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Abstract 

An important component of mechanical theorem proving 
systems are unification algorithms which find most genaral 
substitutions which, when applied to two expresssions, maka 
them equivalent. Functions which are associative and 
commutative (such as the arithmetic addition and multiplication 
functions) are often the subject of mechanical theorem 
proving. An algorithm which unifies terms whose function is 
associativa and commutative is presented here The 
algorithm eliminates the need for axiomatizing the 
associativity and commutativity properties and returns a 
complete set of unifiers without recourse to the indefinite 
generation of vurianU and instances of the terms being 
unified required by previous solutions to the problem. 

Introduction 

At the core of many theorem proving systemi is a 
unification algorithm which returns for a pair of input 
expressions a set of unifying substitutions, assignments to the 
variables of the expressions which maka tha two expressions 
equivalent. Typical is the unification algorithm of Robinson 
[6 ] for unifying atomic formulas of the first order predicate 
calculus in resolution theorem proving [1]. 

This work treats the case of unifying terms of the first 
order predicate calculus where the function is associative and 
commutative Such functions are mathematically important and 
thus of interest to developers of theorem proving programs 
Examples of such functions are the arithmetic addition and 
multiplication functions. 

The case where the function is simply commutative is 
easily handled by a trivial extension to Robinson's unification 
algorithm which unifies the arguments of one term against 
permutations of the arguments of the other term. 

The case where the function is simply associative is 
quite difficult and we know of no general solution 
Suggestive of the difficulty of this problem is the fact that 
there may be an infinite number of unifiers for a pair of 
terms. For example, the terms t(xa) and f(ax) where f is 
associative, a is a constant, and x is a variable has unifiers 
with x=a, x=f(aa), x«f(aaa), ... (We represent the argument 
lists of associative functions with no extra parentheses, i.e., 
f(abc) rather than f(af(bc)) or f(f(eb)c).) 

Two principal approaches to handling associativity or 
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commutativity are available. The first, standard approach is 
to represent the terms conventionally, i e., f(af(bc)) or 
f(f(ab)c) rather than f(abc), and axiomatize the associativity or 
commutativity property. The associativity axiom would be 
f(xf(vz)=f(f(xy)z) and the commutativity axiom would be 
f (xy=f(yx) . These axioms could be applied using some 
equality inference rules such as paramodulation [5] 

The second approach represents associative functions 
as functions with an arbitrary number of arguments, i.e., uses 
f(abc) rather than f(af(bc)) or f(f(ab)c) Special purpose 
unification algorithms are provided tor terms whose functions 
are associative, commutative, or both. Examples of this 
approach in first order predicate calculus theorem proving 
are the work of Nevins [2] and Slagle [8] The algorithms 
for associativity, and for associativity and commutativity are 
incomplete, i.e., they fail to return all the unifiers in some 
cases. An example of this approach in the area of 
programming languages for problem solving is the use of the 
associative data type tuple or vector and associative and 
commutative data type bag in the QA4 and QLISP languages 
[7 ,4 ] Again, in this case the algorithms for pattern matching 
(unifying) these expressions are incomplete In both these 
cases, the incomplete algorithms can be augmented by a 
process which alters the input expressions to cause the 
unification algorithm applied to the altered expressions to 
return additional unifiers The addition of this process 
(Slagte's widening operation for the first order predicate 
calculus [8 ] and Stickel's variable splitting operation for 
expressions of QA4 and QLISP [9]) results in completeness. 
Widening and variable splitting are both operations that must 
be performed on one or both input expressions an arbitrary 
number of times, replacing single variables of the 
expressions uniformly by two variables; it i: essentially 
(repeated) paramodulation by the functionally reflexive axiom. 

An example of the latter approach is the unification of 
f(abz) and f(xy) where f is associative and commutative. The 
special purpose unification algorithm would fiurn the unifiers 
{x<-e, y<-f(bz)}, {x<-b, y<-(az)), {x<-z, y<-f(ab)}, {x<-f(bz), y<-a), 
{x<-f(az), y<-bh and {x<-(ab), y<-z). But this is an incomplete 
set of unifiers since the possibility that the value of z is not 
wholly contained in either the value of x or the value of y is 
not represented. After performing a widening operation on 
f(abz) resulting in f(abz1z2) by instantiating z by ((z1z2 ) . 
additional new unifiers such as |x<-f(azj), y<-f(bz*)* 
z«-f(Z|Z2)) and {x«-t(abzj), y«-z2, z H ( i | Z 2 ) } i r e returned by 
the unification algorithm. 

Related to this approach, though different in detail, is 
Plotktn's work on the theory of building in equational theories 
[ 3 ] of which associativity and commutativity are examples. In 
the case of associativity, Plotkin retains terms in a normal 
form: right associative form, although it could equivalent^ 
have been our unparenthesized form. His equivalent of the 
widening rule, the replacement of a variable by two new 
variables, is applied continually inside the unification 
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algor i thm rather than being used outside it. Thus his 
uni f icat ion algori thm may generate an infinite number of 
un i f iers as opposed to a unification algorithm guaranteed to 
produce a f in i te number of unifiers and a potentially infinite 
process (widening) for altering inputs to the unification 
a lgor i thm to obtain additional unifiers. The difference in 
approaches seems to be principally one of organization of the 
search process. 

In this paper, we present a new special purpose 
uni f icat ion algori thm which we call the AC unification 
a lgor i thm for terms whose functions are associative and 
commutat ive which returns a complete set of unifiers This 
a lgor i thm eliminates the need for axiomatizing associativity 
and commutat iv i ty and also eliminates the cost of continually 
app ly ing these axioms which often results in much 
unnecessary or redundant computation. It also eliminates the 
need for using the process of widening or variable splitting 
whose necessity (for discovering a complete set of unifiers in 
the case of unifying any particular pair of expressions) is 
d i f f icu l t to ascertain. 

Tarminoioty 

Defin i t ion A tarm is defined to be 
(1 ) a constant, 
(2 ) a var iab le , or 
(3 ) a funct ion symbol succeeded by a list of terms (the 
arguments of the function). 

We shall use the symbols a, b, and c to represent 
constants, x, y, and z (possibly indexed) to represent 
var iab les , and f to represent a function which is associative 
end commutative. 

Def ini t ion A substitution component is an ordered pair 
of a var iable v and a term t wr i t ten as v<-t A substitution 
component denotes the assignment of the term to the 
var iab le or the replacement of the variable by the term. 

Delinition A substitution is a set of substitution 
components wi th distinct f irst elements, i.e., distinct variables 
be ing subst i tuted for. Applying a substitution to an 
express ion results in the replacement of those variables of 
the expression included among the first elements of the 
subst i tu t ion components by the corresponding terms. The 
subst i tu t ion components are applied to the expression in 
para l le l and no variable occurrence in the second element of 
a subst i tut ion component wi l l be replaced even if the variable 
occurs as the f i rst element in another substitution component. 
Subst i tut ions wi l l be represented by the symbols r and 0. 
The application of substitution to expression A is denoted 
by As The composition of substitutions denotes the 
subst i tu t ion whose effect is the same as first applying 
subst i tu t ion s\ then applying substitution v, i.e., A(##) • (Af)# 
for e v e r y expression A. 

Daftmtian A umtxini substitution or uoiiuu of two 
expressions is a substitution which when applied to the two 
expressions results in equivalent expressions. In ordinary 
uni f icat ion, two expressions are equivalent if and only if they 
are identical. In unification of argument lists of commutative 
funct ions, two expressions are equivalent if they have the 
same funct ion symbol and the same arguments in the same or 
d i f f e ren t o rder . 

Def in i t ion Term s is an incUnte of term t, and t is a 

general izat ion of 8, if there •xists a substitution I such that 
t f c . 

Similar ly, substitution 0 is an instance (generalization) 
of subst i tut ion v if, for every term t, t# is an instance 
(general izat ion) of t<r 

Tht AC Unification Algorithm 

We present here an algorithm for unifying two terms 
whose function is associative and commutative Terms wil l be 
rep resen ted as if the function had an arbitrary number of 
arguments w i th no superfluous parentheses. 

We wi l l assume that the argument lists of the two 
te rms being unif ied have no common arguments. This 
presents no diff iculty since no unifiers are lost and efficiency 
is gained if common arguments are eliminated immediately. 
This is done by removing common arguments a pair at a time, 
one f rom each of the argument lists For example, before 
un i f y ing and Kbbbcz), the b's common to the two 
te rms are removed yielding f(xxyac) and f(bbcz), and the c's 
common to the two new terms »rm removed yielding f(xxya) 
and f (bbz). An example of the utility of immediately 
remov ing common arguments is the unification of f(g(x)y) and 

common to the two terms are 
immediately removed, the unification algorithm wil l return the 
most general unif ier If the common g(x)'s are 
re ta ined , unif ication wi l l likely result in the generation of the 
addit ional less general unif ier 

The algor i thm wil l be expressed partially in terms of 
an algor i thm for the complete unification of terms with an 
associative and commutative function with only variables at 
arguments. The result of unifying such terms is an 
assignment to each variable of the terms some sequence of 
t e rms Each variable is assigned a term t, (whose function 
symbol is not f) or a term occurrences 
of t e r m t( as arguments of f). For such an assignment to be a 
un i f ie r , the only requirement is that for each term t, used in 
any assignment there are the same number of occurrences of 
that t e r m occurr ing as arguments of f in each of the unified 
te rms instantiated by the assignment For example, in 
un i fy ing if term t is part of some 
assignment to one of the variables, then 2 times the number 
of occurrences of t in the assignment for X| plus the number 
of occurrences of t in the assignment for «2 P'us the number 
of occurrences of t in the assignment for xq must equal 2 
t imes the number of occurrences of t in the assignment for 
yj plus the number of occurrences of t in the assignment for 
Y2 For example, 
y 2 * - f (aabbb) ) is ■ unif ier of since 
t h e r e are 2 a's and 5 b's in the instantiations of f ( x iX |X2X 3 ) 
end w i th the unified term being f(aabbbbb). 

With each pair of terms with an associative and 
commutat ive function with only variable arguments is 
associated a single equation representing the number and 
mul t ip l ic i ty of variables in each term. For example, the 
equat ion is associated with the pair of 
te rms given above. This equation succintly represents the 
condit ion for a substitution to be a unif ier: that the sum of the 
number ol occurrences of any term in the value of each 
var iab le mult ipl ied by the multiplicity of the variable in the 
t e r m must be equal for the two terms. 

Non-negat ive integral solutions to such equations can 
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be used to represent unif iers. The solutions must be 
non-negat ive integral since each variable must be assigned a 
non-negat ive integral number ol occurrences of each term. 

In o rde r to generate all the solutions to the problem of 
un i fy ing the two terms, it is necessary to be able to 
rep resen t all the solutions to the equation derived from the 
te rms, Every non-negative integral solution to the equation 
is representab le as a sum of elements of a particular finite 
set of non-negat ive integral solutions to the equation, i.e., 
e v e r y non-negat ive integral solution to the equation is a sum 
(equiva lent ly , a sum with non-negative integral weights) of 
e lements of a particular f inite set of non-negative integral 
solut ions. The f in i te set of non-negative integral solutions by 
whose addition the ent i re non-negative integral solution 
space is spanned is generable by generating in ascending 
o rdo r of value solutions to the equation, eliminating those 
solut ions composable f rom those previously generated. This 
process can be made finite by placing a bound on the 
maximum solution value which wil l be used; such a maximum 
is p roved in a later lemma to eliminate no needed solutions. 

Associated with each solution above is a new variable 
(in the r ightmost column). The assignment of as many 
occurrences of that variable as specified in the solution to 
each of the variables of the original term results in a partial 
solut ion to the unification of the the original terms In 
par t icu lar , the assignment of 2 occurrences of variable 2-* to 
X3 and I occurrence to yj results in an equal number of 
occurrences of variable z-j in each ol f (x |X |X2*3) a n d 

M y i y 2 ) 

Every non-negative integral solution to the equation is 
a (non-negat ive integer weighted) cum of the 7 solutions 
p resen ted above, i.e., %vry solution is representable as 

for some non-negative integral values of 
However, not every solution to the equation is a 

solut ion to the unification problem for which the equation was 
d e r i v e d . There is an additional constraint that each variable 
of the or ig inal terms must be have at least one term in its 
va lue ; it cannot have zero terms in its value. 

Hence, we must form that subset of the 2 «128 sums 
for which each element of the 5-1uple is non-zero. (It is not 
necessary to consider sums in which any solution has a 
coef f ic ient other than 0 or 1 since such solutions (in the 
uni f icat ion problem) are already representable since the 
solut ion's inclusion wi th coefficient 1 introduces a variable 
which can have as its value an arbitrary number of terms as 
arguments of f thus simulating the case of the coefficient 
be ing g rea ter than 1.) There are 69 such sums including for 
example ( represent ing the sum by the set of its indices) 

Note that if a variable could have as its value zero 
te rms rather than one or more terms as in the first order 
pred icate calculus, it would be unnecessary to form this 
subset of 2n (where n is the number of solutions) sums. Only 
the sum of all the solutions would be required since any 
var iab le present in this sum could have value zero, and the 
var iables in the corresponding unifier could be matched 
against zero terms. This is the situation wifh fragment 
var iables in the bag data type in QA4 and QUSP [7 ,4 ] (see 

[9]> 

To be more precise in the definition of the algorithm, 
the algor i thm consists of the following steps: 

1. Form an equation f rom the two terms where the coefficient 
of each var iable in the equation is equal to the multiplicity of 
the corresponding variable in the term. 

2. Generate all non-negative integral solutions to the 
equat ion el iminating all those solutions composable from other 
solut ions. 

3 Associate wi th each solution a new variable. 

4. Tor each sum of the solutions (no solution occurring in the 
sum more than once) wi th no zero components assemble a 
un i f ie r composed of assignments to the original variables with 
as many of each new variable as specified by the solution 
e lement in the sum associated with the new variable and the 
or ig ina l var iable. 

Now we present the complete algorithm for unifying 
genera l terms wi th associative and commutative functions 
using the algori thm for the variable only case above. We are 
h e r e concerned wi th terms whose function is associative and 
commutat ive wi th arb i t rary arguments, i.e., arguments that 
may contain ordinary (non-associative, non-commutative) 
functions or f or other functions which are associative and 
commutat ive. We assume the presence of ordinary unification 
to deal w i th those aspects of the unification problem not dealt 
w i t h expl ic i t ly here. 

First , when unifying two terms, two new terms wi th 
only var iable arguments are formed by uniformly replacing 
dist inct arguments by new variables. These new terms have 
only var iable arguments and aer generalizations of the 
or ig ina l two terms. For example, in unifying f(xxya) and 
f (bbz ) , we fo rm generalizations 
w i t h substi tut ion 
instant iat ing the new terms to the original terms. 

Next, using the previous algorithm for the variable 
on ly case, we unify the generalizations of the original terms. 
This has already been done for the example above result ing 
in 69 unif iers as stated previously. 

Now we have the generalizations of the two original 
t e rms , a substi tut ion to instantiate them to the original terms, 
and a complete set of their .unif iers. Every unifier of the 
or ig ina l terms is a simultaneous instance of the substitution to 
instant iate the generalizations to the original terms and a 
uni f ier of the generalizations. So all that is necessary to get 
all the uni f iers of the original terms is to unify (for each 
var iab le being substituted (or) the value in the substitution 
and the value in the unif iers. 

In the example, X3 must have value a and y1 must 
have value b. Thus, any unifier of and 
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Stnce X3 and y1 of the variable only cast correspond 
to a and b respectively, and a and b are not unifiable, any 
sum including solution 4 to the equation 
can be excluded from consideration since it would require (as 
in (1) and (2) above) the unification of a and b. As with the 
constraint on variables corresponding to non-variable terms 
not being assigned more than one variable (terms of the form 
f(...)) in the variable only case, this latter constraint on 
solutions can be applied during the generation of unifiers in 
the variable only case rather than afterwards. Elimination of 
solution 4 before generation of the 2n sums, and elimination 
of sums which do not meet the first constraint would result in 
the formation only of unifiers (3), (4), (5), and (6) of the 
variable only case, each of which has a corresponding unifier 
in th« general case. 

More precisely, the algorithm consists of the following 
steps: 

1. Form generalizations of the two terms replacing each 
distinct argument by a new variable. 

2. Use the algorithm for the variable only case to generate 
unifiers for the generalizations of the two terms. The 
variable only case algorithm may be constrained to eliminate 
the generation of unifiers assigning more than one term to 
variables whose value must be a single term, and the 
generation of unifiers which will require the later unification 
of terms which are obviously not unifiable. 

3. Unify for each variable in the substitution from step 1 and 
the unifiers from step 2 the variable values and return the 
resulting assignments for variables of the original terms. 
This is a complete set of unifiers of the original terms. 

Proof of Termination. Soundness, and Completeness 
of tha AC Unification Algorithm 

We wi l l f i rst establish the validity of eliminating 
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The lemma below establishes that every non-negative 
integral solution to an equation of the form * 
b1y1 *... * b n y n is composable as a (non-negative integral 
weighted) turn of a fixed finite set of non-negative integral 
solutions It also establishes a solution value within which all 
the non-negative integral solutions in the set may be found. 



lcm(a1,b1), the solution involving only Xi and yj can be 
subt racted f rom the solution with value K leaving a 
non-negat ive integral solution as result. But this difference 
solut ion has value < k and is thus composable 
f r o m solutions wi th value less' than or equal to 
The re fo re , the solution wi th value k > m*lcm(a1,b1) is the 
sum of some solution involving only x, and y. with value less 
than or equal to lcm(a1,b1) and some other set of solutions 
w i t h value less than or equal to m* lcm(a | ,b j ) and the lemma 
is t r ue for this case. QED. 

The lemma proves an upper bound on solution values 
that must be examined in the determination of a complete set 
of non-negat ive integral solutions which span the 
non-negat ive integral solution space by addition We believe 
that t igh ter bounds can be proved. Although a proof for a 
t igh te r bound would be desirable, it should be noted that a 
lower p roven bound would not reduce the number of found 
solutions theoret ical ly necessary, but only decreases tha cost 
of computing them, and would have no effect on the form or 
number of unif iers returned by the algorithm This it true 
since any additional solutions discovered using a higher bound 
than necessary must be composable from solutions bounded 
by any proven lower bound and would therefore be 
recogn ized as redundant and be omitted 

The maximum of the least common multiples of the 
coeff ic ients one from the left side and one from the right side 
of the equation is a lower bound on solution values which 
must be examined, i. e., solutions with at least this value must 
be examined. This is because one of the needed solutions not 
o the rw ise generabie is the solution involving only the 
var iables wi th those two coefficients with maximum least 
common mult ip le and having value equal to the maximum least 
common mult iple 

Theorem The AC unification algorithm for terms with 
associative and commutative function with only variables as 
arguments always terminates, is sound (returns no 
subst i tut ions which are not unifiers), and is complete (every 
un i f ie r is an instance of a returned unifier). 

Proof. The algorithm is guaranteed to terminate since 
it per fo rms a finite number of operations on the finite 
number of non-negattve integral solutions generated from the 
equat ion corresponding to the two terms. The generation of 
these solutions is f inite due to the trial solution values being 
bounded. 

The algorithm is sound since each solution of the 
de r i ved equation causes the introduction into each of the 
instant iated terms of an equal number of new variable 
occurrences Thus, the two instantiated terms have the same 
number of occurrences of each new variable and are 
t h e r e f o r e unif ied. 

Any unif ier must assign to each variable a term of the 
f o r m ti (whose function symbol is not 0 or a term 
f( t1 n1 , . . t m m ) (with ni occurrences of term ti as arguments of 
f ) . Let k be the cardinality of the set of such terms ti in any 
solut ion to the unification of a pair of terms with only 
var iables as arguments. The two instantiated terms must 
have an equal number of occurrences of each of these k 
te rms as arguments of 1. That is, 

where m is the 
number of distinct variables in the first term being unified, n 
is the number of distinct variables in the second term, a. is 
the mult ip l ic i ty of the jth variable in the first term, b. is The 

mult ip l ic i ty of the j i n variable in the second term, c j i is tha 
number of occurrences of term i in variable j in ine first 
t e r m , and dij is the number of occurrences of term i in 
var iab le j in Ine second term 

Each t u p l e t s a solution t o tha 
equat ion corresponding to the 
te rms being unif ied. It can thus (according to the lemma) be 
fo rmed as the sum of certain non-negative integral solutions 
to the equation weighted by positive intagers 

Consider the unifier corresponding to the sum of all 
those solutions to the equation which are required in the 
format ion of any of the tuples We will 
show that the hypothesized unifier is an instance of this 
uni f ier re tu rned by the algorithm 

include in the value of the new variable associated with 
each of these solutions a number of occurrences ot term i 
equal to the coefficient of the solution in the weighted sum 
This wi l l result in the proper assignment of c,. occurrences of 
t e r m i to each variable j of the first term ana d i j occurrences 
of t e rm i to each variable j of the second term 

Do this for each of the k terms in the solution. Let no 
o ther or additional terms be included in the values of the new 
var iables. 

This assignment of terms in the solution to new 
var iables associated with equation solutions generated in the 
unif icat ion process results in the correct number CJ; or d j ; of 
each t e rm being assigned to each variable of the original two 
terms. 

Thus, any solution to the unification of two terms with 
only var iables as arguments is an instance of a returned 
un i f ie r and the algorithm is complete. QED. 

Theorem The AC unification algorithm for general 
terms w i th associative and commutative function always 
terminates , is sound, and is complete. 

Unifying each c( with each dj of a returned unifier e of 
s and t results in (by the assumption of termination, 
soundness, and completeness of the recursive call on the 
unif icat ion algori thm for terms of lesser complexity) a 
complete set of unif iers for the original terms s and t. QED. 
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Conclusion 

We have presented an algorithm for unifying general 
terms with associative and commutative function. We have 
proven that the algorithm is guaranteed to terminate, is 
sound, and is complete. 

... The advantages of this algorithm as compared to other 
approaches to unifying such terms are that the associativity 
and commutativity properties need not be axiomatized and 
that all the unifiers of a pair of such terms are immediately 
returned eliminating the unnecessary and redundant 
computation often occurring in other approaches which 
generate only some of the unifiers at each step with no 
indication of when all the unifiers have been generated. 
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