
SOME RULES FOR THE AUTOMATIC SYNTHESIS OP PROGRAMS
Cordell Green and David Bar stow

Stanford Artificial Intelligence Laboratory
Stanford, California USA

ABSTRACT
A set of rules (or facts) about program synthesis is
presented. The rules are about the process of
programming, and are sutficient for the synthesis of an
insertion sort program. The use of the rules to write a
short LISP program is described. Taken together, the rules
are an embodiment of a detailed theory which explains one
small part of the programming process. The size of the set
of rules suggests the complexity of the process of writing
programs and indicates that much work will be required to
codify significant amounts of programming knowledge as a
step toward the development of program-understanding
systems.

INTRODUCTION
This paper may be viewed as a sequel to an earlier

paper [1), in which we tried to exhibit the knowledge
requi red by a computer system in order to synthesize a
simple insertion sort program. In this paper, we present
the results of an attempt to codify that knowledge in the
form of an explicit system of rules. Although there are other
ways in which this knowledge might be available to a
computer system (e.g., derivable through some kind of
inference applied to more general knowledge), the rules
presented here seem to express the information used in
the process of writing one simple program. As such, the
rules constitute one detailed part of a theory of programming.
A more complete theory could provide the basis for a
knowledge-based program-understanding system.

The rules presented here are about the process of
programming, rather than about program semantics. Thus
one of the rules states that one method of generating all
elements in a stored set is to first select a method for
saving the state of the generator, then write the body,
then the initializer, and so on. Additional rules elaborate
how to achieve each subgoal The subjects of this set of
rules include the synthesis of transfer programs (in which the
elements of one ordered set are transferred and possibly
re -o rdered into a new ordered set), generators of
elements and positions in ordered sets, constructors of
sets, search strategies, tests for correctness of a position,
etc. Also included are the lower-level programming rules
(for the LISP language) that are necessary to actually code
the program. The complete set of rules has in fact been
used to synthesize the intended program in an
implementation which is basically a rule-testing system.
This implementation is described at the end of the paper.

It may seem strange that so many rules are used for
one simple program. The number and complexity of these
rules has resulted from a desire to adequately reflect the
amount of knowledge needed for this particular synthesis
and from an effort to minimize the amount of remodeling
required to add more knowledge

Despite our desires and intentions, however, there are
several shortcomings of the rules and we would like to
make some disclaimers. The most obvious limitation is the
amount of higher-level programming knowledge which is not
included,,e.g., more complex search strategies (such as
binary chop), other state-saving schemes (such as the
overwr i t ing of elements), and other knowledge necessary
for more efficient sort programs. The reader will usually
find only one method explicated when many more come to

rnind. We hope to correct these omissions by expanding
this rule set in the future. A real likelihood with this
"skeleta l " approach is that the framework provided by this
initial set of rules may well need remodeling to
accommodate further programming knowledge. The only
overall framework presented in this paper, that of an
i terat ive transfer program, will perhaps not be the reader's
(or the eventual user's) favorite way to view the synthesis
of a sort program Othor weaknesses are that the rules do
not allow enough "planning" activity (resulting in a rather
rigid sequence that must be followed), and that a few rules
probably have too much specialized knowledge. It is also
important to note that the rules are currently designed for
synthesis and would require modification (or else a different
set of rules) in order to analyse or modify existing programs.
Our omission of conventional inference ability is intentional,
since we feel that the state of the art in the area is well
ahead of the state of any theory about the process of
programming. However, it is clear that in a more general
program-under stanoing system inference plays a part in
selecting applicable rules and in putting the pieces of a
program together in any non-preconceived order.

f

n

The program is basically a loop with three parts: a
termination test which tests whether all of the elements in
the input list have been generated; a selector which
generates the next element in a first to last order and
saves its computational state; and a constructor which finds
the position in the output list for the element and then
adds it at that position. Thus, the program takes each of
the elements from the input list (in first to last order) and
builds up the output list by inserting these (one at a time)
into their appropriate places.

Note that the program is basically iterative rather than
recursive. This is primarily a reflection of our feeling that
significant aspects of the algorithm are hidden by a
recursive call. In many real applications, programmers must
deal w i th the notion of generating elements sequentially,
and of saving the state of a computation, so we have
chosen to look at these explicitly.

232

We wil l now give an overview ot how these rules
would be used to synthesize this program,

0: As stated in the introduction, we will assume that
the system has already decided to use a transfer
program as the basic paradigm. A transfer program
consists of two parts, the selector, which enumerates
elements from the input set, and the constructor, which
places these elements in the output set. This transfer
program is an instance of a generate and process
paradigm, in which the selector is the generator and
the constructor is the process

I: The system decides to wr i te a insertion sort rather
than an selection sorl program. (An insertion sort
removes the elements from the input in first to last
order and inserts each into its correct place in the
output such that after each step the output set is
ordered; by contrast, a selection sort removes the
largest element from the input and adds it onto the
front of the output; the rules presented here only
consider the case of insertion sort programs.)

2: The selector for the transfer program is wr i t ten .
First a pointer into the input list is chosen as the
method for saving the state of the selector between
colls to it. Then the selecter body (consisting of code to
generate the element and code to increment the
pointer) is synthesized Finally the selector initializer
and the selector pre -test (a test which the transfer
program can apply to determine whether there are any
more elements to be generated) are wri t ten.

3: Work on the output constructor is begun First it
is decided that the new set will be built up by list
insertion Then, noticing that the elements arrive not
necessarily in increasing (or decreasing) order, the
system decides that it needs a somewhat complex
constructor that must search for the position to insert
each element It chooses a pair of pointers into the
list to represent that position

4: Now the position finder is synthesized. This requires
choosing a search strategy for finding the correct
posit ion, and a method for representing the state of
the search. Once these have been chosen, the loop
which finds the correct position is wr i t ten: this
includes wri t ing an initializer, a position tester, and an
mcrenenfer

5: Now the element inserter is wr i t ten It requires a
special case for inserting at the front of the list The
posit ion finder and element inserter together
const i tute the constructor body.

6: To complete the output constructor, the system
wr i tes the constructor initializer which initializes the
output set to the empty list.

THE RULE SYSTEMS
As an aid in understanding the rules, let us point out

that they are grouped into structured systems of rules,
each system dealing with a different aspect of the process
of wr i t ing a transfer program. As will become apparent,
there is a simple hierarchical structure to the rule systems.
This, we feel , is a ref lection of the nature of the task:
some goals require other goals to be satisfied, hence some
rules call others as sub-rules. However, a strict hierarchy
is certainly unnecessaryfor example, in the process of
wr i t i ng a non-linear generator, the generator rule is called
again, in order to wr i te the code to generate the elements
l inearly for use in the comparison.

We wish to point out that, in the rules presented here,
whereve r a choice is indicated, only one alternative is
actually provided. When we have extended the rules to
enable the synthesis of a large class of programs, most of
these rules wi l l contain several options. Choices be tween
them could be made either by using additional rules dealing
w i t h eff iciency or by leaving such choices up to the user.
But the important point here is that the notion of
"understanding" seems to carry with it an awareness of
possible al ternat ives

T h e R u l e s y s t e m f o r T r a n s f e r P r o g r a m

There is one transfer program rule:

T l : tn order to write a transfer program, the following
lour sub-tasks must be achieved:

(1) select a transfer rt-oulning
(2) write a selector, which will include a body,

initializer, and pre-test;
(3) write a constructor, which will include a body, and

an initializer
(4) put the selector and constructor together into a

grvaatr and process paradigm with the selector pre-test
used as the termination test and applied just before
the call to the selector body

The meanings of most parts of this rule are relatively
obvious, and we shall delay the detailed explanation of
each of its sub-tasks until we discuss the rules for
achieving those sub-task

The first choice which must be made in the process of
writing a transfer program is to choose the pattern of re
ordering to be used by the program. The input to the
transfer program we wilt call the sou and the output we
will call the target. As part of the transfer process, there
will be some overall re-ordering from the positional
ordering of the source (initial order) to the positional
ordering of the target (final order). There is also an
intermediate ordering: the temporal ordering of the
elements as they are transferred (transfer order).
Corresponding to these three orderings, there are
relationships between them We shall discuss these
relationships as functions from one order to the next order,
i.e. u-otlinings or permutations. The orderings and re -
orderings are shown in the diagram.

233

The transfer reordering is the main re-order ing
accomplished by the transfer program. This re-ordering is
part of the top- leve l specification of the program,
presumably furnished by the user or a higher- level
program An example of a transfer re-order ing
specif icat ion for a " reverse" program is "final order is
converse of initial order". In our paradigm, we factor this
re -o rder ing into two re-ordenngs, the selection reordering
and the construction re ordering. Accordingly the transfer
program is also factored into two sub-programs, the selector
and the constructor which perform these re-orderings.

The rules consider four possible re-ordering operations:
1. SAME; makes a copy with the identical ordering.

2. CONVERSE; reverses an ordered set.
3. BASED ON COMPARISON PREDICATE: the re-ordered set
is such that one element precedes another if and only
if the comparison predicate (supplied by the user)
appl ied to these elements is true. The order of the
re -o rde red set is independent of the initial order
(except in the case where two elements have equal
keys)

4 BASED ON EVALUATION FUNCTION: the re-ordered set
is such that one element precedes another if and only
if the value of the first element is less than the the
value of the second, where the values are the results
of applying the evaluation function (supplied by the
user). The order of the re-ordered set is independent
of the initial order (Although this is actually a special
case of 3, we include it since people seem to use it
f requently.)

It is convenient to classify the first two re-orderings as
linear since the programs to accomplish these are simple
and are t rea ted as special cases

In addition to the transfer program rule given above,
there is a set of transfer re-ordering rules which guide the
choice of selection re-orderings and construction r e -
orderings. Their effect is to constrain the choices for the
t w o re-order ings to be such that their composition wil l
y ie ld the transfer re-ordering An example of such a rule
is; if we are wr i t ing a " reverse" program and the selection
re -o rder ing is SAME, then the construction re-ordering must
be CONVERSE The normal case in a sort program is that
e i ther the selector or the constructor will do the bulk of
the work of the total re-ordering, and that the other wil l
pe r fo rm only a simple (linear) re-ordering (either SAME or
CONVERSE). The transfer re-ordering rules are
s t ra ight forward but lengthy, so we shall not present them
here.

T h e R u l e s y s t e m f o r S e l e c t o r
In considering the rule system for a selector, we first

observe that a selector is a special kind of generator. That
is, a selector is required to generate exactly the elements
of the source set, once and only once, and in a particular
order (the order discussed earlier as the transfer order).
Perhaps the most important aspect of any generator is
that, re lat ive to the program which uses it, it is essentially
a process or co-rout ine; that is, between calls to it, it must
somehow "remember" which elements have been generated
and which have not, in order to guarantee generating all
elements one time each This "remembering" must be part
of what is performed by the body of the generator, in
addit ion to "generating" the next element

Also, there must be some way of determining when the
generator is finished, that is, when each element in the
source set has been generated and none remain. In the

generators for which our rules are intended, this wil l be
done by using a pretest which the calling program
guarantees to apply before each call to the generator (for
example, a test whether a pointer points to the empty
list.) This is the test which the transfer program will use to
decide when to stop transferring. Finally, there must be
some way of initializing the generator prior to its first call.
From this discussion, we can see that the rule system for
the selector (generator) must produce three separate
sections of code: the main body, the pre- tes t , and the
init ial izer

It is also wor th noting that the generator must know the
manner in which the generated element should be given to
the caller. In the case of our rules, we consider only the
case of sett ing some global variable to a particular value,
e i ther the element itself or a pointer to the sublist
beginning w i th that element

S i : In order to wr i te a selector, one of the following
sub-tasks must be achieved:

(\) w r i t e a generator w i t h the production Older t h e
same as the selection re-ordering, and constrain the
generator to be TOTAL

S2: In order to wr i te a generator, the following four
sub- tasks must be achieved.

(!) select a state-saving scheme for the generator
(2) w r i t e the generator body, based on the s ta te-

saving scheme
(3) w r i t e the generator initializer, based on the s ta te-

saving scheme
(4) wr i t e the generator pretest, based on the s ta te-

saving scheme

Note that the first sub-task of this rule is the selection
of a state-saving scheme for the generator This s ta te -
saving scheme wil l be essentially a specification of some
plan about how to do the "remembering" discussed above.
There are many possible schemes which wil l per form
adequately (e g , bit strings, property list marks, hash table
entr ies), but there are certain common characteristics.
Each scheme includes some way of looking at a particular
descr ip t ion of the state of the generator and knowing (or
deducing) which elements of the set have been generated.
Addit ional ly, each scheme includes some way of
incrementing the state after the appropriate element has
been produced. Also implicit in any such scheme must be
some way of determining (from a state description)
whether any elements remain to be generated.

The choice of state-saving scheme depends upon the
representat ion of the set, the order of enumeration, and
whether destruct ive operations are allowed. For the case
we are considering, the enumeration of the elements in a
list requires only one variable, which points into the list. In
this standard enumeration scheme, the pointer always
points to the sublist beginning wi th the next element to be
generated and is bumped by one more list cell each t ime a
new element is required. We will refer to this scheme as
POINTER INTO SOURCE and to the pointer as POINTER. The rule
may be wr i t t en as;

GSl: In order to select a state-saving scheme for a
generator:

(I) if a non-destruct ive state-saving scheme is
desi red, the source-set is represented as a linked l ist,
and the production re-ordertng is SAME, then use
POINTER INTO SOURCE

For a simple l inked-l ist, forward scanning generator, the
part of the program that finds the next element and the
part of the program that increments the state communicate
ve ry simply through one pointer, the pointer used for the
s ta te representat ion With more complex state-saving
schemes, additional variables may be required to

234

communicate between these two subprograms. For
example, w i th o destruct ive, element-deleting scheme, the
state is represented by one pointer to the front of the list,
but in addition another pointer (indicating which element is
to be deleted) must be passed from the element finder
(which finds the element) to the state incrementer (which
de letes that element) The following rule is thus a minor
simplif ication

S3: In order to wr i te the generator body, the following
three sub-tasks must be achieved;

(1) w r i t e the part of the body which produces the
element to be generated

(2) w r i t e the part of the body which increments the
state of the generator

(3) put these two parts together into a sequential
block

Two ways in which a generator can report an element
to its caller are (1) by a pointer to the sublist beginning
w i t h that element and (2) by a pointer to the element
itself. These two element tepresanations we call SUBLIST and
ITEM respect ively (Actually, the transfer program rule, T l ,
needed to specify the ITEM representation, so that the
selector and constructor could communicate.)

S4: In order to wr i te the part of the body which
produces the element to be generated, the following
t w o sub-tasks must be achieved;

(1) w r i t e an expression which has as its value the
element to be generated

(2) w r i t e a statement which assigns this value to the
variable which should hold the element to be
generated
S5: In order to wr i te an expression which has as its
value the element to be generated;

(1) if the generator state-saving scheme is POINTER
INTO SOURCE, then wr i te an expression which has as its
value the clement representation of the first element
in the list pointed to by POINTER
S6: In order to wr i te an expression which has as its
value the element representation of the first element
in a list:

(I) if the element representation is ITEM, then wr i te
an expression which has as its value the first element
of the list pointed to by POINTER

Note that ss considers which element to produce and S6
considers how to represent it.

S7: In order to wr i te the part of the body which
increments the state of the generator;

()) if the generator state-saving scheme is POINTER
INTO SOURCE, then wr i te a statement which increments
POINTER
S8: In order to wr i te the generator initializer:

(1) if the generator is constrained to be TOTAL, then
w r i t e code which initializes the state to the entire
source
s9: In order to wr i te code which initializes the state of
the generator to the entire source;

(1) if the generator state-saving scheme is POINTER
INTO SOURCE, then wr i te a statement which assigns the
source to POINTER
S10: In order to wr i te the generator pre- test :

(I) if the generator is constrained to be TOTAL, then
w r i t e a statement which tests whether all of the
elements have been generated
S I l : In order to wr i te a statement which tests whether
all of the elements have been generated;

(1) if the generator state-saving scheme is POINTER
INTO SOURCE, then wr i te a statement which tests
whether POINTER points to the end of a list

Although there are several ways to do this operation,
our use of the term "list insertion" refers to the commonly
used method in which the "cdr" of the list cell preceding
the desired position is destructively modified to point to a
newly created cell which is in turn linked back to the rest
of the list. Note that this technique requires saving a
pointer to the list cell preceding the position and it also
requi res special treatment at the front of the list.

We will classify list insertion as being nuhpnuii-nt,
meaning that the code which finds the position where the
new element belongs and the code which adds the new
element at that position are independent and may be
w r i t t e n as separate pieces of code. [If the construction
method were , say, array shifting, then this independence
wou ld no longer ho ld]

C3: In order to wr i te the constructor body;
(1) if the construction method has the proper ty

" independent", then achieve all of the following sub-
tasks:

<1.1) select a method for representing the desired
posit ion

0 . 2) wr i te the part of the body which finds the
posit ion in which the new element belongs

(1.3) w r i t e the part of the body which adds the new
element at this position

(1.4) put these two parts together into a sequential
block

The posit ion finder and the element adder both require
that a method be specified for representing the position at
which the new element wil l be added For example, in an
array, the index of the correct position is an adequate
representat ion. For lists, one or two pointers into the list
are convenient position representations.

235

The rule we shall use for selecting a position
representat ion is:

PRl; In order to select a position representation;
(1) if the set being constructed is represented as a

l inked list and the construction method is LIST INSERTION,

then use TWO POINTERS (which will point to the list cells
be fore and after the point where the new cell will be
added)

Pictorial ly, this position representation looks like this;

This representat ion has a special case for the front of a
l ist: the "be fore" pointer will have as its value a unique
str ing constant, say, "FRONT". For the end of the list, the
"a f te r " pointer wil l point to NIL. We wil l refer to the two
var iables involved as BEFORE and AFTER

Note that this position representation is more than
adequate for the list insertion method used, since it
maintains not only a pointer to the previous cell in the list,
but also a pointer to the succeeding cell in the list. The
second pointer wil l be used by the correctness test. This
representat ion leads to a relatively simple algorithm.

The selection of this rule and the corresponding
construct ion method is pret ty obviously a cheat, since the
rules should first do some planning, i.e., notice that later
par ts of the program would have prof i ted from the t w o -
pointer representat ion An alternative to a planning
technique would have been some later simplification or
optimization of the program.

C4: In order to wr i te the part of the body which finds
the posit ion in which the new element belongs:

(1) if the construction order is not "linear", then
w r i t e a position finder which guarantees success
(discussed later before rule P1); it must find the
desi red position according to the construction order,
and specify it accoiding to the position representation

In a similar manner to the selector, a linear construction
re -order ing would mean that the position is already implicit
in the state, say an index moving linearly through an array,
and need not be recomputed. In the remaining rules, rather
than saying "an ordered set represented as a linked list",
we wi l l use the term "Iist'.

C5: In order to wr i te the part of the body which adds
the element at the position:

(1) if the position representation has a special case
for the front of the list and the construction method
has a special case for the front of the list, then
achieve all of the following sub-tasks:

(1.1) wr i te a statement which tests whether the
posit ion (which has already been found) occurs at the
front of the list

(1.2) w r i t e a statement which adds the element onto
the front of the list

(1.3) wr i te a statement which inserts the element
into the list at the position specified (assuming the
posit ion is not at the front)

(1.4) put these three pieces together into a
conditional expression
C6: In order to wr i te a statement which tests whether
the position is at the front of the list:

(1) if the position representation is TWO POINTERS,
then wr i te a statement which tests whether BEFORE is
equal to the special string constant "FRONT"

C7: In order to wr i te a statement which adds the
element onto the front of the list;

(1) if the construction method is LIST INSERTION, then
w r i t e a statement which destructively adds the
element onto the front of the list

C8: In order to wr i te a statement which inserts the
element into the middle of the list:

(J) if the construction method is LIST INSERTION, then
w r i t e a statement which destructively inserts the
element into the middle of the list

C9: In order to wr i te a statement which destruct ively
inserts the element into the middle of the list;

(1) if the position representation is TWO POINTERS,
then wr i t e a statement which destructively inserts the
clement be tween two pointers

C10: In order to wr i te the constructor initializer:
(1) if the target is specified to be INITIALLY EMPTY,

then wr i te code which initializes the target to an
empty list
C11: In order to wr i te code which initializes the target
to an empty list:

(1) if the construction method is LIST INSERTION, then
w r i t e a statement which assigns the empty list to the
target

T h e R u l e s y s t e m f o r P o s i t i o n F i n d e r
The postion finder looks through the available positions

in the set being constructed and finds the correct position
at which to insert the new element. The position finder
can be thought of as a total generator that generates each
posi t ion and tests whether the position is correct. A search
strategy is required to determine the order of enumeration
of pos i t i ons A search-state saving scheme is used to
remember the state of the search. A conectness test is
synthesized to test whether the proposed position results
in an ordered set. Each position must be represented
according to the earlier specified position representat ion,
so some code may be required to translate from the search
s ta te representat ion into the position representation.

The reader may wonder why the position finder rules
do not call the high level generator rules discussed in the
selector section Instead a slightly different type of
generator is effect ively entailed by these position finder
ru les In other versions we have the position finder call
the exist ing generator rules. For clarity we present
separate rules here for the position finder, although we
feel that it is conceptually bet ter to combine the two into
a unifying paradigm

The position finder was constrained by the constructor
to be one that guarantees success, i.e., it must f ind a
correct position or else the inductive constructor won't
work Structurally, this means there is no failure branch
for the position finder

P i : In order to wr i te a position finder that guarantees
success, the following f ive sub-tasks must be
achieved:

(1) select a search strategy that guarantees success
(2) select a search-state saving scheme for the pos i t i on

f inder, based on the search strategy
(3) wr i te the position finder body, based on the search

strategy and the search-state saving scheme
(4) wr i te the position finder initializer, based on the

search strategy and the search-state saving scheme
(5) put the last two together into a sequential block

The selection of a search strategy that guarantees
success consists of lots of checking followed by the
select ion of a simple forward linear scan.

236

SSI: To choose a search strategy that guarantees
success, one technique is:

(1) check that a correct position exists
(2) select a total search strategy

SS2: To check that a correct position exists, one
technique is to check these conditions:

(1) if the correctness criteria is based on a
comparison predicate (an ordering relation);

(1.1) the ordering relation is transit ive
(1.2) the set being scanned is ordered

SS3: To select a total search strategy;
(1) if the search list is represented as a linked list,

then use FORWARD LINEAR SCAN for the search strategy
We wil l speak of this search strategy as being

tndepenent , meaning that the part which finds the position
and the part which tests it for correctness are independent
of each other [as opposed to the case with a binary chop].

The search for a position requires a state-saving
mechanism, just as did the earlier kind of generator. The
s tate-sav ing scheme given by our rule will be TWO
POINTERS, pointing respectively before and after the current
posit ion. Recall that this is the same as the position
representat ion. The rule first checks some conditions to
see if a two pointer scheme is adequate Next it notes
that since the position representation and the search state
representat ion are the same, they will be combined and
the state representat ion will be said to subsume the
posi t ion representat ion. Finally, the variables used for the
posi t ion representat ion become the variables used for the
search state representat ion

SSS1: To select a position finder search-state saving
scheme:

(1) if a non-destruct ive scheme is all right, a "linear"
s t rategy is being used, and the search list is
represented as a linked list, then;

(1.1) a two pointer state representation will work
(1.2) note that the position representation is

subsumed by the search state representation
(1.3) if the position representation includes a

"be fo re " pointer, then that is superceded by the
state's "be fo re" pointer

(1.4) if the position representation includes an
"a f te r " pointer, then that is superceded by the state's
"a f te r " pointer

We note that this rule is something of a cheat in that,
.again, some planning should be required to select such a
good and optimizing state representation. This rule is a
good example of trying to embody knowledge in a form too
specif ic to a particular state or position representation.
More reasonable would be a general rule giving a
pre ference for using one variable instead of two when
they would per form similar functions,

P2: In order to wr i te the position finder body:
(1) if the search strategy is "independent", then

achieve ail of the following sub-tasks;
(1.1) w r i t e the part of the body which translates

from the representat ion of the state of the search into
the representat ion of the current position

(1.2) w r i t e the part of the body which tests
whether the determined position is correct according
to the cr i ter ia for acceptance

(1.3) w r i t e the part of the body which increments
the state of the search

(1.4) w r i t e the part of the body which tests
whether there are no positions left, thus indicating
fai lure to find the desired position

(1.5) put the pieces together into a loop

The fact that the position representation is subsumed
by the search state means that at any point in the search,
the next position to be tested is completely specified by
the search-state representation, i.e., absolutely no work
must be done in order to specify the position to be tested,
given the state of the search This is reflected in the next
ru le

P3: In order to wr i te the part of the body which
translates from the representation of the state of the
search into the current position:

(1) if the position representation is subsumed by the
search-state scheme, then there is nothing left to do
to determine the position to be tested

The next f ive rules, PA through P8, represent a chain of
simplifications of the test that the position is correct, i.e.,
the new set is ordered. The chain proceeds from testing
the new element against each other element to checking
against only one. This situation may occur frequently
enough that one special case rule should be used.

P4: In order to wr i te the part of the body which tests
whether the determined position is correct according
to the cr i ter ia for acceptance:

(1) if the cri teria is based upon a comparison
predicate, then achieve all of the following sub-tasks:

(1.1) w r i t e a statement which tests the new element
against all of the elements preceding the determined
posi t ion

(1.2) wr i te a statement which tests the new element
against all of the elements following the determined
posit ion

(1.3) if either statement is vacuous, then return only
the other; otherwise, combine the two tests into a
conjunction

P5: In order to wr i te a statement which tests an
element against all of the elements preceding the
determined position:

(1) if the comparison predicate is transit ive, and the
search strategy is FORWARD LINEAR SCAN, then there is
nothing left to do to test the element against all of the
elements preceding the determined position

P6: In order to wr i te a statement which tests an
element against all of the elements following the
determined position, the following three sub-tasks
must be achieved;

(1) w r i t e a statement which tests whether there are
no more elements after the determined position

(2) w r i t e a statement which tests the new element
against all of the elements following the determined
posit ion, assuming there is at least one such element

(3) combine these two tests into an ordered
disjunct ion

P7; In order to wr i te a statement which tests whether
there are no more elements after a position:

(1) if the position representation is TWO POINTERS,
then wr i t e a statement which tests whether AFTER
points to the end of a list
P8: In order to wr i te a statement which tests an
element against all of the elements following a
posit ion, assuming there is at least one:

(1) if the comparison predicate is transit ive and the
search list is ordered, then wr i te a statement which
tests the element against the immediately following
element

237

The rest of the rules are more or less self-explanatory,
P9: In order to wr i te a statement which tests an
element against the immediately following element, the
fol lowing two sub-tasks must be achieved:

(1) w r i t e an expression which has as its value the
f irst element after the position

(2) w r i t e a statement which applies the comparison
predicate to the new element and the expression just
w r i t t en
P10: In order to wr i te a statement which has as its
value the first element after a position;

(1) if the position representation is TWO POINTERS,
then wr i t e a statement which has as its value the first
element of the list pointed to by AFTER

P11: In order to wr i te the part of the body which
increments the state of the search:

0) if the search strategy is FORWARD LINEAR SCAN,
then wr i t e a statement which increments the search
state to the next following position
P12: In order to wr i te a statement which increments
the search state to the next following position;

(1) if the search-state saving scheme is TWO
POINTERS, then achieve all of the following sub-tasks;

(1.1) wr i te a statement which assigns to BEFORE the
value of AFTER

(1.2) wr i te a statement which increments AFTER
(1.3) combine these two into a sequential block

Note that this incrementing technique works both for
the special case where BEFORE has the special value
"FRONT" and for the general case where BEFORE points into
the output list,

P i3 : In order to wr i te the part of the body which tests
whether there are no positions left:

(1) if the position finder guarantees success, then
this part is unnecessary

PI4: In order to wr i te the position finder initializer:
(1) if the search strategy is FORWARD LINEAR SCAN,

then w r i t e a statement which initializes the search
state to the first position in the search list
PI5: In order to wr i te a statement which initializes the
search state to the first position in a list:

(1) if the search representation is TWO POINTERS,
then achieve all of the following sub-tasks:

(1.1) w r i t e a statement which assigns to BEFORE the
str ing constant "FRONT"

(1.2) w r i t e a statement which assigns to AFTER the
search list

(1.3) combine these into a sequential block

T h e R u l e s f o r L I S P S t a t e m e n t s

The rules given here are included only for
completeness. They embody the LISP knowledge necessary
for the insert ion sort program.

L I : In order to wr i te an expression which has as its
value the first element of a list, return the list:

(CAR H i s t name))
L2: In order to wr i te a statement which assigns a value
to a variable, re turn the list:

(SETQ [v a r i a b l e name) [va lue))
13: In order to wr i te a statement which increments a
pointer, return the list:

(SETQ [p o i n t e r name) (CDR [po in te r name)))
L4: In order to wr i te a statement which tests whether
a pointer points to the end of a list, return the list:

(NULL (po in te r name])
15: In order to wr i te a statement which tests whether
a variable is equal to a string constant, return the list:

(EQUAL [v a r i a b l e name) [s t r i n g cons tan t))

L6: In order to wr i te a statement which destructively
adds an element onto the front of a list, return the list:

(SETQ [l i s t name)
(CONS (element name] [l i s t name]))

17: [n order to wr i te a statement which destructively
inserts an element between two pointers, return the
l ist:

(RFLACP [" b e f o r e " p o i n t e r name)
(CONS [element name] (" a f t e r " po in te r name]))

18: In order to wr i te a statement which assigns the
empty list to a variable, return the list:

(SFTQ [v a r i a b l e name] NIL)
L9: In order to combine two tests into an ordered
disjunction, return the list:

(OR [f i r s t t e s t) Isecond t e s t])
LIO: In order to apply a function to a list of arguments,
re turn the l ist:

([f u n c t i o n name) . . . arguments . . .)

AN EXAMPLE
Wo now present an example of the use of the rules

We will look in detail at steps l and 2 of the overview
presented earlier

Let INPUT be the name of the source list and let OUTPUT
be the name of the target list. Let ELEMENT be the
variable name chosen to do the communicating between the
selector and constructor. We will suppose that the final
o r d e r is BASED ON COMPARISON PREDICATE, w i t h GREATERP as
the comparison predicate We assume that the system has
already decided to write a transfer program. That is, rule
Tl has been invoked

Step 1 involved the choice of an insertion sort rather
than a selection sort, if we consider what the possible
legitimate combinations of selection re-ordenng and
construction re-ordering are, we note that using SAME for
the selection te-ordering implies that the constructor must
do the bulk of the work (i.e., an insertion sort). In fact, the
construction re-ordering must then be the same as the
final order: BASED ON COMPARISON PREDICATE.

Step 2 involved writing the selector for the transfer
program That is, rule SI is invoked by Tl This will result
in each of the other selector rules being invoked at the
appropriate times. The accompanying chart gives a
structural diagram of the various rule invocations.

238

AN IMPLEMENTATION
The rules given in this paper are an abstraction of some

of the rules now operational in a system being developed.
We have endeavored to separate out those aspects of the
rules which are implementation independent from those
aspects which are the results of idiosyncrasies in the
implementation Thus, the rules presented here are not
precisely in correspondence to our implementation We
include here a short discussion of our implementation for
those who may be curious about it.

The basic mode of operation is to invoke rules by name.
Each rule is responsible for determining which rules to
invoke to accomplish its sub-goals. The user may be
queried for a preference when alternative sub-goals are
possible. The invocation by name has two major
implications for the system. First, addition of knowledge is
not strictly incremental, although the addition of "systems"
of rules is generally fairly simple. Second, the system has
no sophisticated abilities above and beyond those stemming
from the knowledge represented by the rules. In
particular, the system has no inference capabilities apart
from those implicit in the rules. As the system is primarily
a rule-testing device, rather than a sophisticated user-
oriented system, these defects do not seem critical.

REMARKS
Having looked at these rules, it is natural to wonder

what they can do for us. In regard to their "understanding"
abil ity, it seenic that they can quite adequately r>plain the
program that they produce One need merely look at the
rule path which produced any part of the final program to
understand the telationship of that part to the entire
program. On the other hand, the rules are clearly unable
to analyre or modrfy the program. It seems plausible that
they could be extended to do some rudimentary analysis
through 'jorne kind of parsing technique. Since the rules
presented here are incomplete, in the sense that they do

not p resent various al ternat ives, they cannot be expected
to a l low modif icat ion When they have been extended to a
b roader class of programs, different specifications will yield
d i f f e ren t progi arns, and modification would seem to require
only slight extensions This is, however, mere speculation;
f u r t h e r exper imentat ion is required before anything
de f i n i t e can be determined

One of our original intentions was to determine a set of
ru les w i t h a wide applicabil i ty We feel that we have done
th is . We are now in the process of extending these rules
in to a larger set, capable of synthesizing an entire class of
sort programs If we are successful, then we will have an
ind icat ion that these rules do indeed have some generality.
But more than that, we expect the rules to be useful in
many other programming tasks. Set operations (such as
i n t c i sect ion and union) seem to involve many of the
concep ts w i t h which our rules already deal (e.g., generating
e lements from an ordered set) Another area of potential
usefu lness seems to be in various kinds of searching and
t ab le l ook -up operations. Obviously the entire set of rules
w i l l not be applicable in any one situation, but it seems
that for each si tuat ion some subset of these rules will be
use fu l

In regard to such generality, it seems to us that some of
the ru les may be over ly specific to the one particular
ta rge t program, in the sense that such rules (or equivalent
know ledge) could be der ived or inferred from more general
p r inc ip les during synthesis of the program. The choice
b e t w e e n these t w o modes of operation seems to be
la rge ly a computational issue: some kind of t rade-of f
b e t w e e n space and time considerations.

At this point it is far too early to prefer one mode to
any o ther , but having expl icated the knowledge in some
fo rm, we may gauge the requirements of future
know ledgo -based program-understanding systems. We
have seen that about 50 "rules" are needed for a system
to "unders tand" what is involved in writing even one
s imple sort pi ogram. If we are to design knowledge-based
pypgiam unlit-minuting systems, w i th the abilities of synthesis,
analysis, and modification, applicable to many different
k inds of programs, then the body of programming
know ledge which wil l be required is quite large. Our
cu r ren t work indicates that well over a hundred rules wil l
be r e q u i r e d to enable the synthesis of a large class of sort
programs. It is sti l l too early to estimate the size of the
body of programming knowledge which will be necessary
for the establishment of reasonable knowledge-based
program-unders tand ing systems, but we can at least see
that the task of codifying this knowledge is likely to be a
long one.

ACKNOWLEDGEMENTS
The authors grateful ly acknowledge the diligence w i th

wh ich Av ra Conn read the drafts of this paper, and the
generos i t y w i t h which the Artif icial Intelligence Center of
t he Stanford Research Insti tute provided machine time for
the research upon which this paper is based.

REFERENCES
[1] Green, Cordel l , and Barstow, David. A Hypothet ical

D ia logue Exh ib i t ing a Knowledge Base for a Program-
Unders tand ing System, presented at the NATO
Advanced Study Insti tute on Machine Representations of
Knowledge, Santa Cruz, California, July 1975.

239

