
A COMPLETE UNIFICATION ALGORITHM FOR
ASSOCIATIVE-COMMUTATIVE FUNCTIONS*

Mark E. Sticke!
Department of Computer Science

Carnegie-Mellon University
Pittsburgh, Pennsylvania

Abstract

An important component of mechanical theorem proving
systems are unification algorithms which find most genaral
substitutions which, when applied to two expresssions, maka
them equivalent. Functions which are associative and
commutative (such as the arithmetic addition and multiplication
functions) are often the subject of mechanical theorem
proving. An algorithm which unifies terms whose function is
associativa and commutative is presented here The
algorithm eliminates the need for axiomatizing the
associativity and commutativity properties and returns a
complete set of unifiers without recourse to the indefinite
generation of vurianU and instances of the terms being
unified required by previous solutions to the problem.

Introduction

At the core of many theorem proving systemi is a
unification algorithm which returns for a pair of input
expressions a set of unifying substitutions, assignments to the
variables of the expressions which maka tha two expressions
equivalent. Typical is the unification algorithm of Robinson
[6] for unifying atomic formulas of the first order predicate
calculus in resolution theorem proving [1].

This work treats the case of unifying terms of the first
order predicate calculus where the function is associative and
commutative Such functions are mathematically important and
thus of interest to developers of theorem proving programs
Examples of such functions are the arithmetic addition and
multiplication functions.

The case where the function is simply commutative is
easily handled by a trivial extension to Robinson's unification
algorithm which unifies the arguments of one term against
permutations of the arguments of the other term.

The case where the function is simply associative is
quite difficult and we know of no general solution
Suggestive of the difficulty of this problem is the fact that
there may be an infinite number of unifiers for a pair of
terms. For example, the terms t(xa) and f(ax) where f is
associative, a is a constant, and x is a variable has unifiers
with x=a, x=f(aa), x«f(aaa), ... (We represent the argument
lists of associative functions with no extra parentheses, i.e.,
f(abc) rather than f(af(bc)) or f(f(eb)c).)

Two principal approaches to handling associativity or

*Research supported by the National Science Foundation
(GJ-28457X2) and by the Advanced Research Projects
Agency of the Secretary of the Office of Defense
(F4462O-73-C-0074).

commutativity are available. The first, standard approach is
to represent the terms conventionally, i e., f(af(bc)) or
f(f(ab)c) rather than f(abc), and axiomatize the associativity or
commutativity property. The associativity axiom would be
f(xf(vz)=f(f(xy)z) and the commutativity axiom would be
f (xy=f(yx) . These axioms could be applied using some
equality inference rules such as paramodulation [5]

The second approach represents associative functions
as functions with an arbitrary number of arguments, i.e., uses
f(abc) rather than f(af(bc)) or f(f(ab)c) Special purpose
unification algorithms are provided tor terms whose functions
are associative, commutative, or both. Examples of this
approach in first order predicate calculus theorem proving
are the work of Nevins [2] and Slagle [8] The algorithms
for associativity, and for associativity and commutativity are
incomplete, i.e., they fail to return all the unifiers in some
cases. An example of this approach in the area of
programming languages for problem solving is the use of the
associative data type tuple or vector and associative and
commutative data type bag in the QA4 and QLISP languages
[7 ,4] Again, in this case the algorithms for pattern matching
(unifying) these expressions are incomplete In both these
cases, the incomplete algorithms can be augmented by a
process which alters the input expressions to cause the
unification algorithm applied to the altered expressions to
return additional unifiers The addition of this process
(Slagte's widening operation for the first order predicate
calculus [8] and Stickel's variable splitting operation for
expressions of QA4 and QLISP [9]) results in completeness.
Widening and variable splitting are both operations that must
be performed on one or both input expressions an arbitrary
number of times, replacing single variables of the
expressions uniformly by two variables; it i: essentially
(repeated) paramodulation by the functionally reflexive axiom.

An example of the latter approach is the unification of
f(abz) and f(xy) where f is associative and commutative. The
special purpose unification algorithm would fiurn the unifiers
{x<-e, y<-f(bz)}, {x<-b, y<-(az)), {x<-z, y<-f(ab)}, {x<-f(bz), y<-a),
{x<-f(az), y<-bh and {x<-(ab), y<-z). But this is an incomplete
set of unifiers since the possibility that the value of z is not
wholly contained in either the value of x or the value of y is
not represented. After performing a widening operation on
f(abz) resulting in f(abz1z2) by instantiating z by ((z1z2) .
additional new unifiers such as |x<-f(azj), y<-f(bz*)*
z«-f(Z|Z2)) and {x«-t(abzj), y«-z2, z H (i | Z 2) } i r e returned by
the unification algorithm.

Related to this approach, though different in detail, is
Plotktn's work on the theory of building in equational theories
[3] of which associativity and commutativity are examples. In
the case of associativity, Plotkin retains terms in a normal
form: right associative form, although it could equivalent^
have been our unparenthesized form. His equivalent of the
widening rule, the replacement of a variable by two new
variables, is applied continually inside the unification

71

algor i thm rather than being used outside it. Thus his
uni f icat ion algori thm may generate an infinite number of
un i f iers as opposed to a unification algorithm guaranteed to
produce a f in i te number of unifiers and a potentially infinite
process (widening) for altering inputs to the unification
a lgor i thm to obtain additional unifiers. The difference in
approaches seems to be principally one of organization of the
search process.

In this paper, we present a new special purpose
uni f icat ion algori thm which we call the AC unification
a lgor i thm for terms whose functions are associative and
commutat ive which returns a complete set of unifiers This
a lgor i thm eliminates the need for axiomatizing associativity
and commutat iv i ty and also eliminates the cost of continually
app ly ing these axioms which often results in much
unnecessary or redundant computation. It also eliminates the
need for using the process of widening or variable splitting
whose necessity (for discovering a complete set of unifiers in
the case of unifying any particular pair of expressions) is
d i f f icu l t to ascertain.

Tarminoioty

Defin i t ion A tarm is defined to be
(1) a constant,
(2) a var iab le , or
(3) a funct ion symbol succeeded by a list of terms (the
arguments of the function).

We shall use the symbols a, b, and c to represent
constants, x, y, and z (possibly indexed) to represent
var iab les , and f to represent a function which is associative
end commutative.

Def ini t ion A substitution component is an ordered pair
of a var iable v and a term t wr i t ten as v<-t A substitution
component denotes the assignment of the term to the
var iab le or the replacement of the variable by the term.

Delinition A substitution is a set of substitution
components wi th distinct f irst elements, i.e., distinct variables
be ing subst i tuted for. Applying a substitution to an
express ion results in the replacement of those variables of
the expression included among the first elements of the
subst i tu t ion components by the corresponding terms. The
subst i tu t ion components are applied to the expression in
para l le l and no variable occurrence in the second element of
a subst i tut ion component wi l l be replaced even if the variable
occurs as the f i rst element in another substitution component.
Subst i tut ions wi l l be represented by the symbols r and 0.
The application of substitution to expression A is denoted
by As The composition of substitutions denotes the
subst i tu t ion whose effect is the same as first applying
subst i tu t ion s\ then applying substitution v, i.e., A(##) • (Af)#
for e v e r y expression A.

Daftmtian A umtxini substitution or uoiiuu of two
expressions is a substitution which when applied to the two
expressions results in equivalent expressions. In ordinary
uni f icat ion, two expressions are equivalent if and only if they
are identical. In unification of argument lists of commutative
funct ions, two expressions are equivalent if they have the
same funct ion symbol and the same arguments in the same or
d i f f e ren t o rder .

Def in i t ion Term s is an incUnte of term t, and t is a

general izat ion of 8, if there •xists a substitution I such that
t f c .

Similar ly, substitution 0 is an instance (generalization)
of subst i tut ion v if, for every term t, t# is an instance
(general izat ion) of t<r

Tht AC Unification Algorithm

We present here an algorithm for unifying two terms
whose function is associative and commutative Terms wil l be
rep resen ted as if the function had an arbitrary number of
arguments w i th no superfluous parentheses.

We wi l l assume that the argument lists of the two
te rms being unif ied have no common arguments. This
presents no diff iculty since no unifiers are lost and efficiency
is gained if common arguments are eliminated immediately.
This is done by removing common arguments a pair at a time,
one f rom each of the argument lists For example, before
un i f y ing and Kbbbcz), the b's common to the two
te rms are removed yielding f(xxyac) and f(bbcz), and the c's
common to the two new terms »rm removed yielding f(xxya)
and f (bbz). An example of the utility of immediately
remov ing common arguments is the unification of f(g(x)y) and

common to the two terms are
immediately removed, the unification algorithm wil l return the
most general unif ier If the common g(x)'s are
re ta ined , unif ication wi l l likely result in the generation of the
addit ional less general unif ier

The algor i thm wil l be expressed partially in terms of
an algor i thm for the complete unification of terms with an
associative and commutative function with only variables at
arguments. The result of unifying such terms is an
assignment to each variable of the terms some sequence of
t e rms Each variable is assigned a term t, (whose function
symbol is not f) or a term occurrences
of t e r m t(as arguments of f). For such an assignment to be a
un i f ie r , the only requirement is that for each term t, used in
any assignment there are the same number of occurrences of
that t e r m occurr ing as arguments of f in each of the unified
te rms instantiated by the assignment For example, in
un i fy ing if term t is part of some
assignment to one of the variables, then 2 times the number
of occurrences of t in the assignment for X| plus the number
of occurrences of t in the assignment for «2 P'us the number
of occurrences of t in the assignment for xq must equal 2
t imes the number of occurrences of t in the assignment for
yj plus the number of occurrences of t in the assignment for
Y2 For example,
y 2 * - f (aabbb)) is ■ unif ier of since
t h e r e are 2 a's and 5 b's in the instantiations of f (x iX |X2X 3)
end w i th the unified term being f(aabbbbb).

With each pair of terms with an associative and
commutat ive function with only variable arguments is
associated a single equation representing the number and
mul t ip l ic i ty of variables in each term. For example, the
equat ion is associated with the pair of
te rms given above. This equation succintly represents the
condit ion for a substitution to be a unif ier: that the sum of the
number ol occurrences of any term in the value of each
var iab le mult ipl ied by the multiplicity of the variable in the
t e r m must be equal for the two terms.

Non-negat ive integral solutions to such equations can

72

be used to represent unif iers. The solutions must be
non-negat ive integral since each variable must be assigned a
non-negat ive integral number ol occurrences of each term.

In o rde r to generate all the solutions to the problem of
un i fy ing the two terms, it is necessary to be able to
rep resen t all the solutions to the equation derived from the
te rms, Every non-negative integral solution to the equation
is representab le as a sum of elements of a particular finite
set of non-negat ive integral solutions to the equation, i.e.,
e v e r y non-negat ive integral solution to the equation is a sum
(equiva lent ly , a sum with non-negative integral weights) of
e lements of a particular f inite set of non-negative integral
solut ions. The f in i te set of non-negative integral solutions by
whose addition the ent i re non-negative integral solution
space is spanned is generable by generating in ascending
o rdo r of value solutions to the equation, eliminating those
solut ions composable f rom those previously generated. This
process can be made finite by placing a bound on the
maximum solution value which wil l be used; such a maximum
is p roved in a later lemma to eliminate no needed solutions.

Associated with each solution above is a new variable
(in the r ightmost column). The assignment of as many
occurrences of that variable as specified in the solution to
each of the variables of the original term results in a partial
solut ion to the unification of the the original terms In
par t icu lar , the assignment of 2 occurrences of variable 2-* to
X3 and I occurrence to yj results in an equal number of
occurrences of variable z-j in each ol f (x |X |X2*3) a n d

M y i y 2)

Every non-negative integral solution to the equation is
a (non-negat ive integer weighted) cum of the 7 solutions
p resen ted above, i.e., %vry solution is representable as

for some non-negative integral values of
However, not every solution to the equation is a

solut ion to the unification problem for which the equation was
d e r i v e d . There is an additional constraint that each variable
of the or ig inal terms must be have at least one term in its
va lue ; it cannot have zero terms in its value.

Hence, we must form that subset of the 2 «128 sums
for which each element of the 5-1uple is non-zero. (It is not
necessary to consider sums in which any solution has a
coef f ic ient other than 0 or 1 since such solutions (in the
uni f icat ion problem) are already representable since the
solut ion's inclusion wi th coefficient 1 introduces a variable
which can have as its value an arbitrary number of terms as
arguments of f thus simulating the case of the coefficient
be ing g rea ter than 1.) There are 69 such sums including for
example (represent ing the sum by the set of its indices)

Note that if a variable could have as its value zero
te rms rather than one or more terms as in the first order
pred icate calculus, it would be unnecessary to form this
subset of 2n (where n is the number of solutions) sums. Only
the sum of all the solutions would be required since any
var iab le present in this sum could have value zero, and the
var iables in the corresponding unifier could be matched
against zero terms. This is the situation wifh fragment
var iables in the bag data type in QA4 and QUSP [7 ,4] (see

[9]>

To be more precise in the definition of the algorithm,
the algor i thm consists of the following steps:

1. Form an equation f rom the two terms where the coefficient
of each var iable in the equation is equal to the multiplicity of
the corresponding variable in the term.

2. Generate all non-negative integral solutions to the
equat ion el iminating all those solutions composable from other
solut ions.

3 Associate wi th each solution a new variable.

4. Tor each sum of the solutions (no solution occurring in the
sum more than once) wi th no zero components assemble a
un i f ie r composed of assignments to the original variables with
as many of each new variable as specified by the solution
e lement in the sum associated with the new variable and the
or ig ina l var iable.

Now we present the complete algorithm for unifying
genera l terms wi th associative and commutative functions
using the algori thm for the variable only case above. We are
h e r e concerned wi th terms whose function is associative and
commutat ive wi th arb i t rary arguments, i.e., arguments that
may contain ordinary (non-associative, non-commutative)
functions or f or other functions which are associative and
commutat ive. We assume the presence of ordinary unification
to deal w i th those aspects of the unification problem not dealt
w i t h expl ic i t ly here.

First , when unifying two terms, two new terms wi th
only var iable arguments are formed by uniformly replacing
dist inct arguments by new variables. These new terms have
only var iable arguments and aer generalizations of the
or ig ina l two terms. For example, in unifying f(xxya) and
f (bbz) , we fo rm generalizations
w i t h substi tut ion
instant iat ing the new terms to the original terms.

Next, using the previous algorithm for the variable
on ly case, we unify the generalizations of the original terms.
This has already been done for the example above result ing
in 69 unif iers as stated previously.

Now we have the generalizations of the two original
t e rms , a substi tut ion to instantiate them to the original terms,
and a complete set of their .unif iers. Every unifier of the
or ig ina l terms is a simultaneous instance of the substitution to
instant iate the generalizations to the original terms and a
uni f ier of the generalizations. So all that is necessary to get
all the uni f iers of the original terms is to unify (for each
var iab le being substituted (or) the value in the substitution
and the value in the unif iers.

In the example, X3 must have value a and y1 must
have value b. Thus, any unifier of and

73

Stnce X3 and y1 of the variable only cast correspond
to a and b respectively, and a and b are not unifiable, any
sum including solution 4 to the equation
can be excluded from consideration since it would require (as
in (1) and (2) above) the unification of a and b. As with the
constraint on variables corresponding to non-variable terms
not being assigned more than one variable (terms of the form
f(...)) in the variable only case, this latter constraint on
solutions can be applied during the generation of unifiers in
the variable only case rather than afterwards. Elimination of
solution 4 before generation of the 2n sums, and elimination
of sums which do not meet the first constraint would result in
the formation only of unifiers (3), (4), (5), and (6) of the
variable only case, each of which has a corresponding unifier
in th« general case.

More precisely, the algorithm consists of the following
steps:

1. Form generalizations of the two terms replacing each
distinct argument by a new variable.

2. Use the algorithm for the variable only case to generate
unifiers for the generalizations of the two terms. The
variable only case algorithm may be constrained to eliminate
the generation of unifiers assigning more than one term to
variables whose value must be a single term, and the
generation of unifiers which will require the later unification
of terms which are obviously not unifiable.

3. Unify for each variable in the substitution from step 1 and
the unifiers from step 2 the variable values and return the
resulting assignments for variables of the original terms.
This is a complete set of unifiers of the original terms.

Proof of Termination. Soundness, and Completeness
of tha AC Unification Algorithm

We wi l l f i rst establish the validity of eliminating

74

The lemma below establishes that every non-negative
integral solution to an equation of the form *
b1y1 *... * b n y n is composable as a (non-negative integral
weighted) turn of a fixed finite set of non-negative integral
solutions It also establishes a solution value within which all
the non-negative integral solutions in the set may be found.

lcm(a1,b1), the solution involving only Xi and yj can be
subt racted f rom the solution with value K leaving a
non-negat ive integral solution as result. But this difference
solut ion has value < k and is thus composable
f r o m solutions wi th value less' than or equal to
The re fo re , the solution wi th value k > m*lcm(a1,b1) is the
sum of some solution involving only x, and y. with value less
than or equal to lcm(a1,b1) and some other set of solutions
w i t h value less than or equal to m* lcm(a | ,b j) and the lemma
is t r ue for this case. QED.

The lemma proves an upper bound on solution values
that must be examined in the determination of a complete set
of non-negat ive integral solutions which span the
non-negat ive integral solution space by addition We believe
that t igh ter bounds can be proved. Although a proof for a
t igh te r bound would be desirable, it should be noted that a
lower p roven bound would not reduce the number of found
solutions theoret ical ly necessary, but only decreases tha cost
of computing them, and would have no effect on the form or
number of unif iers returned by the algorithm This it true
since any additional solutions discovered using a higher bound
than necessary must be composable from solutions bounded
by any proven lower bound and would therefore be
recogn ized as redundant and be omitted

The maximum of the least common multiples of the
coeff ic ients one from the left side and one from the right side
of the equation is a lower bound on solution values which
must be examined, i. e., solutions with at least this value must
be examined. This is because one of the needed solutions not
o the rw ise generabie is the solution involving only the
var iables wi th those two coefficients with maximum least
common mult ip le and having value equal to the maximum least
common mult iple

Theorem The AC unification algorithm for terms with
associative and commutative function with only variables as
arguments always terminates, is sound (returns no
subst i tut ions which are not unifiers), and is complete (every
un i f ie r is an instance of a returned unifier).

Proof. The algorithm is guaranteed to terminate since
it per fo rms a finite number of operations on the finite
number of non-negattve integral solutions generated from the
equat ion corresponding to the two terms. The generation of
these solutions is f inite due to the trial solution values being
bounded.

The algorithm is sound since each solution of the
de r i ved equation causes the introduction into each of the
instant iated terms of an equal number of new variable
occurrences Thus, the two instantiated terms have the same
number of occurrences of each new variable and are
t h e r e f o r e unif ied.

Any unif ier must assign to each variable a term of the
f o r m ti (whose function symbol is not 0 or a term
f(t1 n1 , . . t m m) (with ni occurrences of term ti as arguments of
f) . Let k be the cardinality of the set of such terms ti in any
solut ion to the unification of a pair of terms with only
var iables as arguments. The two instantiated terms must
have an equal number of occurrences of each of these k
te rms as arguments of 1. That is,

where m is the
number of distinct variables in the first term being unified, n
is the number of distinct variables in the second term, a. is
the mult ip l ic i ty of the jth variable in the first term, b. is The

mult ip l ic i ty of the j i n variable in the second term, c j i is tha
number of occurrences of term i in variable j in ine first
t e r m , and dij is the number of occurrences of term i in
var iab le j in Ine second term

Each t u p l e t s a solution t o tha
equat ion corresponding to the
te rms being unif ied. It can thus (according to the lemma) be
fo rmed as the sum of certain non-negative integral solutions
to the equation weighted by positive intagers

Consider the unifier corresponding to the sum of all
those solutions to the equation which are required in the
format ion of any of the tuples We will
show that the hypothesized unifier is an instance of this
uni f ier re tu rned by the algorithm

include in the value of the new variable associated with
each of these solutions a number of occurrences ot term i
equal to the coefficient of the solution in the weighted sum
This wi l l result in the proper assignment of c,. occurrences of
t e r m i to each variable j of the first term ana d i j occurrences
of t e rm i to each variable j of the second term

Do this for each of the k terms in the solution. Let no
o ther or additional terms be included in the values of the new
var iables.

This assignment of terms in the solution to new
var iables associated with equation solutions generated in the
unif icat ion process results in the correct number CJ; or d j ; of
each t e rm being assigned to each variable of the original two
terms.

Thus, any solution to the unification of two terms with
only var iables as arguments is an instance of a returned
un i f ie r and the algorithm is complete. QED.

Theorem The AC unification algorithm for general
terms w i th associative and commutative function always
terminates , is sound, and is complete.

Unifying each c(with each dj of a returned unifier e of
s and t results in (by the assumption of termination,
soundness, and completeness of the recursive call on the
unif icat ion algori thm for terms of lesser complexity) a
complete set of unif iers for the original terms s and t. QED.

75

Conclusion

We have presented an algorithm for unifying general
terms with associative and commutative function. We have
proven that the algorithm is guaranteed to terminate, is
sound, and is complete.

... The advantages of this algorithm as compared to other
approaches to unifying such terms are that the associativity
and commutativity properties need not be axiomatized and
that all the unifiers of a pair of such terms are immediately
returned eliminating the unnecessary and redundant
computation often occurring in other approaches which
generate only some of the unifiers at each step with no
indication of when all the unifiers have been generated.

BibliQjfiohy

1 Chang, C. L and Lee, R. C. T. Symbolic l^ogic and
Mechanical Theorem Proving. Academic Press, New
York, 1973.

2 Nevins, A. J. A human oriented logic for automatic
theorem proving J. ACM 21, 4 (Oct 1974), 606*621

3 Plotkin, G. D. Building-in equational theories. In Meltzer,
B. and Michie, D. (Eds). Machine Intelligence 7,
Edinburgh University Press, Edinburgh, 1972, pp. 73-90.

4 Reboh, R. and Sacerdoti, E. A preliminary QLISP manual.
Technical Note 8 1 , Artificial Intelligence Center, Stanford
Research Institute, Menlo Park, Calif, Aug 1973

5 Robinson, G and Wos, L Paramodulation and
theorem-proving in first-order theories with equality. In
Meltzer, B and Michie, D (Eds). Machine Intelligence 4,
Edinburgh University Press, Edinburgh, 1969, pp.
135-150

6 Robinson, J. A A machine-oriented logic based on the
resolution principle J. ACM I2t I (Jan 1965), 23-41.

7 Rulifson, J. F, Oerksen, J A and Waldinger, R. X QA4: a
procedural calculus for intuitive reasoning. Technical Note
73, Artificial Intelligence Center, Stanford Research
Institute, Menlo Park, Calif., Nov. 1972.

& Slagle, J. R. Automated theorem-proving for theories with
simplifiers, commutativity, and associativity. J. ACM 21, 4
(Oct. 1974), 622-642

9 Stickel, M. E. Unification algorithms for artificial
intelligence languages. Chapter of incomplete Ph.D.
Dissertation, Department of Computer Science,
Carnegie-Mellon University, Pittsburgh, Penn.

