Session 15 Robot Problem Solving

PROVING THE IMPOSSIBLE IS IMPOSSIBLE IS POSSIBLE:
DISPROOFS BASED ON HEREDITARY PARTITIONS*
L. Slklossy and J. Roach
Department of Computer Sciences

University of Texas, Austin, U.S.A.

Abstract

A novel technique, called hereditary partitions, is
Introduced. It permits the rigorous proof that, in
a given axiomatization, certain states can never be
reached. The technique is implemented in a computer
program, DISPROVER, and is applied to robot worlds.
DISPROVER cooperates with a path-finding program when
the latter encounters difficulties.

Key words: Robot Planning; Impossible Tasks; Theorem
Prover; Statement Disprover; Disproof; Hereditary

Properties; Hereditary Partitions; Problem Solving.

1m Introduction.

Theorem proving and problem solving programs are some-
times successful in finding a proof to an actual the-
orem, or in solving a problem which does have a solu-
tion. On the other hand, presented with an expression
which is not a theorem, or with an unsolvable problem,
the programs are generally incapable of discovering,
in a positive sense, that the expression Is not a the-
orem, or that the problem is indeed unsolvable. The
usual diagnostic would be: "I cannot solve the prob-
lem, because my resources are exhausted, or because |
am stuck somewhere. However, the problem may be solva-
ble. | just don't know."

We are interested in developing programs which, given
a problem, will try to solve it. If they cannot solve
the problem, they will try to show that it cannot be
solved, A program which performs the last function
will be called a disproving program. To build such
programs, we use a technique which we named hereditary
partitions m This technique has some generality and
forms our basis for a program, DISPROVER, which has
been applied to disprove goals in robot worlds, i.e.
DISPROVER proves rigorously that, for a given set of
axioms, operators and an initial world, there is abso-
lutely no way to attain some particular goal.

DISPROVER also cooperates with another program, LAWALY,
which tries to find paths to goal states. Sometimes,
when LAWALY cannot solve a (solvable) problem, DIS-
PROVER -which clearly cannot disprove the solvable
problem- gives LAWALY additional information which per-
mits a solution to be found.

We shall now describe some additional motivation for
our work, discuss the related technique of hereditary
properties -which is a degenerate case of hereditary
partitions- and give several examples of disproofs,
terminating with examples of cooperation between DIS-
PROVER and LAWALY.

2. Why Disproofs?

Somehow, it is much more romantic and challenging to
show that, in the whole wide world, there is absolute-
ly no way that something can be proved, than to find
one, of possibly many, proofs to some theorem. More-
over, work on robots introduces a practical -and neces-

sary- application of disproving programs. In robot
problem solving systems, parts of the physical world,
including some of the robot's capabilities, are simu-

lated as a model. It is desirable that the model con-
form reasonably closely to the physical world, other-
wise the robot may "think" that it can do some things

*Work partially supported by grant GJ-34736 irom the
National Science Foundation.

383

-which are in fact impossible- or cannot do some other
things -which are in fact possible-. For example, in
[1], the robot can be in two different places at the

same time.>

3. Some Techniques for Disproofs.

Many systems of interest, such as predicate calculus,
are undecidable, I,e. for a given statement in the sys-
tem it Is not possible to determine, in general, whether
a given statement in the system can or cannot be proved.
If, in a particular case, we wish to show that a state-
ment is not a consequence of some axioms, the standard
procedure is as follows: find a model in which the
axioms are true, but the statement is known to be false.
Such model building is truly an art, and is acquired
through much experience. The automatic building of dis-
proving models appears beyond the present state of the
art.

Since predicate calculus has been of great interest to
workers in artificial intelligence, some additional
comments ore in order. Given a well-formed formula
wff in predicate calculus, three exclusive cases are
possible:

a) wff is a theorem.

b) iwff is a theorem.

c) neither a) or b). In this case, -iwff is also in
category c), This last case is by far the most common,
in the sense that, given a finite vocabulary of con-
stants, variables, function and predicate names, the
number of well-formed formulae of a given length in
category c) far surpasses the number of formulae in
categories a) and b),

Given a wff in categories a) or b), a theorem prover
based on resolution, for example, can determine after
a finite time -which, in general, cannot be calculated
in advance- in which of the two categories the wff be-
longs. To obtain this result, the theorem prover could
time-share its efforts between trying to prove the in-
consistencies of both wff and -|wff. However, if the
wff Is in category c), then usually the theorem prover
will go on forever. In only very few cases will the
theorem prover stop because no new clauses are genera-
ted: a disproof of the wff has then been obtained.

A disproving program in predicate calculus would at-
tempt to determine that a wff is not in category a).
The above discussion shows that present theorem provers
are at best very weak disproving programs.

It should also be noticed that a proof of the attaina-
bility of the negation of a statement does not imply
that the statement itself can be disproved. For exam-
ple, if a light can be turned on and off (at different
times) then the statement STATUS(LIGHT ON) and its nega-
tion -STATUS(LIGHT ON) are both attainable, and hence
neither can be disproved.

While the theorem proving approach gives results in far
too few cases, and model building is too often ad-hoc,
a disproving technique with some generality has been
called hereditary properties (see [4] for some examples).
Consider a checkerboard from which we remove two oppo-
site squares. This mutilated checkerboard cannot be
covered by dominoes. To obtain a disproof, we notice
that whenever we add another domino on the checker-
board, the number of white and black squares that have
been covered remains the same. This property -the
equality between the number of black and white squares

that have been covered- is hereditary, that is it does
not change ae any allowable move -putting a domino on
the checkerboard- is performed. The disproof is com-
plete when we notice that, in the mutilated checker-
board, the number of black squares does not equal the
number of white squares, (the difference is two.)

The technique of hereditary properties can be summaz
rized as follows:

-the original state(s) of the model has (have) some
property,

-whenever a state has this property, all states ob-
tained from it by all allowable moves still have this
property,

-the goal state which we are trying to attain does not
have this property.

Hence the goal is unattainable.
ed'.)

WWMW. (what we want-

4. Hereditary Partitions.

Hereditary partitions generalize the basic idea of
hereditary properties. The technique of hereditary
partitions can be summarized as follows:

-call the set of all states that can be achieved from
the original state(s) by all legal sequences of moves
the attainable world.

-the attainable world can be partitioned
partitions.
tition,
-the goal state which we are trying to attain does not
belong to any of the partitions. Hence the goal is
unattainable.

into disjoint
Hence each original state is in some par-

Obviously, hereditary properties correspond to the case
where there is only one partition.

We notice that if we apply a legal move to a state in
some partition, we obtain a state in the same or some
other partition. We can say that partitions are closed
under legal moves. In fact, as long as this closure
property is maintained, we might just as well add to
the partitions some unattainable states (i.e. states
which are "meaningless") if that makes life simpler.
Even further, to the partitions containing some attain-
able stares we can add some partitions containing no
attainable states. The disproof is still complete if
this expanded set of partitions is closed under legal
moves -i.e. from one partition in the set any legal
move leads us to the same or some other partition in
the set- and if the goal state that we are trying to
disprove is not in any of the partitions.

In practice, the problem is, of course, to build the
appropriate partitions. We shall see an example in the
next section.

5. Example of a Disproof using Hereditary Partitions.

We shall consider robot worlds axiomatized in a manner
similar to that used in [I]. The world is described
as a set of predicates, for example HEXTTO(ROBOT BO0X2),
Moves in the world are operators which must satisfy
some preconditions, and their effect on the world is
specified by a delete set and an add set.

Let us consider a subworld of the world in [I]: a ro-
bot and three boxes, BOX1, BOX2 and BOX3, in a room.
The only relevant operators for our problem are (some-
what simplified from [I]).

goto(object), meaning: robot goes next to an object.
Preconditions: ONFLOOR

Delete set: ATROBOT($) NEXTTOROBOT $)*.

Add set: NEXTTOROBOT object).
push(objectl object2), meaning:
next to object2.
Preconditions:
(ROBOT objectl).
*$ means everything. At least that was the meaning
before a series of devaluations'.

robot pushes objectl

PUSHABLE(objectl) A ONFLOOR * NEXTTO

Delete set: ATROBOT($) AT(objectl $) NEXTTOROBOT $)
NEXTTO(objectl $) NEXTTO@$ objectl).

Add set; NEXTTO(objectl object2) NEXTTO(object2 ob-
jectl) NEXTTO(ROBOT objectl).

We assume that boxes are PUSHABLE, that the robot could
climb on and off boxes, and possibly do a lot of other
mischievous actions, none of which would help her get
two boxes next to each other. We now wish to solve the
problem: get the three boxes next to each other, i.e.
find a path from an original world which includes:
ONFLOOR ATROBOT(A) AT(BOX1 Al) AT(BOX2 A2) AT(BOX3 A3)
to a goal state which includes:

NEXTTO(BOX1 B0X2) NEXTTO(BOX2 BOX3).

A solution is: goto(BOXI), push(BOXI B0X2), goto(B0X3),
push(B0OX3 B0X2).

However, a more symmetric description of the goal state
answering the statement "the three boxes are next to
each other" would be:

NEXTTOBOXI B0X2) NEXTTO(B0OX2 B0X3) NEXTTOBOX3 BOXI).
We shall now give a disproof of this goal, i.e. show
that it cannot be achieved.

The partitions are described in terms of some anchor
predicates and their negations. As a first choice,
DISPROVER chooses the three predicates from the goal as

anchors. We shall abbreviate these predicates as P12,
P23 and P31. The original state belongs to the parti-
tion;

Partitionl; "IP12 *» "P23 A -P31.

This partition contains all states, whether attainable
or not, which satisfy P12 A nP23 and AiP31, i.e.
which do not contain any predicate of the form:
NEXTTO(BOX., BOX." 3y+4), i 1,2,3.

If the robot could juggle she would move into a new
state which would presumably still be in the partition.
All goto operations do not, in turn, make her go out
of the partition. But let us consider: push(BOXI B0X2).
This operator jI£ applicable to partitionl -although not
to the original world, because the robot does not start
next to BOX1-, since the state:

NEXTTO(ROBOT BOXI) 1V12 -T23 -P31

is a member of partitionl. Hence by applying push(BOXI
B0OX2) we move out of partitionl, and must create a new
partition2, specified by:

Partition2: P12 A 1P23 A 1P31.

Similarly, we create partition3

Partition3: TP12 AP23 A *31, and

Partition®: TP12 A iP23 A P31. (see Figure 1.)

From partition2, we can either go to partitionl by
doing, for example, push(BOX2 BOX3); or stay in parti-
tion2 by doing, among other possibilities, goto(BOX2);
or move to a new

Partition5: P12 AP23 A-P31,

by applying push(BOX3 BOX2) to the state including:
NEXTTOROBOT BO0X3) P12 P23 TP31

of partition2. Similarly, we create:

Partition6: P12 TP23 P31, and

Partition?: -P12 P23 P31.

At that point, however, no new partitions can be created'.
Every legal move either leaves the robot in the same
partition, or takes her to one of the other partitions.
Since the goal state is not in any of the partitions,
the disproof is complete. W.WW.

DISPROVER, programmed in LISP 1.5 and run interpreted
on the University of Texas CDC 6600 found the above
disproof, for the complete world of [I], in about 7
seconds.

Another disproof, in the world of [I], concerns the
goal: AT(BOX1 A) STATUS(LIGHTSWITCHI ON), starting
from the original state which includes: AT(BOXL A)
STATUS(LIGHTSWITCH1 OFF). The robot needs to climb on
BOXl to turn on LIGKTSWITCH1, but she is then incapable
of returning BOXI to its original location. The dis-
proof, by DISPROVER, took about 3 seconds; three parti-

tions were built using the anchor predicates from the
goal state.

5.1 Classes of Impossible States.

Given some axiomatization of a world, namely an ini-
tial state and a set of legal moves -operators-, we
can distinguish broadly between two main classes of
impossible goal states:

a) goals including a subgoal which is not satisfied
in the initial state and does not occur on the add
set of any operator. For example, ii the robot can-
not paint, and if COLORBOX1 BLUE) is true initially,
then a goal including COLOR(BOXI PINK) cannot be
achieved, and is disproved easily by DISPROVER using
only one partition.

A variation of this class of impossible tasks occurs
when a subgoal, subgoal., of the goal is satisfied in
the initial world but must be destroyed, i.e. deleted,
to achieve some other subgoal, . Moreover, once de-
leted, subgoal cannot be added by any operator. The
last example in section 5 above is a case in point.

b) Each subgoal. of the goal can be achieved indepen-
dently, but the simultaneous realization of all sub-
goals is impossible, due to "side effects" caused by
the delete sets. The main example in section 5 of the
symmetric NEXTTOBOX. BOX.) is a case in point.

In practice, what is most fun to do is to take someone
else's world and disprove goal states which "intui-
tively" should be realizable!

5.2 Selection and Testing of Operators.

Given a set {U } of anchor
disproof, DISPROVER first
do not add or delete some

predicates in an attempted
discards all operators which
predicate in {U}, since these

operators are clearly irrelevant. The initial world
is intersected with {V} " {P|P'e{u)v IPE(U}} to give
the first partition. All remaining (relevant) opera-

tors are applied to this partition in an attempt to
create new partitions. Whenever a new partition is
created, a test is made to see whether the goal state
is in the partition. If it is, the disproof fails,
and DISPROVER will try to bootstrap itself (section 6.)
Otherwise, the partition is kept, and all relevant
operators will be applied to it to try and obtain yet
further new partitions. In artificial intelligence
jargon, DISPROVER generates partitions breadth-first
until the goal state is found -meaning the disproof
failed for the given set of anchor predicates (see
section 6)- or until no new partitions are found, which
would then complete the disproof.

It should be noticed that with the form of precondi-
tions used, only a few simple set operations are need-
ed to determine whether an operator is applicable to a
partition. If preconditions are generalized to arbi-
trary predicate calculus expressions, or include pro-
cedures, then It may well be impossible to decide
whether an operator is applicable to a partition,

6. Bootstrapping in DISPROVER.

The anchor predicates -which determine the partitions-
are crucial for DISPROVER to be successful. In some
cases, DISPROVER can change its set of anchor predi-
cates. We shall use a disproof as an example of this
capability. We expand the world discussed previously
via an operator gotoloc(loc), meaning: robot goes to
location loc tn room rm.

Preconditions: ONALOOR A 3rm(LOCINROOM(loc rm)).
Delete set: ATROBOT($) NEXTTO(ROBOT $).

Add set: ATROBOT(loc).

We will disprove the state ATROBOT(AI), where Al was
used in AT(BOX1 Al). As in [I], there is no predi-
cate LOCINROOM(A1 x) for any x, hence the task is ob-
viously impossible in the axiomatization.

The initial anchor predicate is obtained from the goal:

385

ATROBOT(AI).

The initial state is contained tn the partition:
Partition!: IATROBOT(AI) .

The state: ONFLOOR LOCINROOM(AI x), for x anything,

is a member of this partitionl -even though it is unat-
tainable-, and the operator gotoloc(Al) can be applied
to this state, to obtain

Partition2: ATROBOT(AI).

Since the goal we are trying to disprove is a member of
partitton2, the disproof fails.

At this point, DISPROVER tries to extend its set of
anchor predicates by adding to those already used, all
those that were preconditions of the operator(s) that
permitted a transition to the partition (here parti-
tion2) which we were hoping not to reach in the dis-
proof. The new set of anchor predicates is:
ATROBOT(Al) A ONFLOOR A LOCLNROOM(A1 x) .

DISPROVER tries again (and will succeed with the dis-
proof, otherwise we would not have chosen this example'.)
The original state is in:

Partitionl: 1ATROBOT(A1) A ONFLOOR A -LOCINROOM(AI x) .
From this partition, if the robot climbs on something,
we can go to:

Partition2: -ATROBOT(AIl) ft 10NFLOOR ft "ILOCINROOM(A1 x) .
However, no further partitions can be generated, com-
pleting the disproof, WWW.

DISPROVER finally fails to find a disproof if -besides
economic reasons of time limit or memory exceeded- no
new sets of anchor predicates are generated during boot-
strapping.

7. LAWALY helped by DISPROVER.

Up to tlits point we have seen DISPROVER working alone.
Now we will consider cooperation between LAWALY and
DISPROVER. In some cases, LAWALY, the path-finder we
use to solve robot planning problems does not find

a path even though one exists. An example will help to
illustrate the difficulties she encounters. Figure 2
shows the initial and final states of the robot world.
The robot must achieve: CLOSEDDOOR) A NEXTTOROBOT
BOX), from the initial state: INROOM(ROBOT A) A CLOSED
(DOOR) A INROOMBOX B). (See Figure 2.) LAWALY may
decide to work first on the CLOSED(DOOR) condition, or
first on the NEXTTOROBOT BOX) condition. Consider the

first case. LAWALY finds the door already closed in
the initial state, so she wants to obtain the NEXTTO
condition. To do that, she must enter Room B, and to

do that go through the DOOR, But that would mean open-
ing the DOOR, and hence undoing what she had already
achieved, -CLOSED(DOOR)-, and so she decides to try the
conditions in the reverse order. To be NEXTTO(ROBOT
BOX), she goes to DOOR, opens it, goes through it, and
then goes next to BOX At that point, she realizes

that she must still close the DOOR, However, that would
make her undo something she wanted, namely, NEXTTOROBOT
BOX), so she quits, having failed.

The problem is now passed to DISPROVER. The anchor
predicates are taken from the goal, and the following
partitions are built:

Partitionl: -NEXTTO(ROBOT BOX) CLOSED(DOOR).
Partttion2: INEXTTOROBOT BOX) ICLOSED(DOOR) .
Partition3: NEXTTOROBOT BOX) -CLOSED(DOOR),
Partition4: NEXTTOROBOT BOX) CLOSED(DOOR).

Since Partition4 includes our goal, the disproof fails.

Partition4 was obtained by applying the operator:
gonext(ob.ject), Preconditions: (ONFLOOR) A 3x(INROOM
(ROBOT x) A INROOM(object x)), to the state interme-
dtary-state: ONFLOOR A INROOM(ROBOT B) A INROOM(BOX B).
DISPROVER suggests to LAWALY that the original problem
might be solved by splitting It up into two successive
problems. The first problem ie to go from the initial
state to a state containing intermediary-state above;
the second problem is to go from there to the final

state. IAWALY does in fact solve the original problem
in this way,

8. A Collaborative Failure.

We now describe a solvable task which is not solved
by the collaboration between DISPROVER and LAWALY.

The initial and final states of the task are shown In
Figure 3. The final state is: ONROBOT BOX) A INROOM
(ROBOT B). Again, for essentially the same reasons as
before, LAWALY fails to solve the problem. DISPROVER
cannot find a disproof (of course, since none exists),
but suggests the intermediary-state:

INROOM(ROBOT B) A NEXTTO(ROBOT BOX). Once more, LAWALY
fails, again due to her stubbornness in insisting on
finishing a subtask completely before starting another
one. DISPROVER finds no disproof (rightly so, since
none exists) with the anchor predicates:

INROOM(ROBOT BOX) NEXTTO(ROBOT BOX) ON(ROBOT BOX).
Moreover, DISPROVER suggests the same intermediary-
state as before, hence the system would begin to re-
peat itself, and failure is accepted.

We are investigating the possibility of LAWALY helping
DISPROVER by communicating information on why she
failed to find a path, thereby helping DISPROVER to
build a more adequate set of anchor predicates. The
results are still sketchy and will not be discussed
here.

9. The Importance of Axiomatlzation.

The problem of section ? could have been solved Imme
diately by LAWALY, without DISPROVER's help, if It had
been further specified as:

CLOSED(DOOR) NEXTTO(ROBOT BOX) INROOMROBOT B). The
problem of section 8 could have been solved immediately
by LAWALY if it had been further specified as:
imOQM(ROBOT 3) ON(ROBOT BOX) INROOM(BOX S). If could
Also be solved immediately by LAWALY if the climbon
operator had specified as parts of its preconditions
that the robot could climb on an object only If both
she and the object were in the same room. Thus, we
can see that the difficulties encountered may be due
to the axiomatization used.

Another way of resolving the difficulties is to "patch"
the goal descriptions to include consequences such as:
a robot is in the same room as the object she is on,
etc. Such a "patch" is a trivial program.

10. Conclusions.

The technique of hereditary partitions permits the
disproofs of statements that cannot be made true. We
have applied this technique to a disproving program
(perhaps the first such program in existence) which
operates in simulated robot worlds. DISPROVER can be
used to ascertain that physically undesirable states
cannot occur in e model. We give examples of collabo-
ration between DISPROVER and a powerful robot planning
system, LAWALY. The axiomatization chosen for the
world greatly influences the performance of the des-
cribed systems.

11. References.

'Fikes, R. E. and Nilson, N. J. "STRIPS: A New Ap-
proach to the Application of Theorem Proving in Prob-

lem Solving," Artificial Intelligence. 2, 189-208,
1971.

’Review of [I]. Computing Reviews. _13, 5, 216-217,
1972.

Slklossy, L. Modelled Exploration by Robot. Techni-

cal Report 1, Computer Sciences Dept., University of
Texas, Austin, 1972.
4

Simon, H. A. On Reasoning about Actions, in: Simon,

386

H. A. and Stklossy, L. (Eds.) Representation and Mean-
ing: Experiments with Information Processing Systems.
Prentice-Hall, Englewood Cliffs, N.J., 1972.

Slklossy, L. and Dreussi, J. A Hierarchy-Driven Robot
Planner which Generates its own Procedures. Technical
Report 11, Computer Sciences Dept., University of Texas
Austin, 1973.

Partirion 1

-NEKTTO (BOX1 BOX2) -MEXTTO(BOX2 BOX3)
SNEXTTO{BOX3 BOX1)

Partition 2

NEXTTO{BOX2 BOX2) “NEXTTO{BOX2 BCXI)
B INEXTTCO(ROX3 BOX1)

Partition 3

REXTTO(BOX1 BOX2) NEXTTO{BOX2Z BOX3)
IREXTTO (BOX3 BOXL)

Particicn &4

NEXTTO(ROX1 BOXZ) NEXTTO(BOXZ BOX3)
NEXTTO(BOX3 BOX1}

Partition 5

NEXTTO(ROX1 BOX2) NEXTTO(BOX2 BOX3)
“INEXTTO(BUX3 BOXI)

Partition 6

NEXTTO (BOX1 BOX2) TNEXTTO(B0X2 BOX3)
NEXTTO(BOX3 BOX1)

Partition 7

| -INEXTTO(BOX! BOX2) NEXTTO(BOX2 BOX3)
¥ NEXTTO(BOR3 BOX1)

Figure 1. Disproof of NEXTTO(BOXI BOX2) *
NEXTTO(BOX2 BOX3) * NEXYTO(BOX3 BOX1).

Daor

INITIAL

INITIAL

Pigure 2,

Figure 3.

387

Doot

Box

FIMAL

FINAL

