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ABSTRACT 
A set of rules (or facts) about program synthesis is 
presented. The rules are about the process of 
programming, and are sutficient for the synthesis of an 
insertion sort program. The use of the rules to write a 
short LISP program is described. Taken together, the rules 
are an embodiment of a detailed theory which explains one 
small part of the programming process. The size of the set 
of rules suggests the complexity of the process of writing 
programs and indicates that much work will be required to 
codify significant amounts of programming knowledge as a 
step toward the development of program-understanding 
systems. 

INTRODUCTION 
This paper may be viewed as a sequel to an earlier 

paper [1), in which we tried to exhibit the knowledge 
requi red by a computer system in order to synthesize a 
simple insertion sort program. In this paper, we present 
the results of an attempt to codify that knowledge in the 
form of an explicit system of rules. Although there are other 
ways in which this knowledge might be available to a 
computer system (e.g., derivable through some kind of 
inference applied to more general knowledge), the rules 
presented here seem to express the information used in 
the process of writing one simple program. As such, the 
rules constitute one detailed part of a theory of programming. 
A more complete theory could provide the basis for a 
knowledge-based program-understanding system. 

The rules presented here are about the process of 
programming, rather than about program semantics. Thus 
one of the rules states that one method of generating all 
elements in a stored set is to first select a method for 
saving the state of the generator, then write the body, 
then the initializer, and so on. Additional rules elaborate 
how to achieve each subgoal The subjects of this set of 
rules include the synthesis of transfer programs (in which the 
elements of one ordered set are transferred and possibly 
re -o rdered into a new ordered set), generators of 
elements and positions in ordered sets, constructors of 
sets, search strategies, tests for correctness of a position, 
etc. Also included are the lower-level programming rules 
(for the LISP language) that are necessary to actually code 
the program. The complete set of rules has in fact been 
used to synthesize the intended program in an 
implementation which is basically a rule-testing system. 
This implementation is described at the end of the paper. 

It may seem strange that so many rules are used for 
one simple program. The number and complexity of these 
rules has resulted from a desire to adequately reflect the 
amount of knowledge needed for this particular synthesis 
and from an effort to minimize the amount of remodeling 
required to add more knowledge 

Despite our desires and intentions, however, there are 
several shortcomings of the rules and we would like to 
make some disclaimers. The most obvious limitation is the 
amount of higher-level programming knowledge which is not 
included,,e.g., more complex search strategies (such as 
binary chop), other state-saving schemes (such as the 
overwr i t ing of elements), and other knowledge necessary 
for more efficient sort programs. The reader will usually 
find only one method explicated when many more come to 

rnind. We hope to correct these omissions by expanding 
this rule set in the future. A real likelihood with this 
"skeleta l " approach is that the framework provided by this 
initial set of rules may well need remodeling to 
accommodate further programming knowledge. The only 
overall framework presented in this paper, that of an 
i terat ive transfer program, will perhaps not be the reader's 
(or the eventual user's) favorite way to view the synthesis 
of a sort program Othor weaknesses are that the rules do 
not allow enough "planning" activity (resulting in a rather 
rigid sequence that must be followed), and that a few rules 
probably have too much specialized knowledge. It is also 
important to note that the rules are currently designed for 
synthesis and would require modification (or else a different 
set of rules) in order to analyse or modify existing programs. 
Our omission of conventional inference ability is intentional, 
since we feel that the state of the art in the area is well 
ahead of the state of any theory about the process of 
programming. However, it is clear that in a more general 
program-under stanoing system inference plays a part in 
selecting applicable rules and in putting the pieces of a 
program together in any non-preconceived order. 

f 

n 

The program is basically a loop with three parts: a 
termination test which tests whether all of the elements in 
the input list have been generated; a selector which 
generates the next element in a first to last order and 
saves its computational state; and a constructor which finds 
the position in the output list for the element and then 
adds it at that position. Thus, the program takes each of 
the elements from the input list (in first to last order) and 
builds up the output list by inserting these (one at a time) 
into their appropriate places. 

Note that the program is basically iterative rather than 
recursive. This is primarily a reflection of our feeling that 
significant aspects of the algorithm are hidden by a 
recursive call. In many real applications, programmers must 
deal w i th the notion of generating elements sequentially, 
and of saving the state of a computation, so we have 
chosen to look at these explicitly. 

232 



We wil l now give an overview ot how these rules 
would be used to synthesize this program, 

0: As stated in the introduction, we will assume that 
the system has already decided to use a transfer 
program as the basic paradigm. A transfer program 
consists of two parts, the selector, which enumerates 
elements from the input set, and the constructor, which 
places these elements in the output set. This transfer 
program is an instance of a generate and process 
paradigm, in which the selector is the generator and 
the constructor is the process 

I: The system decides to wr i te a insertion sort rather 
than an selection sorl program. (An insertion sort 
removes the elements from the input in first to last 
order and inserts each into its correct place in the 
output such that after each step the output set is 
ordered; by contrast, a selection sort removes the 
largest element from the input and adds it onto the 
front of the output; the rules presented here only 
consider the case of insertion sort programs.) 

2: The selector for the transfer program is wr i t ten . 
First a pointer into the input list is chosen as the 
method for saving the state of the selector between 
colls to it. Then the selecter body (consisting of code to 
generate the element and code to increment the 
pointer) is synthesized Finally the selector initializer 
and the selector pre -test (a test which the transfer 
program can apply to determine whether there are any 
more elements to be generated) are wri t ten. 

3: Work on the output constructor is begun First it 
is decided that the new set will be built up by list 
insertion Then, noticing that the elements arrive not 
necessarily in increasing (or decreasing) order, the 
system decides that it needs a somewhat complex 
constructor that must search for the position to insert 
each element It chooses a pair of pointers into the 
list to represent that position 

4: Now the position finder is synthesized. This requires 
choosing a search strategy for finding the correct 
posit ion, and a method for representing the state of 
the search. Once these have been chosen, the loop 
which finds the correct position is wr i t ten: this 
includes wri t ing an initializer, a position tester, and an 
mcrenenfer 

5: Now the element inserter is wr i t ten It requires a 
special case for inserting at the front of the list The 
posit ion finder and element inserter together 
const i tute the constructor body. 

6: To complete the output constructor, the system 
wr i tes the constructor initializer which initializes the 
output set to the empty list. 

THE RULE SYSTEMS 
As an aid in understanding the rules, let us point out 

that they are grouped into structured systems of rules, 
each system dealing with a different aspect of the process 
of wr i t ing a transfer program. As will become apparent, 
there is a simple hierarchical structure to the rule systems. 
This, we feel , is a ref lection of the nature of the task: 
some goals require other goals to be satisfied, hence some 
rules call others as sub-rules. However, a strict hierarchy 
is certainly unnecessaryfor example, in the process of 
wr i t i ng a non-linear generator, the generator rule is called 
again, in order to wr i te the code to generate the elements 
l inearly for use in the comparison. 

We wish to point out that, in the rules presented here, 
whereve r a choice is indicated, only one alternative is 
actually provided. When we have extended the rules to 
enable the synthesis of a large class of programs, most of 
these rules wi l l contain several options. Choices be tween 
them could be made either by using additional rules dealing 
w i t h eff iciency or by leaving such choices up to the user. 
But the important point here is that the notion of 
"understanding" seems to carry with it an awareness of 
possible al ternat ives 

T h e R u l e s y s t e m f o r T r a n s f e r P r o g r a m 

There is one transfer program rule: 

T l : tn order to write a transfer program, the following 
lour sub-tasks must be achieved: 

(1) select a transfer rt-oulning 
(2) write a selector, which will include a body, 

initializer, and pre-test; 
(3) write a constructor, which will include a body, and 

an initializer 
(4) put the selector and constructor together into a 

grvaatr and process paradigm with the selector pre-test 
used as the termination test and applied just before 
the call to the selector body 

The meanings of most parts of this rule are relatively 
obvious, and we shall delay the detailed explanation of 
each of its sub-tasks until we discuss the rules for 
achieving those sub-task 

The first choice which must be made in the process of 
writing a transfer program is to choose the pattern of re 
ordering to be used by the program. The input to the 
transfer program we wilt call the sou and the output we 
will call the target. As part of the transfer process, there 
will be some overall re-ordering from the positional 
ordering of the source (initial order) to the positional 
ordering of the target (final order). There is also an 
intermediate ordering: the temporal ordering of the 
elements as they are transferred (transfer order). 
Corresponding to these three orderings, there are 
relationships between them We shall discuss these 
relationships as functions from one order to the next order, 
i.e. u-otlinings or permutations. The orderings and re -
orderings are shown in the diagram. 
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The transfer reordering is the main re-order ing 
accomplished by the transfer program. This re-ordering is 
part of the top- leve l specification of the program, 
presumably furnished by the user or a higher- level 
program An example of a transfer re-order ing 
specif icat ion for a " reverse" program is "final order is 
converse of initial order". In our paradigm, we factor this 
re -o rder ing into two re-ordenngs, the selection reordering 
and the construction re ordering. Accordingly the transfer 
program is also factored into two sub-programs, the selector 
and the constructor which perform these re-orderings. 

The rules consider four possible re-ordering operations: 
1. SAME; makes a copy with the identical ordering. 

2. CONVERSE; reverses an ordered set. 
3. BASED ON COMPARISON PREDICATE: the re-ordered set 
is such that one element precedes another if and only 
if the comparison predicate (supplied by the user) 
appl ied to these elements is true. The order of the 
re -o rde red set is independent of the initial order 
(except in the case where two elements have equal 
keys) 

4 BASED ON EVALUATION FUNCTION: the re-ordered set 
is such that one element precedes another if and only 
if the value of the first element is less than the the 
value of the second, where the values are the results 
of applying the evaluation function (supplied by the 
user). The order of the re-ordered set is independent 
of the initial order (Although this is actually a special 
case of 3, we include it since people seem to use it 
f requently.) 

It is convenient to classify the first two re-orderings as 
linear since the programs to accomplish these are simple 
and are t rea ted as special cases 

In addition to the transfer program rule given above, 
there is a set of transfer re-ordering rules which guide the 
choice of selection re-orderings and construction r e -
orderings. Their effect is to constrain the choices for the 
t w o re-order ings to be such that their composition wil l 
y ie ld the transfer re-ordering An example of such a rule 
is; if we are wr i t ing a " reverse" program and the selection 
re -o rder ing is SAME, then the construction re-ordering must 
be CONVERSE The normal case in a sort program is that 
e i ther the selector or the constructor will do the bulk of 
the work of the total re-ordering, and that the other wil l 
pe r fo rm only a simple (linear) re-ordering (either SAME or 
CONVERSE). The transfer re-ordering rules are 
s t ra ight forward but lengthy, so we shall not present them 
here. 

T h e R u l e s y s t e m f o r S e l e c t o r 
In considering the rule system for a selector, we first 

observe that a selector is a special kind of generator. That 
is, a selector is required to generate exactly the elements 
of the source set, once and only once, and in a particular 
order ( the order discussed earlier as the transfer order). 
Perhaps the most important aspect of any generator is 
that, re lat ive to the program which uses it, it is essentially 
a process or co-rout ine; that is, between calls to it, it must 
somehow "remember" which elements have been generated 
and which have not, in order to guarantee generating all 
elements one time each This "remembering" must be part 
of what is performed by the body of the generator, in 
addit ion to "generating" the next element 

Also, there must be some way of determining when the 
generator is finished, that is, when each element in the 
source set has been generated and none remain. In the 

generators for which our rules are intended, this wil l be 
done by using a pretest which the calling program 
guarantees to apply before each call to the generator (for 
example, a test whether a pointer points to the empty 
list.) This is the test which the transfer program will use to 
decide when to stop transferring. Finally, there must be 
some way of initializing the generator prior to its first call. 
From this discussion, we can see that the rule system for 
the selector (generator) must produce three separate 
sections of code: the main body, the pre- tes t , and the 
init ial izer 

It is also wor th noting that the generator must know the 
manner in which the generated element should be given to 
the caller. In the case of our rules, we consider only the 
case of sett ing some global variable to a particular value, 
e i ther the element itself or a pointer to the sublist 
beginning w i th that element 

S i : In order to wr i te a selector, one of the following 
sub-tasks must be achieved: 

(\) w r i t e a generator w i t h the production Older t h e 
same as the selection re-ordering, and constrain the 
generator to be TOTAL 

S2: In order to wr i te a generator, the following four 
sub- tasks must be achieved. 

( ! ) select a state-saving scheme for the generator 
(2) w r i t e the generator body, based on the s ta te-

saving scheme 
(3) w r i t e the generator initializer, based on the s ta te-

saving scheme 
(4) wr i t e the generator pretest, based on the s ta te-

saving scheme 

Note that the first sub-task of this rule is the selection 
of a state-saving scheme for the generator This s ta te -
saving scheme wil l be essentially a specification of some 
plan about how to do the "remembering" discussed above. 
There are many possible schemes which wil l per form 
adequately ( e g , bit strings, property list marks, hash table 
entr ies), but there are certain common characteristics. 
Each scheme includes some way of looking at a particular 
descr ip t ion of the state of the generator and knowing (or 
deducing) which elements of the set have been generated. 
Addit ional ly, each scheme includes some way of 
incrementing the state after the appropriate element has 
been produced. Also implicit in any such scheme must be 
some way of determining (from a state description) 
whether any elements remain to be generated. 

The choice of state-saving scheme depends upon the 
representat ion of the set, the order of enumeration, and 
whether destruct ive operations are allowed. For the case 
we are considering, the enumeration of the elements in a 
list requires only one variable, which points into the list. In 
this standard enumeration scheme, the pointer always 
points to the sublist beginning wi th the next element to be 
generated and is bumped by one more list cell each t ime a 
new element is required. We will refer to this scheme as 
POINTER INTO SOURCE and to the pointer as POINTER. The rule 
may be wr i t t en as; 

GSl: In order to select a state-saving scheme for a 
generator: 

( I ) if a non-destruct ive state-saving scheme is 
desi red, the source-set is represented as a linked l ist, 
and the production re-ordertng is SAME, then use 
POINTER INTO SOURCE 

For a simple l inked-l ist, forward scanning generator, the 
part of the program that finds the next element and the 
part of the program that increments the state communicate 
ve ry simply through one pointer, the pointer used for the 
s ta te representat ion With more complex state-saving 
schemes, additional variables may be required to 
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communicate between these two subprograms. For 
example, w i th o destruct ive, element-deleting scheme, the 
state is represented by one pointer to the front of the list, 
but in addition another pointer (indicating which element is 
to be deleted) must be passed from the element finder 
(which finds the element) to the state incrementer (which 
de letes that element) The following rule is thus a minor 
simplif ication 

S3: In order to wr i te the generator body, the following 
three sub-tasks must be achieved; 

(1) w r i t e the part of the body which produces the 
element to be generated 

(2) w r i t e the part of the body which increments the 
state of the generator 

(3) put these two parts together into a sequential 
block 

Two ways in which a generator can report an element 
to its caller are (1) by a pointer to the sublist beginning 
w i t h that element and (2) by a pointer to the element 
itself. These two element tepresanations we call SUBLIST and 
ITEM respect ively (Actually, the transfer program rule, T l , 
needed to specify the ITEM representation, so that the 
selector and constructor could communicate.) 

S4: In order to wr i te the part of the body which 
produces the element to be generated, the following 
t w o sub-tasks must be achieved; 

(1) w r i t e an expression which has as its value the 
element to be generated 

(2) w r i t e a statement which assigns this value to the 
variable which should hold the element to be 
generated 
S5: In order to wr i te an expression which has as its 
value the element to be generated; 

(1) if the generator state-saving scheme is POINTER 
INTO SOURCE, then wr i te an expression which has as its 
value the clement representation of the first element 
in the list pointed to by POINTER 
S6: In order to wr i te an expression which has as its 
value the element representation of the first element 
in a list: 

( I ) if the element representation is ITEM, then wr i te 
an expression which has as its value the first element 
of the list pointed to by POINTER 

Note that ss considers which element to produce and S6 
considers how to represent it. 

S7: In order to wr i te the part of the body which 
increments the state of the generator; 

( ) ) if the generator state-saving scheme is POINTER 
INTO SOURCE, then wr i te a statement which increments 
POINTER 
S8: In order to wr i te the generator initializer: 

(1) if the generator is constrained to be TOTAL, then 
w r i t e code which initializes the state to the entire 
source 
s9: In order to wr i te code which initializes the state of 
the generator to the entire source; 

(1) if the generator state-saving scheme is POINTER 
INTO SOURCE, then wr i te a statement which assigns the 
source to POINTER 
S10: In order to wr i te the generator pre- test : 

( I ) if the generator is constrained to be TOTAL, then 
w r i t e a statement which tests whether all of the 
elements have been generated 
S I l : In order to wr i te a statement which tests whether 
all of the elements have been generated; 

(1) if the generator state-saving scheme is POINTER 
INTO SOURCE, then wr i te a statement which tests 
whether POINTER points to the end of a list 

Although there are several ways to do this operation, 
our use of the term "list insertion" refers to the commonly 
used method in which the "cdr" of the list cell preceding 
the desired position is destructively modified to point to a 
newly created cell which is in turn linked back to the rest 
of the list. Note that this technique requires saving a 
pointer to the list cell preceding the position and it also 
requi res special treatment at the front of the list. 

We will classify list insertion as being nuhpnuii-nt, 
meaning that the code which finds the position where the 
new element belongs and the code which adds the new 
element at that position are independent and may be 
w r i t t e n as separate pieces of code. [If the construction 
method were , say, array shifting, then this independence 
wou ld no longer ho ld ] 

C3: In order to wr i te the constructor body; 
(1) if the construction method has the proper ty 

" independent", then achieve all of the following sub-
tasks: 

<1.1) select a method for representing the desired 
posit ion 

0 . 2 ) wr i te the part of the body which finds the 
posit ion in which the new element belongs 

(1.3) w r i t e the part of the body which adds the new 
element at this position 

(1.4) put these two parts together into a sequential 
block 

The posit ion finder and the element adder both require 
that a method be specified for representing the position at 
which the new element wil l be added For example, in an 
array, the index of the correct position is an adequate 
representat ion. For lists, one or two pointers into the list 
are convenient position representations. 
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The rule we shall use for selecting a position 
representat ion is: 

PRl; In order to select a position representation; 
(1) if the set being constructed is represented as a 

l inked list and the construction method is LIST INSERTION, 

then use TWO POINTERS (which will point to the list cells 
be fore and after the point where the new cell will be 
added) 

Pictorial ly, this position representation looks like this; 

This representat ion has a special case for the front of a 
l ist: the "be fore" pointer will have as its value a unique 
str ing constant, say, "FRONT". For the end of the list, the 
"a f te r " pointer wil l point to NIL. We wil l refer to the two 
var iables involved as BEFORE and AFTER 

Note that this position representation is more than 
adequate for the list insertion method used, since it 
maintains not only a pointer to the previous cell in the list, 
but also a pointer to the succeeding cell in the list. The 
second pointer wil l be used by the correctness test. This 
representat ion leads to a relatively simple algorithm. 

The selection of this rule and the corresponding 
construct ion method is pret ty obviously a cheat, since the 
rules should first do some planning, i.e., notice that later 
par ts of the program would have prof i ted from the t w o -
pointer representat ion An alternative to a planning 
technique would have been some later simplification or 
optimization of the program. 

C4: In order to wr i te the part of the body which finds 
the posit ion in which the new element belongs: 

(1) if the construction order is not "linear", then 
w r i t e a position finder which guarantees success 
(discussed later before rule P1); it must find the 
desi red position according to the construction order, 
and specify it accoiding to the position representation 

In a similar manner to the selector, a linear construction 
re -order ing would mean that the position is already implicit 
in the state, say an index moving linearly through an array, 
and need not be recomputed. In the remaining rules, rather 
than saying "an ordered set represented as a linked list", 
we wi l l use the term "Iist'. 

C5: In order to wr i te the part of the body which adds 
the element at the position: 

(1) if the position representation has a special case 
for the front of the list and the construction method 
has a special case for the front of the list, then 
achieve all of the following sub-tasks: 

(1.1) wr i te a statement which tests whether the 
posit ion (which has already been found) occurs at the 
front of the list 

(1.2) w r i t e a statement which adds the element onto 
the front of the list 

(1.3) wr i te a statement which inserts the element 
into the list at the position specified (assuming the 
posit ion is not at the front) 

(1.4) put these three pieces together into a 
conditional expression 
C6: In order to wr i te a statement which tests whether 
the position is at the front of the list: 

(1) if the position representation is TWO POINTERS, 
then wr i te a statement which tests whether BEFORE is 
equal to the special string constant "FRONT" 

C7: In order to wr i te a statement which adds the 
element onto the front of the list; 

(1) if the construction method is LIST INSERTION, then 
w r i t e a statement which destructively adds the 
element onto the front of the list 

C8: In order to wr i te a statement which inserts the 
element into the middle of the list: 

(J) if the construction method is LIST INSERTION, then 
w r i t e a statement which destructively inserts the 
element into the middle of the list 

C9: In order to wr i te a statement which destruct ively 
inserts the element into the middle of the list; 

(1) if the position representation is TWO POINTERS, 
then wr i t e a statement which destructively inserts the 
clement be tween two pointers 

C10: In order to wr i te the constructor initializer: 
(1) if the target is specified to be INITIALLY EMPTY, 

then wr i te code which initializes the target to an 
empty list 
C11: In order to wr i te code which initializes the target 
to an empty list: 

(1) if the construction method is LIST INSERTION, then 
w r i t e a statement which assigns the empty list to the 
target 

T h e R u l e s y s t e m f o r P o s i t i o n F i n d e r 
The postion finder looks through the available positions 

in the set being constructed and finds the correct position 
at which to insert the new element. The position finder 
can be thought of as a total generator that generates each 
posi t ion and tests whether the position is correct. A search 
strategy is required to determine the order of enumeration 
of pos i t i ons A search-state saving scheme is used to 
remember the state of the search. A conectness test is 
synthesized to test whether the proposed position results 
in an ordered set. Each position must be represented 
according to the earlier specified position representat ion, 
so some code may be required to translate from the search 
s ta te representat ion into the position representation. 

The reader may wonder why the position finder rules 
do not call the high level generator rules discussed in the 
selector section Instead a slightly different type of 
generator is effect ively entailed by these position finder 
ru les In other versions we have the position finder call 
the exist ing generator rules. For clarity we present 
separate rules here for the position finder, although we 
feel that it is conceptually bet ter to combine the two into 
a unifying paradigm 

The position finder was constrained by the constructor 
to be one that guarantees success, i.e., it must f ind a 
correct position or else the inductive constructor won't 
work Structurally, this means there is no failure branch 
for the position finder 

P i : In order to wr i te a position finder that guarantees 
success, the following f ive sub-tasks must be 
achieved: 

(1) select a search strategy that guarantees success 
(2 ) select a search-state saving scheme for the pos i t i on 

f inder, based on the search strategy 
(3) wr i te the position finder body, based on the search 

strategy and the search-state saving scheme 
(4) wr i te the position finder initializer, based on the 

search strategy and the search-state saving scheme 
(5) put the last two together into a sequential block 

The selection of a search strategy that guarantees 
success consists of lots of checking followed by the 
select ion of a simple forward linear scan. 
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SSI: To choose a search strategy that guarantees 
success, one technique is: 

(1) check that a correct position exists 
(2) select a total search strategy 

SS2: To check that a correct position exists, one 
technique is to check these conditions: 

(1) if the correctness criteria is based on a 
comparison predicate (an ordering relation); 

(1.1) the ordering relation is transit ive 
(1.2) the set being scanned is ordered 

SS3: To select a total search strategy; 
(1) if the search list is represented as a linked list, 

then use FORWARD LINEAR SCAN for the search strategy 
We wil l speak of this search strategy as being 

tndepenent , meaning that the part which finds the position 
and the part which tests it for correctness are independent 
of each other [as opposed to the case with a binary chop]. 

The search for a position requires a state-saving 
mechanism, just as did the earlier kind of generator. The 
s tate-sav ing scheme given by our rule will be TWO 
POINTERS, pointing respectively before and after the current 
posit ion. Recall that this is the same as the position 
representat ion. The rule first checks some conditions to 
see if a two pointer scheme is adequate Next it notes 
that since the position representation and the search state 
representat ion are the same, they will be combined and 
the state representat ion will be said to subsume the 
posi t ion representat ion. Finally, the variables used for the 
posi t ion representat ion become the variables used for the 
search state representat ion 

SSS1: To select a position finder search-state saving 
scheme: 

(1) if a non-destruct ive scheme is all right, a "linear" 
s t rategy is being used, and the search list is 
represented as a linked list, then; 

(1.1) a two pointer state representation will work 
(1.2) note that the position representation is 

subsumed by the search state representation 
(1.3) if the position representation includes a 

"be fo re " pointer, then that is superceded by the 
state's "be fo re" pointer 

(1.4) if the position representation includes an 
"a f te r " pointer, then that is superceded by the state's 
"a f te r " pointer 

We note that this rule is something of a cheat in that, 
.again, some planning should be required to select such a 
good and optimizing state representation. This rule is a 
good example of trying to embody knowledge in a form too 
specif ic to a particular state or position representation. 
More reasonable would be a general rule giving a 
pre ference for using one variable instead of two when 
they would per form similar functions, 

P2: In order to wr i te the position finder body: 
(1) if the search strategy is "independent", then 

achieve ail of the following sub-tasks; 
(1.1) w r i t e the part of the body which translates 

from the representat ion of the state of the search into 
the representat ion of the current position 

(1.2) w r i t e the part of the body which tests 
whether the determined position is correct according 
to the cr i ter ia for acceptance 

(1.3) w r i t e the part of the body which increments 
the state of the search 

(1.4) w r i t e the part of the body which tests 
whether there are no positions left, thus indicating 
fai lure to find the desired position 

(1.5) put the pieces together into a loop 

The fact that the position representation is subsumed 
by the search state means that at any point in the search, 
the next position to be tested is completely specified by 
the search-state representation, i.e., absolutely no work 
must be done in order to specify the position to be tested, 
given the state of the search This is reflected in the next 
ru le 

P3: In order to wr i te the part of the body which 
translates from the representation of the state of the 
search into the current position: 

(1) if the position representation is subsumed by the 
search-state scheme, then there is nothing left to do 
to determine the position to be tested 

The next f ive rules, PA through P8, represent a chain of 
simplifications of the test that the position is correct, i.e., 
the new set is ordered. The chain proceeds from testing 
the new element against each other element to checking 
against only one. This situation may occur frequently 
enough that one special case rule should be used. 

P4: In order to wr i te the part of the body which tests 
whether the determined position is correct according 
to the cr i ter ia for acceptance: 

(1) if the cri teria is based upon a comparison 
predicate, then achieve all of the following sub-tasks: 

(1.1) w r i t e a statement which tests the new element 
against all of the elements preceding the determined 
posi t ion 

(1.2) wr i te a statement which tests the new element 
against all of the elements following the determined 
posit ion 

(1.3) if either statement is vacuous, then return only 
the other; otherwise, combine the two tests into a 
conjunction 

P5: In order to wr i te a statement which tests an 
element against all of the elements preceding the 
determined position: 

(1) if the comparison predicate is transit ive, and the 
search strategy is FORWARD LINEAR SCAN, then there is 
nothing left to do to test the element against all of the 
elements preceding the determined position 

P6: In order to wr i te a statement which tests an 
element against all of the elements following the 
determined position, the following three sub-tasks 
must be achieved; 

(1) w r i t e a statement which tests whether there are 
no more elements after the determined position 

(2) w r i t e a statement which tests the new element 
against all of the elements following the determined 
posit ion, assuming there is at least one such element 

(3) combine these two tests into an ordered 
disjunct ion 

P7; In order to wr i te a statement which tests whether 
there are no more elements after a position: 

(1) if the position representation is TWO POINTERS, 
then wr i t e a statement which tests whether AFTER 
points to the end of a list 
P8: In order to wr i te a statement which tests an 
element against all of the elements following a 
posit ion, assuming there is at least one: 

(1) if the comparison predicate is transit ive and the 
search list is ordered, then wr i te a statement which 
tests the element against the immediately following 
element 
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The rest of the rules are more or less self-explanatory, 
P9: In order to wr i te a statement which tests an 
element against the immediately following element, the 
fol lowing two sub-tasks must be achieved: 

(1) w r i t e an expression which has as its value the 
f irst element after the position 

(2) w r i t e a statement which applies the comparison 
predicate to the new element and the expression just 
w r i t t en 
P10: In order to wr i te a statement which has as its 
value the first element after a position; 

(1) if the position representation is TWO POINTERS, 
then wr i t e a statement which has as its value the first 
element of the list pointed to by AFTER 

P11: In order to wr i te the part of the body which 
increments the state of the search: 

0) if the search strategy is FORWARD LINEAR SCAN, 
then wr i t e a statement which increments the search 
state to the next following position 
P12: In order to wr i te a statement which increments 
the search state to the next following position; 

(1) if the search-state saving scheme is TWO 
POINTERS, then achieve all of the following sub-tasks; 

(1.1) wr i te a statement which assigns to BEFORE the 
value of AFTER 

(1.2) wr i te a statement which increments AFTER 
(1.3) combine these two into a sequential block 

Note that this incrementing technique works both for 
the special case where BEFORE has the special value 
"FRONT" and for the general case where BEFORE points into 
the output list, 

P i3 : In order to wr i te the part of the body which tests 
whether there are no positions left: 

(1) if the position finder guarantees success, then 
this part is unnecessary 

PI4: In order to wr i te the position finder initializer: 
(1) if the search strategy is FORWARD LINEAR SCAN, 

then w r i t e a statement which initializes the search 
state to the first position in the search list 
PI5: In order to wr i te a statement which initializes the 
search state to the first position in a list: 

(1) if the search representation is TWO POINTERS, 
then achieve all of the following sub-tasks: 

(1.1) w r i t e a statement which assigns to BEFORE the 
str ing constant "FRONT" 

(1.2) w r i t e a statement which assigns to AFTER the 
search list 

(1.3) combine these into a sequential block 

T h e R u l e s f o r L I S P S t a t e m e n t s 

The rules given here are included only for 
completeness. They embody the LISP knowledge necessary 
for the insert ion sort program. 

L I : In order to wr i te an expression which has as its 
value the first element of a list, return the list: 

(CAR H i s t name)) 
L2: In order to wr i te a statement which assigns a value 
to a variable, re turn the list: 

(SETQ [ v a r i a b l e name) [va lue) ) 
13: In order to wr i te a statement which increments a 
pointer, return the list: 

(SETQ [ p o i n t e r name) (CDR [po in te r name))) 
L4: In order to wr i te a statement which tests whether 
a pointer points to the end of a list, return the list: 

(NULL (po in te r name] ) 
15: In order to wr i te a statement which tests whether 
a variable is equal to a string constant, return the list: 

(EQUAL [ v a r i a b l e name) [ s t r i n g cons tan t ) ) 

L6: In order to wr i te a statement which destructively 
adds an element onto the front of a list, return the list: 

(SETQ [ l i s t name) 
(CONS (element name] [ l i s t name])) 

17: [n order to wr i te a statement which destructively 
inserts an element between two pointers, return the 
l ist: 

(RFLACP [ " b e f o r e " p o i n t e r name) 
(CONS [element name] ( " a f t e r " po in te r name])) 

18: In order to wr i te a statement which assigns the 
empty list to a variable, return the list: 

(SFTQ [ v a r i a b l e name] NIL) 
L9: In order to combine two tests into an ordered 
disjunction, return the list: 

(OR [ f i r s t t e s t ) Isecond t e s t ] ) 
LIO: In order to apply a function to a list of arguments, 
re turn the l ist: 

( [ f u n c t i o n name) . . . arguments . . . ) 

AN EXAMPLE 
Wo now present an example of the use of the rules 

We will look in detail at steps l and 2 of the overview 
presented earlier 

Let INPUT be the name of the source list and let OUTPUT 
be the name of the target list. Let ELEMENT be the 
variable name chosen to do the communicating between the 
selector and constructor. We will suppose that the final 
o r d e r is BASED ON COMPARISON PREDICATE, w i t h GREATERP as 
the comparison predicate We assume that the system has 
already decided to write a transfer program. That is, rule 
Tl has been invoked 

Step 1 involved the choice of an insertion sort rather 
than a selection sort, if we consider what the possible 
legitimate combinations of selection re-ordenng and 
construction re-ordering are, we note that using SAME for 
the selection te-ordering implies that the constructor must 
do the bulk of the work (i.e., an insertion sort). In fact, the 
construction re-ordering must then be the same as the 
final order: BASED ON COMPARISON PREDICATE. 

Step 2 involved writing the selector for the transfer 
program That is, rule SI is invoked by Tl This will result 
in each of the other selector rules being invoked at the 
appropriate times. The accompanying chart gives a 
structural diagram of the various rule invocations. 
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AN IMPLEMENTATION 
The rules given in this paper are an abstraction of some 

of the rules now operational in a system being developed. 
We have endeavored to separate out those aspects of the 
rules which are implementation independent from those 
aspects which are the results of idiosyncrasies in the 
implementation Thus, the rules presented here are not 
precisely in correspondence to our implementation We 
include here a short discussion of our implementation for 
those who may be curious about it. 

The basic mode of operation is to invoke rules by name. 
Each rule is responsible for determining which rules to 
invoke to accomplish its sub-goals. The user may be 
queried for a preference when alternative sub-goals are 
possible. The invocation by name has two major 
implications for the system. First, addition of knowledge is 
not strictly incremental, although the addition of "systems" 
of rules is generally fairly simple. Second, the system has 
no sophisticated abilities above and beyond those stemming 
from the knowledge represented by the rules. In 
particular, the system has no inference capabilities apart 
from those implicit in the rules. As the system is primarily 
a rule-testing device, rather than a sophisticated user-
oriented system, these defects do not seem critical. 

REMARKS 
Having looked at these rules, it is natural to wonder 

what they can do for us. In regard to their "understanding" 
abil ity, it seenic that they can quite adequately r>plain the 
program that they produce One need merely look at the 
rule path which produced any part of the final program to 
understand the telationship of that part to the entire 
program. On the other hand, the rules are clearly unable 
to analyre or modrfy the program. It seems plausible that 
they could be extended to do some rudimentary analysis 
through 'jorne kind of parsing technique. Since the rules 
presented here are incomplete, in the sense that they do 

not p resent various al ternat ives, they cannot be expected 
to a l low modif icat ion When they have been extended to a 
b roader class of programs, different specifications will yield 
d i f f e ren t progi arns, and modification would seem to require 
only slight extensions This is, however, mere speculation; 
f u r t h e r exper imentat ion is required before anything 
de f i n i t e can be determined 

One of our original intentions was to determine a set of 
ru les w i t h a wide applicabil i ty We feel that we have done 
th is . We are now in the process of extending these rules 
in to a larger set, capable of synthesizing an entire class of 
sort programs If we are successful, then we will have an 
ind icat ion that these rules do indeed have some generality. 
But more than that, we expect the rules to be useful in 
many other programming tasks. Set operations (such as 
i n t c i sect ion and union) seem to involve many of the 
concep ts w i t h which our rules already deal (e.g., generating 
e lements from an ordered set) Another area of potential 
usefu lness seems to be in various kinds of searching and 
t ab le l ook -up operations. Obviously the entire set of rules 
w i l l not be applicable in any one situation, but it seems 
that for each si tuat ion some subset of these rules will be 
use fu l 

In regard to such generality, it seems to us that some of 
the ru les may be over ly specific to the one particular 
ta rge t program, in the sense that such rules (or equivalent 
know ledge) could be der ived or inferred from more general 
p r inc ip les during synthesis of the program. The choice 
b e t w e e n these t w o modes of operation seems to be 
la rge ly a computational issue: some kind of t rade-of f 
b e t w e e n space and time considerations. 

At this point it is far too early to prefer one mode to 
any o ther , but having expl icated the knowledge in some 
fo rm, we may gauge the requirements of future 
know ledgo -based program-understanding systems. We 
have seen that about 50 "rules" are needed for a system 
to "unders tand" what is involved in writing even one 
s imple sort pi ogram. If we are to design knowledge-based 
pypgiam unlit-minuting systems, w i th the abilities of synthesis, 
analysis, and modification, applicable to many different 
k inds of programs, then the body of programming 
know ledge which wil l be required is quite large. Our 
cu r ren t work indicates that well over a hundred rules wil l 
be r e q u i r e d to enable the synthesis of a large class of sort 
programs. It is sti l l too early to estimate the size of the 
body of programming knowledge which will be necessary 
for the establishment of reasonable knowledge-based 
program-unders tand ing systems, but we can at least see 
that the task of codifying this knowledge is likely to be a 
long one. 
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