
Session 15 Robot Problem Solving
PROVING THE IMPOSSIBLE IS IMPOSSIBLE IS POSSIBLE:

DISPROOFS BASED ON HEREDITARY PARTITIONS*

L. Slklossy and J. Roach

Department of Computer Sciences

Univers i ty of Texas, Aus t in , U.S.A.

Abstract

A novel technique, ca l led heredi tary p a r t i t i o n s , is
Introduced. I t permits the r igorous proof tha t , in
a given axiomat izat ion, cer ta in states can never be
reached. The technique is implemented in a computer
program, DISPROVER, and is applied to robot wor lds.
DISPROVER cooperates wi th a path- f ind ing program when
the l a t t e r encounters d i f f i c u l t i e s .

Key words: Robot Planning; Impossible Tasks; Theorem
Prover; Statement Disprover; Disproof; Hereditary
Proper t ies ; Hereditary P a r t i t i o n s ; Problem Solv ing.

1 ■ In t roduc t ion .

Theorem proving and problem solv ing programs are some­
times successful in f ind ing a proof to an actual the­
orem, or in solv ing a problem which does have a solu­
t i o n . On the other hand, presented wi th an expression
which is not a theorem, or wi th an unsolvable problem,
the programs are general ly incapable of d iscover ing,
in a pos i t i ve sense, that the expression Is not a the­
orem, or that the problem is indeed unsolvable. The
usual diagnost ic would be: "I cannot solve the prob­
lem, because my resources are exhausted, or because I
am stuck somewhere. However, the problem may be solva­
b le . I j us t don' t know."

We are interested in developing programs which, given
a problem, w i l l t ry to solve i t . I f they cannot solve
the problem, they w i l l t r y to show that it cannot be
solved, A program which performs the last funct ion
w i l l be ca l led a disproving program. To bu i ld such
programs, we use a technique which we named heredi tary
p a r t i t i o n s ■ This technique has some general i ty and
forms our basis for a program, DISPROVER, which has
been applied to disprove goals in robot worlds, i . e .
DISPROVER proves r igorously tha t , for a given set of
axioms, operators and an i n i t i a l wor ld, there is abso­
l u t e l y no way to a t ta in some par t i cu la r goa l .

DISPROVER also cooperates w i th another program, LAWALY,
which t r i e s to f ind paths to goal s ta tes. Sometimes,
when LAWALY cannot solve a (solvable) problem, DIS­
PROVER -which c lear ly cannot disprove the solvable
problem- gives LAWALY addi t iona l information which per­
mits a so lu t ion to be found.

We sha l l now describe some addi t ional mot ivat ion for
our work, discuss the re lated technique of heredi tary
propert ies -which is a degenerate case of heredi tary
p a r t i t i o n s - and give several examples of d isproofs ,
terminat ing wi th examples of cooperation between DIS­
PROVER and LAWALY.

2. Why Disproofs?
Somehow, it is much more romantic and chal lenging to
show tha t , in the whole wide wor ld , there is absolute­
ly no way that something can be proved, than to f ind
one, of possibly many, proofs to some theorem. More­
over, work on robots introduces a p rac t i ca l -and neces­
sary- app l ica t ion of d isproving programs. In robot
problem so lv ing systems, parts of the physical wor ld ,
inc lud ing some of the robot's c a p a b i l i t i e s , are simu-
lated as a model. It is desirable that the model con­
form reasonably c losely to the physical wor ld , other­
wise the robot may " t h i nk " that it can do some things

*Work p a r t i a l l y supported by grant GJ-34736 irom the
National Science Foundation.

-which are in fact impossible- or cannot do some other
things -which are in fact poss ib le - . For example, in
[l] , the robot can be in two d i f f e ren t places at the
same time.2 ,3

3. Some Techniques for Disproofs.
Many systems of i n te res t , such as predicate ca lcu lus,
are undecidable, l , e . for a given statement in the sys­
tem it Is not possible to determine, in general, whether
a given statement in the system can or cannot be proved.
I f , in a par t i cu la r case, we wish to show that a s ta te­
ment is not a consequence of some axioms, the standard
procedure is as fo l lows: f ind a model in which the
axioms are t r ue , but the statement is known to be f a l se .
Such model bu i ld ing is t r u l y an a r t , and is acquired
through much experience. The automatic bu i ld ing of d i s ­
proving models appears beyond the present state of the
a r t .

Since predicate calculus has been of great in terest to
workers in a r t i f i c i a l i n te l l i gence , some addi t iona l
comments ore in order. Given a well-formed formula
wff in predicate ca lcu lus, three exclusive cases are
possib le:
a) wff is a theorem.
b) iw f f is a theorem.
c) neither a) or b) . In th is case, -iwff is also in
category c) , This last case is by far the most common,
in the sense tha t , given a f i n i t e vocabulary of con­
s tan ts , var iab les , funct ion and predicate names, the
number of well-formed formulae of a given length in
category c) far surpasses the number of formulae in
categories a) and b) ,

Given a wff in categories a) or b) , a theorem prover
based on reso lu t ion , for example, can determine a f ter
a f i n i t e time -which, in general, cannot be calculated
in advance- in which of the two categories the wff be­
longs. To obtain th is r e s u l t , the theorem prover could
time-share i t s e f f o r t s between t r y ing to prove the in-
consistencies of both w f f and -|wff. However, if the
wff Is in category c) , then usual ly the theorem prover
w i l l go on forever. In only very few cases w i l l the
theorem prover stop because no new clauses are genera­
ted: a disproof of the wff has then been obtained.

A disproving program in predicate calculus would at ­
tempt to determine that a wff is not in category a) .
The above discussion shows that present theorem provers
are at best very weak disproving programs.

It should also be noticed that a proof of the a t ta ina­
b i l i t y of the negation of a statement does not imply
that the statement i t s e l f can be disproved. For exam­
p le , if a l i g h t can be turned on and o f f (at d i f f e ren t
times) then the statement STATUS(LIGHT ON) and i t s nega­
t i on -STATUS(LIGHT ON) are both a t ta inab le , and hence
nei ther can be disproved.

While the theorem proving approach gives resu l t s in far
too few cases, and model bu i l d ing is too often ad-hoc ,
a d isproving technique wi th some genera l i ty has been
ca l led heredi tary propert ies (see [4] for some examples).
Consider a checkerboard from which we remove two oppo­
s i t e squares. This mut i la ted checkerboard cannot be
covered by dominoes. To obta in a d isproof , we not ice
that whenever we add another domino on the checker­
board, the number of white and black squares that have
been covered remains the same. This property - the
equa l i ty between the number of black and white squares

383

that have been covered- is hered i ta ry , that is it does
not change ae any allowable move -pu t t i ng a domino on
the checkerboard- is performed. The disproof is com­
plete when we not ice t h a t , in the mut i la ted checker­
board, the number of black squares does not equal the
number of white squares, (the d i f ference is two.)

The technique of heredi tary propert ies can be summa-
rized as fo l lows :
- the o r i g i n a l s ta te (s) of the model has (have) some
property,

-whenever a state has th i s proper ty , a l l states ob­
tained from it by a l l al lowable moves s t i l l have th i s
proper ty ,

- the goal state which we are t r y i n g to a t t a i n does not
have th i s proper ty .

Hence the goal is unat ta inab le . W.W.W. (what we want­
ed'.)

4 . Hereditary P a r t i t i o n s .

Hereditary p a r t i t i o n s general ize the basic idea of
heredi tary p roper t i es . The technique of heredi tary
pa r t i t i ons can be summarized as fo l lows :
- c a l l the set of a l l states that can be achieved from
the o r ig ina l s ta te (s) by a l l lega l sequences of moves
the a t ta inab le wor ld .

-the a t ta inab le world can be pa r t i t i oned in to d i s j o i n t
p a r t i t i o n s . Hence each o r i g i n a l s tate is in some par­
t i t i o n ,

- the goal state which we are t r y i n g to a t t a i n does not
belong to any of the p a r t i t i o n s . Hence the goal is
unat ta inab le .

Obviously, heredi tary proper t ies correspond to the case
where there is only one p a r t i t i o n .

We not ice that if we apply a lega l move to a state in
some p a r t i t i o n , we obta in a state in the same or some
other p a r t i t i o n . We can say that p a r t i t i o n s are closed
under legal moves. In f a c t , as long as t h i s closure
property is maintained, we might j us t as we l l add to
the pa r t i t i ons some unattainable states (i . e . states
which are "meaningless") i f that makes l i f e s impler.
Even fu r the r , to the p a r t i t i o n s containing some a t t a i n ­
able stares we can add some p a r t i t i o n s containing no
at ta inable s ta tes . The disproof is s t i l l complete i f
t h i s expanded set of p a r t i t i o n s is closed under legal
moves - i . e . from one p a r t i t i o n in the set any legal
move leads us to the same or some other p a r t i t i o n in
the set- and if the goal s tate that we are t r y i ng to
disprove is not in any of the p a r t i t i o n s .

In p rac t i ce , the problem i s , of course, to bu i l d the
appropriate p a r t i t i o n s . We sha l l see an example in the
next sec t ion .

5. Example of a Disproof using Hereditary P a r t i t i o n s .

We sha l l consider robot worlds axiomatized in a manner
s imi la r to that used in [l] . The world is described
as a set of predicates, for example HEXTT0(R0BOT B0X2) ,
Moves in the world are operators which must sa t i s f y
some precondi t ions, and the i r e f fec t on the world is
speci f ied by a delete set and an add se t .

Let us consider a subworld of the world in [l] : a r o ­
bot and three boxes, B0X1, B0X2 and B0X3, in a room.
The only re levant operators fo r our problem are (some-
what s i m p l i f i e d from [l]) .
go to (ob jec t) , meaning: robot goes next to an ob jec t .
Precondi t ions: ONFLOOR.
Delete se t : ATROB0T($) NEXTTO(ROBOT $) * .
Add set : NEXTTO(ROBOT o b j e c t) .
push(object l ob jec t2) , meaning: robot pushes o b j e c t l
next to ob jec t2 .
Precondi t ions: PUSHABLE(objectl) A 0NFL0OR * NEXTTO
(ROBOT o b j e c t l) .
*$ means every th ing. At least that was the meaning
before a series of devaluations'.

Delete se t : ATROBOT($) AT(object l $) NEXTTO(R0BOT $)
NEXTTO(objectl $) NEXTTO($ o b j e c t l) .
Add se t ; NEXTTO(objectl object2) NEXTT0(object2 ob­
j e c t l) NEXTT0(R0BOT o b j e c t l) .

We assume that boxes are PUSHABLE, that the robot could
climb on and o f f boxes, and possibly do a l o t of other
mischievous actions, none of which would help her get
two boxes next to each other . We now wish to solve the
problem: get the three boxes next to each other, i . e .
f i nd a path from an o r i g i n a l world which inc ludes:
ONFLOOR ATROBOT(A) AT(B0X1 A l) AT(B0X2 A2) AT(BOX3 A3)
to a goal state which includes:
NEXTT0(B0X1 B0X2) NEXTT0(B0X2 B0X3).
A so lu t ion i s : goto(BOXl), push(BOXl B0X2), goto(B0X3),
push(B0X3 B0X2).

However, a more symmetric descr ip t ion of the goal state
answering the statement " the three boxes are next to
each other" would be:
NEXTTO(BOXl B0X2) NEXTT0(B0X2 B0X3) NEXTTO(BOX3 BOXl).
We sha l l now give a disproof of th i s goal , i . e . show
that it cannot be achieved.

The p a r t i t i o n s are described in terms of some anchor
predicates and the i r negations. As a f i r s t choice,
DISPROVER chooses the three predicates from the goal as
anchors. We sha l l abbreviate these predicates as P12,
P23 and P31. The o r i g i n a l state belongs to the p a r t i ­
t i o n ;
P a r t i t i o n l ; "IP12 ^ "P23 A -P31.
This p a r t i t i o n contains a l l s ta tes , whether a t ta inable
or not , which sa t i s f y -P12 A nP23 and A i P 3 1 , i . e .
which do not contain any predicate of the form:
NEXTTO(BOX., B O X . ^ 3) + 1) , i - 1,2,3.

If the robot could juggle she would move i n to a new
state which would presumably s t i l l be in the p a r t i t i o n .
A l l goto operations do not , in t u r n , make her go out
of the p a r t i t i o n . But l e t us consider: push(BOXl B0X2).
This operator jl£ appl icable to p a r t i t i o n l -although not
to the o r i g i n a l wor ld , because the robot does not s ta r t
next to B0X1-, since the s ta te :
NEXTT0(R0BOT BOXl) 1V12 -T23 -P31
is a member of p a r t i t i o n l . Hence by applying push(BOXl
B0X2) we move out of p a r t i t i o n l , and must create a new
p a r t i t i o n 2 , spec i f ied by:
P a r t i t i o n 2 : P12 A 1P23 A 1P31.
S i m i l a r l y , we create p a r t i t i o n 3
P a r t i t i o n 3 : TP12 AP23 A * 3 1 , and
P a r t i t i o n ^ : TP12 A iP23 A P31. (see Figure 1.)
From p a r t i t i o n 2 , we can e i ther go to p a r t i t i o n l by
doing, for example, push(B0X2 B0X3); or stay in p a r t i -
t ion2 by doing, among other p o s s i b i l i t i e s , goto(BOX2);
or move to a new
P a r t i t i o n 5 : P12 A P23 A - P 3 1 ,
by applying push(B0X3 BOX2) to the state inc lud ing :
NEXTTO(R0BOT B0X3) P12 P23 TP31
of p a r t i t i o n 2 . S i m i l a r l y , we create:
P a r t i t i o n 6 : P12 TP23 P31, and
P a r t i t i o n ? : -P12 P23 P31.

At that po in t , however, no new p a r t i t i o n s can be created'.
Every legal move e i the r leaves the robot in the same
p a r t i t i o n , or takes her to one of the other p a r t i t i o n s .
Since the goal s ta te is not in any of the p a r t i t i o n s ,
the disproof is complete. W.W.W.

DISPROVER, programmed in LISP 1.5 and run in terpre ted
on the Un ivers i ty of Texas CDC 6600 found the above
d isp roo f , fo r the complete world of [l] , in about 7
seconds.

Another d isproof , in the world of [l] , concerns the
goa l : AT(B0X1 A) STATUS(LIGHTSWITCHl ON), s t a r t i n g
from the o r i g i n a l s tate which inc ludes: AT(B0XL A)
STATUS(LIGHTSWITCH1 OFF). The robot needs to cl imb on
BOXl to turn on LIGKTSWITCH1, but she is then incapable
of re tu rn ing BOXl to i t s o r i g i n a l l oca t i on . The d i s ­
proof , by DISPROVER, took about 3 seconds; three p a r t i -

384

t ions were b u i l t using the anchor predicates from the
goal s ta te .

5.1 Classes of Impossible States.

Given some axiomatizat ion of a wor ld, namely an i n i ­
t i a l s tate and a set of legal moves -operators- , we
can d is t ingu ish broadly between two main classes of
impossible goal s ta tes :
a) goals inc lud ing a subgoal which is not sa t i s f i ed
in the i n i t i a l state and does not occur on the add
set of any operator. For example, ii the robot can­
not pa in t , and if COLOR(BOX1 BLUE) is true i n i t i a l l y ,
then a goal inc lud ing COL0R(B0Xl PINK) cannot be
achieved, and is disproved easi ly by DISPROVER using
only one p a r t i t i o n .

A va r ia t i on of th i s class of impossible tasks occurs
when a subgoal, subgoal. , of the goal is sa t i s f i ed in
the i n i t i a l world but must be destroyed, i . e . de le ted,
to achieve some other subgoaln . Moreover, once de­
le ted , subgoal cannot be added by any operator. The
las t example in section 5 above is a case in po in t .
b) Each subgoal. of the goal can be achieved indepen­
den t l y , but the simultaneous rea l i za t ion of a l l sub-
goals is impossible, due to "s ide e f fec ts " caused by
the delete sets . The main example in section 5 of the
symmetric NEXTTO(BOX. BOX.) is a case in po in t .

In p rac t i ce , what is most fun to do is to take someone
e lse 's world and disprove goal states which " i n t u i ­
t i v e l y " should be rea l i zab le !

5.2 Select ion and Test ing of Operators.

Given a set {U } of anchor predicates in an attempted
d isproof , DISPROVER f i r s t discards a l l operators which
do not add or delete some predicate in {U} , since these
operators are c lea r l y i r r e l evan t . The i n i t i a l world
is intersected wi th {V"} " {P|P'e{u)v I P E (U } } to give
the f i r s t p a r t i t i o n . A l l remaining (re levant) opera­
to rs are applied to t h i s p a r t i t i o n in an attempt to
create new p a r t i t i o n s . Whenever a new p a r t i t i o n is
created, a test is made to see whether the goal state
i s i n the p a r t i t i o n . I f i t i s , the disproof f a i l s ,
and DISPROVER w i l l t r y to bootstrap i t s e l f (sect ion 6.)
Otherwise, the p a r t i t i o n is kept, and all relevant
operators w i l l be applied to it to t ry and obtain yet
fur ther new p a r t i t i o n s . In a r t i f i c i a l i n te l l i gence
jargon, DISPROVER generates pa r t i t i ons b read th - f i r s t
u n t i l the goal state is found -meaning the disproof
f a i l ed for the given set of anchor predicates (see
section 6) - or u n t i l no new pa r t i t i ons are found, which
would then complete the d isproof .

It should be noticed that w i th the form of precondi­
t ions used, only a few simple set operations are need­
ed to determine whether an operator is applicable to a
p a r t i t i o n . I f precondit ions are generalized to a r b i ­
t rary predicate calculus expressions, or include pro­
cedures, then It may wel l be impossible to decide
whether an operator is appl icable to a p a r t i t i o n ,

6. Bootstrapping in DISPROVER.
The anchor predicates -which determine the p a r t i t i o n s -
are c ruc i a l for DISPROVER to be successful . In some
cases, DISPROVER can change i t s set of anchor p red i ­
cates. We sha l l use a disproof as an example of th is
c a p a b i l i t y . We expand the world discussed previously
v ia an operator gotoloc(loc), meaning: robot goes to
locat ion loc tn room rm.
Precondi t ions: ONFLOOR A 3rm(L0CINR00M(loc rm)).
Delete se t : ATROBOT($) NEXTTO(ROBOT $) .
Add set : ATROBOT(loc).
We w i l l disprove the state ATROBOT(Al), where Al was
used in AT(B0X1 A l) . As in [l] , there is no p red i ­
cate LOCINROOM(A1 x) for any x, hence the task is ob­
v iously impossible in the axiomat izat ion.
The i n i t i a l anchor predicate is obtained from the goal :

ATROBOT(Al).
The i n i t i a l state is contained tn the p a r t i t i o n :
P a r t i t i o n ! : lATROBOT(Al) .
The s ta te : ONFLOOR LOCINR00M(Al x) , for x anything,
is a member of th is p a r t i t i o n l -even though it is unat­
ta inab le - , and the operator goto loc(Al) can be applied
to th i s s ta te , to obtain
P a r t i t i o n 2 : ATROBOT(Al).
Since the goal we are t r y i ng to disprove is a member of
p a r t i t t o n 2 , the disproof f a i l s .
At th i s po in t , DISPROVER t r i e s to extend i t s set of
anchor predicates by adding to those already used, a l l
those that were precondit ions of the operator(s) that
permitted a t r ans i t i on to the p a r t i t i o n (here p a r t i -
t ion2) which we were hoping not to reach in the d is ­
proof . The new set of anchor predicates i s :
ATROBOT(Al) A ONFLOOR A L0CLNR00M(A1 x) .
DISPROVER t r i e s again (and w i l l succeed wi th the d i s ­
proof, otherwise we would not have chosen th is example'.)
The o r i g i na l state is i n :
P a r t i t i o n l : 1ATR0B0T(A1) A ONFLOOR A -L0CINR00M(Al x) .
From th i s p a r t i t i o n , if the robot climbs on something,
we can go t o :
P a r t i t i o n 2 : -ATROBOT(Al) ft 10NFL00R ft "IL0CINR00M(A1 x) .
However, no further pa r t i t i ons can be generated, com­
p le t i ng the disproof , W.W.W.

DISPROVER f i n a l l y f a i l s to f ind a disproof if -besides
economic reasons of time l i m i t or memory exceeded- no
new sets of anchor predicates are generated during boot-
s t rapping.

7. LAWALY helped by DISPROVER.

Up to t l i ts point we have seen DISPROVER working alone.
Now we w i l l consider cooperation between LAWALY and
DISPROVER. In some cases, LAWALY, the path- f inder we
use to solve robot planning problems , does not f ind
a path even though one e x i s t s . An example w i l l help to
i l l u s t r a t e the d i f f i c u l t i e s she encounters. Figure 2
shows the i n i t i a l and f i na l states of the robot wor ld .
The robot must achieve: CLOSED(DOOR) A NEXTTO(ROBOT
BOX), from the i n i t i a l s ta te : INR00M(R0B0T A) A CLOSED
(DOOR) A INROOM(BOX B) . (See Figure 2.) LAWALY may
decide to work f i r s t on the CLOSED(DOOR) cond i t i on , or
f i r s t on the NEXTTO(ROBOT BOX) cond i t i on . Consider the
f i r s t case. LAWALY f inds the door already closed in
the i n i t i a l s ta te , so she wants to obtain the NEXTTO
cond i t i on . To do tha t , she must enter Room B, and to
do that go through the DOOR, But that would mean open­
ing the DOOR, and hence undoing what she had already
achieved, -CLOSED(DOOR)-, and so she decides to t ry the
condit ions in the reverse order. To be NEXTT0(R0BOT
BOX), she goes to DOOR, opens i t , goes through i t , and
then goes next to BOX. At that po in t , she real izes
that she must s t i l l close the DOOR, However, that would
make her undo something she wanted, namely, NEXTTO(ROBOT
BOX), so she qu i t s , having f a i l e d .

The problem is now passed to DISPROVER. The anchor
predicates are taken from the goal , and the fo l lowing
p a r t i t i o n s are b u i l t :
P a r t i t i o n l : -iNEXTT0(R0B0T BOX) CLOSED(DOOR).
P a T t t t i o n 2 : 1NEXTT0(R0B0T BOX) lCLOSED(DOOR) .
P a r t i t i o n 3 : NEXTTO(ROBOT BOX) -CLOSED(DOOR),
P a r t i t i o n 4 : NEXTTO(ROBOT BOX) CLOSED(DOOR).
Since Pa r t i t i on4 includes our goal , the disproof f a i l s .
P a r t i t i o n 4 was obtained by applying the operator:
gonext(ob.ject), Precondi t ions: (ONFLOOR) A 3x(INR00M
(ROBOT x) A INROOM(object x)), to the state interme-
d ta r y - s ta te : ONFLOOR A INRO0M(R0B0T B) A INR00M(B0X B) .
DISPROVER suggests to LAWALY that the o r i g i n a l problem
might be solved by s p l i t t i n g It up in to two successive
problems. The f i r s t problem ie to go from the i n i t i a l
state to a state containing intermediary-state above;
the second problem is to go from there to the f i n a l

385

s t a t e . IAWALY does in fact solve the o r i g i n a l problem
in th i s way,

8. A Col laborat ive Fa i l u re .
We now describe a solvable task which is not solved
by the co l labora t ion between DISPROVER and LAWALY.

The i n i t i a l and f i n a l states of the task are shown In
Figure 3. The f i n a l s tate i s : ON(ROBOT BOX) A INROOM
(ROBOT B) . Again, for essen t i a l l y the same reasons as
before, LAWALY f a i l s to solve the problem. DISPROVER
cannot f i nd a disproof (o f course, since none e x i s t s) ,
but suggests the in te rmed ia ry -s ta te :
INROOM(R0BOT B) A NEXTT0(ROB0T BOX). Once more, LAWALY
f a i l s , again due to her stubbornness in i n s i s t i n g on
f i n i s h i n g a subtask completely before s t a r t i ng another
one. DISPROVER f inds no d isproof (r i g h t l y so, since
none ex is ts) wi th the anchor pred icates:
INRO0M(R0BOT BOX) NEXTT0(R0BOT BOX) ON(R0B0T BOX).
Moreover, DISPROVER suggests the same intermediary-
state as before, hence the system would begin to re ­
peat i t s e l f , and f a i l u r e is accepted.

We are inves t iga t ing the p o s s i b i l i t y of LAWALY help ing
DISPROVER by communicating informat ion on why she
f a i l e d to f i nd a path, thereby helping DISPROVER to
bu i l d a more adequate set of anchor predicates. The
resu l t s are s t i l l sketchy and w i l l not be discussed
here.

9. The Importance of Ax iomat lzat ion.

The problem of section ? could have been solved Imme-
d ia te l y by LAWALY, wi thout DISPROVER's help, if It had
been fu r ther speci f ied as:
CLOSED(DOOR) NEXTTO(ROBOT BOX) INROOM(ROBOT B). The
problem of sect ion 8 could have been solved immediately
by LAWALY if it had been fu r the r spec i f ied as:
imOQM(ROBOT 3) 0N(ROBOT BOX) INROOM(BOX S). If could
Also be solved immediately by LAWALY if the climbon
operator had speci f ied as parts of i t s precondit ions
that the robot could cl imb on an object only If both
she and the object were in the same room. Thus, we
can see that the d i f f i c u l t i e s encountered may be due
to the axiomatizat ion used.

Another way of reso lv ing the d i f f i c u l t i e s is to "patch"
the goal descr ip t ions to include consequences such as:
a robot is in the same room as the object she is on,
e tc . Such a "patch" is a t r i v i a l program.

10. Conclusions.
The technique of hered i tary p a r t i t i o n s permits the
d isproofs of statements that cannot be made t rue . We
have applied th is technique to a d isproving program
(perhaps the f i r s t such program in existence) which
operates in simulated robot wor lds. DISPROVER can be
used to ascertain that phys ica l l y undesirable states
cannot occur in e model. We give examples of co l labo­
r a t i o n between DISPROVER and a powerful robot planning
system, LAWALY. The axiomat izat ion chosen for the
world great ly inf luences the performance of the des­
cr ibed systems.

11 . References.
1Fikes, R. E. and N i l s o n , N. J. "STRIPS: A New Ap­
proach to the App l ica t ion of Theorem Proving in Prob­
lem So lv ing , " A r t i f i c i a l I n t e l l i g e n c e . 2, 189-208,
1971.

2Review of [l] . Computing Reviews. _13, 5, 216-217,
1972.

SIk lossy, L. Modelled Explorat ion by Robot. Techni­
ca l Report 1, Computer Sciences Dept . , Un ivers i ty of
Texas, Aus t i n , 1972.

4
Simon, H. A. On Reasoning about Ac t i ons , i n : Simon,

H. A. and Stklossy, L. (Eds.) Representation and Mean­
i n g : Experiments wi th In format ion Processing Systems.
P ren t i ce -Ha l l , Englewood C l i f f s , N . J . , 1972.

SIk lossy, L. and Dreussi , J. A Hierarchy-Driven Robot
Planner which Generates i t s own Procedures. Technical
Report 1 1 , Computer Sciences Dept . , Un ivers i ty of Texas
Aus t i n , 1973.

Figure 1. Disproof of NEXTT0(B0Xl BOX2) *
NEXTT0(B0X2 BOX3) * NEXYT0(B0X3 B0X1).

386

387

