incomplete underlying structure: delete the
THINGGIVEN attribute (or arc) from the example net.

If generation is attempted with the same verb and rule
choices as in the last example, a non-sentence would
be returned:

THE BOAT COST MARY.

Thus the choice of surface verbs and rules is not
entirely free; It Is necessary that some mechanism
test a tentative pattern against the data base net to
insure that the required arguments (those not paren-
thesized) are present in the net. In this example,
one may see that the last rule element -- THINGGIVEN —
is not in the (altered) net, thus eliminating this
particular GRULE; this, in turn, eliminates the verb
L-COST from consideration. Note that any of the other

GRULES in Table 1 would be acceptable, Bince in all
these instances the presence of THINGGIVEN in the
output string is defined to be optional.

It is possible that one might not wish the system
to consistently generate the maximally informative
sentence allowed by a rule, even though all elements
be present in the data base. For Instance, since
several of the rules indicate the optionality of case
relations SELLER and THINGGIVEN, one might wish to
allow their deletion from the sentences produced --
or, better yet, their non-generation, A sentence
example (again, from Figure 4) is:

MARY BOUGHT THE BOAT FOR 50 DOLLARS.

This "deletion" could be handled through explicit
storage of all of the variants of a rule, with some
optional element(s) deleted from each rule; however,
this is unnecessarily redundant. Instead, the
grammar itself may be constructed so as to allow for
this possibility — perhaps by random omission of
optional NP or PP constituents, or by any other heu-
ristic which the grammar writer may wish to employ.
(Our system does not perform any of this constituent
deletion.) The problem to be recognized here is that
one would prefer not to allow the possibility of
generating a response (to a question) in which the
desired information (the answer) has been "optionally
deleted." However, there is an additional possibility
for answer generation (which our system does employ)
which solves this problem: "answer-only" generation.

Noun Phrase Generation

Most (spoken) answers to questions are not sen-
tences, but rather (noun) phrases; thus there is no
reason why a mechanical answer generator must be
constrained to the production of "complete" sentences.
By happy coincidence, the AFSTN system allows initial
control to pass to any node in the grammar -- the
language processor employs this facility in sometimes
choosing to generate an NP rather than an S.

Consider Figure 4, The simplest answer to the
question "Who sold the boat?" is the NP "John."
"Mary" is the answer to the question "Who bought the
boat?" Now if the response node selected by the
modeling system is an event node, then the generator
should produce an S. But most often the response is
an entity node -- Since the modeling system is biased
to reply with an entity node if possible. In this
case, an NP is to be generated. The generation of
NP's as answers to questions is in every way identi-
cal to the generation of NP's within sentences. Now
since the generation of JOHN from the node in Figure 4
labelled *JOHN* would not particularly clarify any
problems in NP generation, we shall consider the
example network in Figure 2 and see how an NP is pro-
duced in some "worst case."

The node labelled *WAGON* in Figure 2 is an exam-

ple of an entity node: it corresponds on a one-to-one
basis with some particular object in the real world
known as wagon — or, more accurately, it corresponds

to a .set of (15) wagons. OLD, 15, RED, LITTLE, and
RICKETY are predicated about this set. Thus this
entity has attributes AGE, NUMBER, COLOR, SIZE, and
CONDITION.  While all of these predicates may be
thought of as MODifiers, there is a good reason for
being more precise, as we shall see. Now Figure 2
indicates that these propositions about *WAGON* appear
much like event nodes (see Figure 4) -- having
directed, labelled arcs which point to an entity node.
These labels might even be considered "case relations.
But there is one Important distinction; events are by
nature one-time objects — they "happen,” then they
are over; a proposition, on the other hand, is static,



it "goes on and on," until something (an event)
which changes its "truth value."

occurs

If one were to randomly generate the modifiers of
*WAGON* in the course of generating that node as an
NP, the result might be:

THE OLD RICKETY 15 RED LITTLE WAGONS,

or, THE LITTLE 15 RICKETY OLD WAGONS,

or, THE 15 LITTLE OLD RICKETY WAGONS.
Only the last is recognized as being acceptable. What
makes it different from the others, obviously, is the

ordering of the modifiers. (Winograd (5) ordered his
modifiers.) Thus it is seen that the presence of the
"case relations" between propositions and their ref-
erents can aid in controlling NP generation -- espe-
cially in view of the fact that one might posit a con-
trol string which would control Np generation much
like those wused to control S generation. The accep-
table (3rd) example above would indicate that one
proper control string is:

(NUMBER SIZE AGE CONDITION COLOR)

Now the NP grammar has the relatively simple task of
"parsing" such a control string in order to generate
modifiers in an acceptable order. For simplicity,
proper nouns and certain others (like mass nouns) do
not normally take determiners; other nouns take the
definite determiner "the" by default.

Conclusions

information is
into canonical form.

It might be argued that certain
lost when a sentence is mapped
For example, given

JOHN SOLD THE CAR TO BILL
It might seem that JOHN ts in some sense the initiator
of the action -- but this is not necessarily true.
Instead, it is more likely that the speaker chose to
"foreground” JOHN for reasons of discourse develop-
ment (or whatever). The choice of "subject" and
"object"” In a sentence is apparently important to
thematic development and anaphoric resolution (6, 7),
yet it is not at all clear that such syntactic infor-
mation need appear in the final representation of the
meaning of the sentence.

The strict chronological sequence demanded by the
modeling system causes input texts to make very boring
reading. Rather than being restricted to time line
growth on the right, tense and other time clues pro-
vided by the input sentences (8) should be able to
guide the insertion of events into the history portion
of the time line. Even with such extension, the sys-
tem would still be unable to account for simultaneous

events, or the occurrences of events in an unknown
order. Both of these problems could be solved, how-
ever, by generalizing the time line to be a partially-

ordered graphm

It is apparent that the generation of a reason-
able number and variety of English sentences is indeed
a simple task, when using the AFSTN system and "par-
sing" a control string drawn from the lexicon. Yet
unimplemented extensions of this scheme would allow
imbedded sentences and occasional "fronting" of cer-
tain (prepositional) phrases -- typically those expres-
sing time.

This language processing system has been imple-
mented in GROPE, a graph processing language (9, 10)
on the CDC 6600 at the University of Texas. The sys-
tem has proven to be quite satisfactory in answering
questions relating sequences of events -- indeed, for
sequences which follow no particular pattern, it is
generally faster and more accurate in answering
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questions than a human competitor. (Response time for
most questions is in the neighborhood of two seconds on
a time-sharing system, and the actual processing time
is of course less than that.) More extensive documen-
tation of the system and its support is available in
Matuszek & Slocum (11), Thompson (12), Hendrix (13),
and Slocum (14).
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