A COMPLETE UNIFICATION ALGORITHM FOR
ASSOCIATIVE-COMMUTATIVE FUNCTIONS*

Mark E. Sticke!
Department of Computer Science
Carnegie-Mellon University
Pittsburgh, Pennsylvania

Abstract

An important component of mechanical theorem proving
systems are unification algorithms which find most genaral
substitutions which, when applied to two expresssions, maka
them equivalent. Functions which are associative and
commutative (such as the arithmetic addition and multiplication
functions) are often the subject of mechanical theorem
proving. An algorithm which unifies terms whose function is

associativa and commutative is presented here The
algorithm eliminates the need for axiomatizing the
associativity and commutativity properties and returns a

complete set of unifiers without recourse to the indefinite
generation of wvurianU and instances of the terms being
unified required by previous solutions to the problem.

Introduction

At the core of many theorem proving systemi is a
unification algorithm which returns for a pair of input
expressions a set of unifying substitutions, assignments to the
variables of the expressions which maka tha two expressions
equivalent. Typical is the unification algorithm of Robinson
[6] for unifying atomic formulas of the first order predicate
calculus in resolution theorem proving [1].

This work treats the case of unifying terms of the first
order predicate calculus where the function is associative and
commutative Such functions are mathematically important and
thus of interest to developers of theorem proving programs
Examples of such functions are the arithmetic addition and
multiplication functions.

The case where the function is simply commutative is
easily handled by a trivial extension to Robinson's unification
algorithm which unifies the arguments of one term against
permutations of the arguments of the other term.

The case where the function is simply associative is
quite difficult and we know of no general solution
Suggestive of the difficulty of this problem is the fact that
there may be an infinite number of unifiers for a pair of
terms. For example, the terms t(xa) and f(ax) where f is
associative, a is a constant, and x is a variable has unifiers
with x=a, x=f(aa), x«f(aaa), ... (We represent the argument
lists of associative functions with no extra parentheses, i.e.,
f(abc) rather than f(af(bc)) or f(f(eb)c).)

Two principal approaches to handling associativity or

*Research supported by the National Science Foundation
(GJ-28457X2) and by the Advanced Research Projects
Agency of the Secretary of the Office of Defense
(F44620-73-C-0074).

7

commutativity are available. The first, standard approach is
to represent the terms conventionally, ie., f(af(bc)) or
f(f(ab)c) rather than f(abc), and axiomatize the associativity or
commutativity property. The associativity axiom would be
f(xf(vz)=f(f(xy)z) and the commutativity axiom would be
f(xy=f(yx). These axioms could be applied using some
equality inference rules such as paramodulation [5]

The second approach represents associative functions
as functions with an arbitrary number of arguments, i.e., uses
f(abc) rather than f(af(bc)) or f(f(ab)c) Special purpose
unification algorithms are provided tor terms whose functions
are associative, commutative, or both. Examples of this
approach in first order predicate calculus theorem proving
are the work of Nevins [2] and Slagle [8] The algorithms
for associativity, and for associativity and commutativity are
incomplete, i.e., they fail to return all the unifiers in some
cases. An example of this approach in the area of
programming languages for problem solving is the use of the
associative data type tuple or vector and associative and
commutative data type bag in the QA4 and QLISP languages
[7,4] Again, in this case the algorithms for pattern matching
(unifying) these expressions are incomplete In both these
cases, the incomplete algorithms can be augmented by a
process which alters the input expressions to cause the
unification algorithm applied to the altered expressions to
return additional unifiers The addition of this process
(Slagte's widening operation for the first order predicate
calculus [8] and Stickel's variable splitting operation for
expressions of QA4 and QLISP [9]) results in completeness.
Widening and variable splitting are both operations that must
be performed on one or both input expressions an arbitrary
number of times, replacing single variables of the
expressions uniformly by two variables; it i: essentially
(repeated) paramodulation by the functionally reflexive axiom.

An example of the latter approach is the unification of
f(abz) and f(xy) where f is associative and commutative. The
special purpose unification algorithm would fiurn the unifiers
{x<-e, y<-f(bz)}, {x<-b, y<-(az)), {x<-z, y<-f(ab)}, {x<-f(bz), y<-a),
{x<-f(az), y<-bh and {x<-(ab), y<-z). But this is an incomplete
set of unifiers since the possibility that the value of z is not
wholly contained in either the value of x or the value of y is
not represented. After performing a widening operation on
f(abz) resulting in f(abz4z,) by instantiating z by ((z1z2).
additional new unifiers such as [x<-f(azj), y<-f(bz*)*
z«-f(Z]|Z2)) and {x«-t(abzj), y«-z,, zH(i|Z2)} ire returned by
the unification algorithm.

Related to this approach, though different in detail, is
Plotktn's work on the theory of building in equational theories
[3] of which associativity and commutativity are examples. In
the case of associativity, Plotkin retains terms in a normal
form: right associative form, although it could equivalent?
have been our unparenthesized form. His equivalent of the
widening rule, the replacement of a variable by two new
variables, is applied continually inside the unification

algorithm rather than being used outside it. Thus his
unification algorithm may generate an infinite number of
unifiers as opposed to a unification algorithm guaranteed to
produce a finite number of unifiers and a potentially infinite
process (widening) for altering inputs to the unification
algorithm to obtain additional unifiers. The difference in
approaches seems to be principally one of organization of the
search process.

In this paper, we present a new special
unification algorithm which we call the AC unification
algorithm for terms whose functions are associative and
commutative which returns a complete set of unifiers This
algorithm eliminates the need for axiomatizing associativity
and commutativity and also eliminates the cost of continually
applying these axioms which often results in much
unnecessary or redundant computation. It also eliminates the
need for using the process of widening or variable splitting
whose necessity (for discovering a complete set of unifiers in
the case of unifying any particular pair of expressions) is
difficult to ascertain.

purpose

Tarminoioty

Definition A tarm is defined to be
(1) a constant,

(2) a variable, or
(3) a function symbol succeeded by a list

arguments of the function).

of terms (the

We shall use the symbols a, b, and c to represent
constants, x, y, and =z (possibly indexed) to represent
variables, and f to represent a function which is associative
end commutative.

Definition A substitution component is an ordered pair
of a variable v and a term t written as v<-t A substitution
component denotes the assignment of the term to the
variable or the replacement of the variable by the term.

Delinition A substitution is a set of substitution
components with distinct first elements, i.e., distinct variables
being substituted for. Applying a substitution to an
expression results in the replacement of those variables of
the expression included among the first elements of the
substitution components by the corresponding terms. The
substitution components are applied to the expression in
parallel and no variable occurrence in the second element of
a substitution component will be replaced even if the variable
occurs as the first element in another substitution component.
Substitutions will be represented by the symbols r and 0.
The application of substitution to expression A is denoted
by As The composition of substitutions denotes the
substitution whose effect is the same as first applying
substitution s\ then applying substitution v, i.e., A(##) « (Af)#
for every expression A.

Daftmtian A umtxini substitution or uoiiuu of two
expressions is a substitution which when applied to the two
expressions results in equivalent expressions. In ordinary
unification, two expressions are equivalent if and only if they
are identical. In unification of argument lists of commutative
functions, two expressions are equivalent if they have the
same function symbol and the same arguments in the same or
different order.

Definition Term s is an incUnte of term t, and t is a

12

generalization of 8, if there sxists a substitution | such that
tfc.

Similarly, substitution 0 is an instance (generalization)
of substitution v if, for every term t, t# is an instance
(generalization) of t<r

Tht AC Unification Algorithm

We present here an algorithm for unifying two terms
whose function is associative and commutative Terms will be
represented as if the function had an arbitrary number of
arguments with no superfluous parentheses.

We will assume that the argument lists of the two
terms being unified have no common arguments. This
presents no difficulty since no unifiers are lost and efficiency
is gained if common arguments are eliminated immediately.
This is done by removing common arguments a pair at a time,
one from each of the argument lists For example, before
unifying t{gxyabe) and Kbbbcz), the b's common to the two
terms are removed yielding f(xxyac) and f(bbcz), and the c's
common to the two new terms »rm removed yielding f(xxya)
and f(bbz). An example of the utility of immediately
removing common arguments is the unification of f(g(x)y) and
t{g(x}gla)). 1t the g(x)'s common to the two terms are
immediately removed, the unification algorithm will return the
most general unifier {y~g{a)}. If the common g(x)'s are
retained, unification will likely result in the generation of the
additional less general unifier {x~a,y-ga)}.

The algorithm will be expressed partially in terms of
an algorithm for the complete unification of terms with an
associative and commutative function with only variables at
arguments. The result of unifying such terms is an
assignment to each variable of the terms some sequence of
terms Each variable is assigned a term t, (whose function
symbol is not f) or a term f(llnl..,lm"m} (with n; occurrences
of term t(as arguments of f). For such an assignment to be a
unifier, the only requirement is that for each term t, used in
any assignment there are the same number of occurrences of
that term occurring as arguments of f in each of the unified
terms instantiated by the assignment For example, in
unifying f{xyx xo%3) and fly,;yy,), if term t is part of some
assignment to one of fhe variables, then 2 times the number
of occurrences of t in the assignment for X| plus the number
of occurrences of t in the assignment for «2 P''® the number
of occurrences of t in the assignment for xq must equal 2
times the number of occurrences of t in the assignment for
yj plus the number of occurrences of t in the assignment for
Y2 For example, {xl'f'ﬂbb), nz‘-i(ab). xg*a, y|*b,
y,*-f(aabbb)) is m unifier of '(“lxl'2;3) and l(yl-ylyz) since
there are 2 a's and 5 b's in the instantiations of f(xiX|X2X3)
end ¥{y ¥ |Y2) with the unified term being f(aabbbbb).

With each pair of terms with an associative and
commutative function with only variable arguments s
associated a single equation representing the number and
multiplicity of variables in each term. For example, the
equation 2'|'12‘13 = Zvl'yz is associated with the pair of
terms given above. This equation succintly represents the
condition for a substitution to be a unifier: that the sum of the
number ol occurrences of any term in the value of each
variable multiplied by the multiplicity of the variable in the
term must be equal for the two terms.

Non-negative integral solutions to such equations can

be used to represent unifiers. The solutions must be
non-negative integral since each variable must be assigned a
non-negative integral number ol occurrences of each term.

In order to generate all the solutions to the problem of
unifying the two terms, it is necessary to be able to
represent all the solutions to the equation derived from the
terms, Every non-negative integral solution to the equation
is representable as a sum of elements of a particular finite
set of non-negative integral solutions to the equation, i.e.,,
every non-negative integral solution to the equation is a sum
(equivalently, a sum with non-negative integral weights) of
elements of a particular finite set of non-negative integral
solutions. The finite set of non-negative integral solutions by
whose addition the entire non-negative integral solution
space is spanned is generable by generating in ascending
ordor of value solutions to the equation, eliminating those
solutions composable from those previously generated. This
process can be made finite by placing a bound on the
maximum solution value which will be used; such a maximum
is proved in a later lemma to eliminate no needed solutions.

Consider the equation 2x,+x5ex3 ¢ 2y +y,. Solutions
to the eaquation asre:

&y B K3 ¥} ¥ X mpuy 2y
| 0 0 i 0 i i I 2
2 o 1 o o | ! .
3 o o 2 1 0 2 I
4 0 | | | 0 z 2 2
5 0 2 o I o0 2 2 1g
6 1 o o o0 2 2 2 g
7 v 0 o 1 0 2 2

Associated with each solution above is a new variable
(in the rightmost column). The assignment of as many

occurrences of that variable as specified in the solution to
each of the variables of the original term results in a partial
solution to the unification of the the original terms In
particular, the assignment of 2 occurrences of variable 2-* to

X3 and | occurrence to yj results in an equal number of
occurrences of variable z-j in each ol f(x|X|X2*3) 2n¢
Myiy2)

Every non-negative integral solution to the equation is
a (non-negative integer weighted) cum of the 7 solutions
presented above, i.e., %vry solution is representable as
Xy*2g o2y, 12-120240225, X3s2| 422324, Y| 23'24'25°2y,
yzvzpzz*Zzs for some non-negative integral values of
Zjvlg. However, not every solution to the equation is a
solution to the unification problem for which the equation was
derived. There is an additional constraint that each variable
of the original terms must be have at least one term in its
value; it cannot have zero terms in its value.

«128 sums
(It is not
in which any solution has a

Hence, we must form that subset of the 2
for which each element of the 5-1uple is non-zero.
necessary to consider sums
coefficient other than 0 or 1 since such solutions (in the
unification problem) are already representable since the
solution's inclusion with coefficient 1 introduces a variable
which can have as its value an arbitrary number of terms as
arguments of f thus simulating the case of the coefficient
being greater than 1.) There are 69 such sums including for
example (representing the sum by the set of its indices)

12,3,6}, {1,2,3,6}, and {4,6} with associsled unifiers

[x) <26, xa+23, x3+1(2323), y) 23, y2-Hzp262)l,
{x)~2g, x2+2p, x3+-1(2)2923), ¥ * 23, ¥+ ({2 202g2g)}, and
(X1 *2g, X2*24, x3~24, ¥| *2q, Y2+ HzgZ¢)}.

73

Note that if a variable could have as its value zero
terms rather than one or more terms as in the first order
predicate calculus, it would be unnecessary to form this
subset of 2" (where n is the number of solutions) sums. Only
the sum of all the solutions would be required since any
variable present in this sum could have value zero, and the
variables in the corresponding unifier could be matched
against zero terms. This is the situation wifh fragment
variables in the bag data type in QA4 and QUSP [7,4] (see

[91>

To be more precise in the definition of the algorithm,
the algorithm consists of the following steps:

1. Form an equation from the two terms where the coefficient
of each variable in the equation is equal to the multiplicity of
the corresponding variable in the term.

2. Generate all non-negative integral solutions to the
equation eliminating all those solutions composable from other
solutions.

3 Associate with each solution a new variable.

4. Tor each sum of the solutions (no solution occurring in the
sum more than once) with no zero components assemble a
unifier composed of assignments to the original variables with
as many of each new variable as specified by the solution
element in the sum associated with the new variable and the
original variable.

Now we present the complete algorithm for unifying
general terms with associative and commutative functions
using the algorithm for the variable only case above. We are
here concerned with terms whose function is associative and
commutative with arbitrary arguments, i.e., arguments that
may contain ordinary (non-associative, non-commutative)
functions or f or other functions which are associative and
commutative. We assume the presence of ordinary unification
to deal with those aspects of the unification problem not dealt
with explicitly here.

First, when unifying two terms, two new terms with
only variable arguments are formed by uniformly replacing
distinct arguments by new variables. These new terms have
only variable arguments and aer generalizations of the
original two terms. For example, in unifying f(xxya) and
f(bbz), we form generalizations f(xyxixax3) end ly,y|y5,)
with substitution {x;*x, xp*y, x3%8, y|*b, yzﬁzl
instantiating the new terms fo the original terms.

Next, using the previous algorithm for the variable
only case, we unify the generalizations of the original terms.
This has already been done for the example above resulting
in 69 unifiers as stated previously.

Now we have the generalizations of the two original
terms, a substitution to instantiate them to the original terms,
and a complete set of their.unifiers. Every unifier of the
original terms is a simultaneous instance of the substitution to
instantiate the generalizations to the original terms and a
unifier of the generalizations. So all that is necessary to get
all the unifiers of the original terms is to unify (for each
variable being substituted (or) the value in the substitution
and the value in the unifiers.

In the example, X3 must have value a and y1
value b.

must

have Thus, any unifier of i(xlullzxa-) and

“VIVIYZ) which scsigns to x5 or ys 8 non-variable, i.e, a
lerm of the form f{..} may be immediately excluded from
considaration since the unification of it wilth the assignment
including x3+a and y|~b will fail. (This constraint could be
applied during the generstion of sums of solutions fo the
equation rather than afterwards.) This consiraint aliminates
63 of the 69 unifiars, laaving sums (1) (4,6}, (2) {2,4,6), (3}
{1,5,6}, (4) {1,256}, (5) (1,2,7], and (6) {1,2,6,7} with
associated unifiers

(1) {x) *2g, xa*24, x3-24, ¥| *24, Y2~ V2526)},

(2) {Il“ZG, Kz""ZzZn), la"!4, yl"-z‘. Yz"f(!z!s!s)],

(3) {ll"‘ZG. 32"'(2525), la"!l. ylhzs, Yz"‘i(2|2626)},

(4) {x)¢2¢, xo+1(292525), X3%Z|, Y| *I5, yz'-f(zlzzzszs)].
(5) {!l‘-:?‘ Kz"‘lz, X3*¥Z1, Y |v27, YZ“'“Z]Z)} a

(6) {x)~tzg27), X+ 2, x3=2|) ¥ 27, Y21z 222576))

Unifying each of thase with {x|*x, x5y, x3+3, ¥ +b,

y2*2}, we oblain
(1) no unifier since 24+9 and 24+b are not unifiable,
{2) no unifier tince za+» and z4+b are not unifiable,
(3) {x+zg, y-i(bb), z-t(azgzg)} (= {y~1(bb), 2+-f(axx}}),
(4) !x*—ze, y*!(bbzzl, z+t{az,2p2g)}

(= {y~t(bbz,), z-1(az,xx)}),
(5) {xeb, y+z5, 2+1{az;}} (= {x+b, 2-f(ay))}), and
{6) [x+t(bzg), y*+2y, r-1{azpzp1e)l

(= {x+1{bzg), z-tlayzgzg))).
This is & complete set of uniliers of f(xaya) and f(bbz).

Stnce X3 and y1 of the variable only cast correspond
to a and b respectively, and a and b are not unifiable, any
sum including solution 4 to the equation 2‘1"‘2"‘3 ® Zy}‘yz
can be excluded from consideration since it would require {as
n (1) and (2) above) the unification of a and b. As with the
constraint on variables corresponding to non-variable terms
not being assigned more than one variable (terms of the form
f(...)) in the variable only case, this latter constraint on
solutions can be applied during the generation of unifiers in
the variable only case rather than afterwards. Elimination of
solution 4 before generation of the 2" sums, and elimination
of sums which do not meet the first constraint would result in
the formation only of unifiers (3), (4), (5), and (6) of the
variable only case, each of which has a corresponding unifier
in th« general case.

More precisely, the algorithm consists of the following
steps:

1. Form generalizations of the two terms
distinct argument by a new variable.

replacing each

2. Use the algorithm for the variable only case to generate
unifiers for the generalizations of the two terms. The
variable only case algorithm may be constrained to eliminate
the generation of unifiers assigning more than one term to
variables whose value must be a single term, and the
generation of unifiers which will require the later unification
of terms which are obviously not unifiable.

3. Unify for each variable in the substitution from step 1 and
the unifiers from step 2 the variable values and return the
resulting assignments for variables of the original terms.
This is a complete set of unifiers of the original terms.

Proof of Termination. Soundness, and Completeness
of tha AC Unification Algorithm

We will first establish the validity of eliminating

74

argumenis common 10 the iwo terms. Thie will be done by
proving that any unifier of the lerms is a unifier of the terms
with a peir of common argumentis removed and vice versa.
Iheprem Lot &}, ..8,,4],..1, be lerms with s;at. for
)
A lnd lot

some i,j. Let ¢ be a umlwr of 1(s;. sm) snd 1{t;.
¢ be a unifiar of l(sl Bim]Bie] s) and I(I -I'OI R)
Then (1) @& is & unifier of ts) .8 M S l und
1. ';-l jol A and (2) ¢ is » umilor of 1(s;. t m) and
f(t)..t,).

Proof.

It #tls) 5, 8,,) S 0) = He e 00 = 1, L)0 =
it ﬂ(ll 1, lrl 1 nth and 5010 Therefore
1(:, - l“'ul S)0 (i, 1-tn IO and # is & unitigr of

(I j=1%e] -8)lﬂd fu| { {j‘l

2. '(ll ""i“'l 'i‘l ...lm)' - f“l m!i'l '"l tn)ﬂ' snd ’i"'j"
Therefore f(s. ’“‘l""i-l‘iol""m)') -'i(sl...lm}c = {ll) . tye =

f{1. cl(t l..in)r) and ¢ iz a unilier of 1(:1...3,“) and

el) b0

The lemma below establishes that every non-negative
integral solution to an equation of the form ayxys.@,X,. *
b1y1*...*b,y, is composable as a (non-negative integral
weighted) turn of a fixed finite set of non-negative integral
solutions It also establishes a solution value within which all
the non-negative integral solutions in the set may be found.

Lamma. Every non-negalive integral solution
(Xp XY [1-0¥p) 10 the equation ayxje o x, =
by *boyp wilh positive integral coaﬂncmn!s
o ,A..,am,bl raby 18 an additive linear combination of

non-negative integrai solutions with value L TE TR i oy
(*b|y;*. +b,y,) less than or equal to the maximum of m and
n times the maximum of the leasi common mulliples of pairs

of numbers one from 8;,. .8, #nd one from b;,..b,.

Proof. Astume with no loss of generality that the least
common multiple {lcm) of a; and b; is the maximum of the
ieast common multiples and that m2n.

Proot by induclion on the vaiue of & solulion k.

k=0. The solution with k=0 with x)=0, .., x_ 0, y =0,
w1 YpsQ is generable as the edditive linear combination of
non-nagative integral solutions with value less than or equal
to mxicm(a; b, } with 2ero coefficianis.

Ascume the lemma is frue for svery non-negative

integral solulion with value iess than or squal to k. Prove it
s true for k.

Case 1. k < mxicm(a;,b;). In this case, the solution is
included among the non-negative integral solutions with value
less than or equal fo m&icm(s;,by) and the lemma is true.

Case 2. k> mxicm(e),b;). Since ayx ¢ sa k. = k>
mxicmi{ag,by), and each %50, ol least one ll must be
groaier |han lem(ay b)), lnd x;, must be grulor than
lem{sy,by)/a;. Similarly, since Bi¥ *-bpy, = Kk
mxicm(a, b }y and each b.y >0, and nim, at leesst one b.y;
musi be grutor than lemia) Ll). and y; must be greater than
Icm(al,bl)/b Consider Iho solution wilh n-lcmhl.b)Ia,.

-Icm(a) b and all olher varisbles zero. This is jus
soluhon in ﬁowost terms involving only x; and y; and has valuo
fem(a;b.) § lem{a; b)). Since lem{s by) /s, 2 Icmln..b,)hl
snd |cm(l| bl”b ?_ Iem(n,.b)lb by lho maximality of

lcm(a1,b1), the solution involving only Xi and yj can be
subtracted from the solution with value K leaving a
non-negative integral solution as result. But this difference
solution has value k-lcm(ai.bj) < k and is thus composable
from solutions with value less' than or equal to m!lcm-(ll.bl)-
Therefore, the solution with value k > m*lcm(a4,b1) is the
sum of some solution involving only x, and y. with value less
than or equal to Icm(a1,b1) and some other set of solutions
with value less than or equal to m*lcm(a|,bj) and the lemma
is true for this case. QED.

The lemma proves an upper bound on solution values
that must be examined in the determination of a complete set
of non-negative integral solutions which span the
non-negative integral solution space by addition We believe
that tighter bounds can be proved. Although a proof for a
tighter bound would be desirable, it should be noted that a
lower proven bound would not reduce the number of found
solutions theoretically necessary, but only decreases tha cost
of computing them, and would have no effect on the form or
number of unifiers returned by the algorithm This it true
since any additional solutions discovered using a higher bound
than necessary must be composable from solutions bounded
by any proven lower bound and would therefore be
recognized as redundant and be omitted

The maximum of the least common multiples of the
coefficients one from the left side and one from the right side
of the equation is a lower bound on solution values which
must be examined, i. e., solutions with at least this value must
be examined. This is because one of the needed solutions not
otherwise generabie is the solution involving only the
variables with those two coefficients with maximum least
common multiple and having value equal to the maximum least
common multiple

Theorem The AC unification algorithm for terms with
associative and commutative function with only variables as
arguments always terminates, is sound (returns no
substitutions which are not unifiers), and is complete (every
unifier is an instance of a returned unifier).

Proof. The algorithm is guaranteed to terminate since
it performs a finite number of operations on the finite
number of non-negattve integral solutions generated from the
equation corresponding to the two terms. The generation of
these solutions is finite due to the trial solution values being
bounded.

The algorithm is sound since each solution of the
derived equation causes the introduction into each of the
instantiated terms of an equal number of new variable
occurrences Thus, the two instantiated terms have the same
number of occurrences of each new variable and are
therefore unified.

Any unifier must assign to each variable a term of the
form ti (whose function symbol is not 0 or a term
f(ty ny ,..tuym) (with ni occurrences of term ti as arguments of
f). Let k be the cardinality of the set of such terms ti in any
solution to the unification of a pair of terms with only
variables as arguments. The two instantiated terms must

have an equal number of occurrences of each of these k
terms as arguments of 1. That is,
BT B Cip ® bldil ""'bndin {1<ik) where m is the

number of distinct variables in the first term being unified, n
is the number of distinct variables in the second term, a. is
the multiplicity of the jth variable in the first term, b. is The

75

n

multiplicity of the | ' " variable in the second term, c;i is tha
number of occurrences of term i in variable j in ine first
term, and dij is the number of occurrences of term i in
variable j in Ine second term

Each t u (cil""'cim'dil""'din) a solution to tha
equation BN B Ky ® blyl""'bnyn corresponding to the
terms being unified. It can thus {according to the lemma) be
formed as the sum of certain non-negative integral solutions

to the equation weighted by positive intagers

Consider the unifier corresponding to the sum of all
those solutions fo the equation which are required in the
formation of any of the tuples lcil""'cim'dil'""din)' We will
show that the hypothesized unifier is an instance of this
unifier returned by the algorithm

include in the value of the new variable associated with
each of these solutions a number of occurrences ot term i
equal to the coefficient of the solution in the weighted sum
This will result in the proper assignment of c,. occurrences of
term i to each variable j of the first term ana dj occurrences
of term i to each variable j of the second term

Do this for each of the k terms in the solution. Let no
other or additional terms be included in the values of the new
variables.

This assignment of terms in the solution to new
variables associated with equation solutions generated in the
unification process results in the correct number CJ; or dj; of
each term being assigned to each variable of the original two
terms.

Thus, any solution to the unification of two terms with
only variables as arguments is an instance of a returned
unifier and the algorithm is complete. QED.

Theorem The AC unification algorithm for
terms with associative and commutative function
terminates, is sound, and is complete.

general
always

Proof. Let 5 and t be any two terms being unified,
Let s* and t* be the terms resuiting from replacing each
distinet term by a new variable. ¢* and ¥ are
generalizalions of & and | respectively, is., s*tss and t¥pat
for some & of the form {..x;vc;,...} where sach X; 15 8 new

v’:riabll and each ¢, is the term in & or t it replaces in s* or
|

Lel {r.} dencte the unitiers of s¥* and t* relurned by
the wunification alporithm for lerms wilh sssociative and
commutative function with only varisbles as argumenls. Each
v, is*of the form {..,x;+d;,..} where each x, is 4 variable of "
or {7 and d; is the term assighed 1o it by the unification
algorithm. According to the previous theorem, unification
terminastes, is sound, and is complete tor this cass.

Simultansous instances of & and ¢, represeni unifiers

of 5 and { since S*O-s, t*9:1, and s*aj-t*tj,

Unifying each c(with each dj of a returned unifier e of

s and t results in (by the assumption of termination,
soundness, and completeness of the recursive call on the
unification algorithm for terms of lesser complexity) a

complete set of unifiers for the original terms s and t. QED.

Conclusion

We have presented an algorithm for unifying general
terms with associative and commutative function. We have
proven that the algorithm is guaranteed to terminate, is
sound, and is complete.

The advantages of this algorithm as compared to other
approaches to unifying such terms are that the associativity
and commutativity properties need not be axiomatized and
that all the unifiers of a pair of such terms are immediately
returned eliminating the unnecessary and redundant
computation often occurring in other approaches which
generate only some of the unifiers at each step with no
indication of when all the unifiers have been generated.

BibliQjfiohy

1 Chang, C. L and Lee, R. C. T. Symbolic ["ogic and
Mechanical Theorem Proving. Academic Press, New
York, 1973.

2 Nevins, A. J. A human oriented logic for automatic
theorem proving J. ACM 21, 4 (Oct 1974), 606621

3 Plotkin, G. D. Building-in equational theories. In Meltzer,
B. and Michie, D. (Eds). Machine Intelligence 7,
Edinburgh University Press, Edinburgh, 1972, pp. 73-90.

4 Reboh, R. and Sacerdoti, E. A preliminary QLISP manual.
Technical Note 81, Artificial Intelligence Center, Stanford
Research Institute, Menlo Park, Calif, Aug 1973

5 Robinson, G and Wos, L Paramodulation and
theorem-proving in first-order theories with equality. In
Meltzer, B and Michie, D (Eds). Machine Intelligence 4,
Edinburgh University Press, Edinburgh, 1969, pp.
135-150

6 Robinson, J. A A machine-oriented logic based on the
resolution principle J. ACM 12, | (Jan 1965), 23-41.

7 Rulifson, J. F, Oerksen, J A and Waldinger, R. X QA4: a
procedural calculus for intuitive reasoning. Technical Note
73, Artificial Intelligence Center, Stanford Research
Institute, Menlo Park, Calif., Nov. 1972.

& Slagle, J. R. Automated theorem-proving for theories with
simplifiers, commutativity, and associativity. J. ACM 21, 4
(Oct. 1974), 622-642

9 Stickel, M. E. \Unification algorithms for artificial
intelligence languages. Chapter of incomplete Ph.D.
Dissertation, Department of Computer Science,
Carnegie-Mellon University, Pittsburgh, Penn.

