A DEDUCTIVE QUESTION ANSWERING SYSTEM ON RELATIONAL DATA BASES

Koichi
Science Division,
Tokyo,

Computer

ABSTRACT

formalization of a
system on a
using a theorem proving
proving procedure for a
investigated and a direct proof
procedure based on substitutions of equivalent
formulas which employs the breadth first search is
intorudced. The search strategy is then expanded
to set operations of the relational algebra which
are incorporated into the proof procedure in order
to increase the data base search efficiency.
Virtual relations arc realized by means of
introducing several axioms and utilizing the
deductive capability of the logical system.
Furthermore, a conditional domain is, introduced as
one of the virtual domains and is used to give a
relational view to a pseudo relational data base
which can represent exceptional cases using some
1ink information.
A query transformation system called DBAP
(Data Base Access Planner) which embodies those
features is implemented in QJJSP.

describes
question

This paper
deductive
relational data base
technique. A theorem
finite domain is

a new
answering

1. Introduction

Many research
intelligence field

groups in the artificial
have been concentrating their
efforts on how to represent knowledge1 and how to
perform logical inference and/or common sense
reasoning. The knowledge data bases are organized
in very complicated ways in order to realize those
very high level functions. These structural and
operational complexities have been preventing us
from expanding them to very large knowledge data
bases.

On the other
projects to develop very large
bases in the data base research area.
of data base is assumed to be used in a relatively
simple manner and consequently has simple
structures:. Efficient search algorithms for such
simple structures have been developed extensively

hand, there have been many
commercial data

This kind

and some special purpose hardware systems with
parallel searching capability are being developed
in many places.

Our current research goal is to combine these

two separate efforts to build up a very large data
base with the deductive capability [8], [II].
Codd, E. F. [2] introduced an algorithm
to convert any query written in a relational
sublanguage to a sequence of relational algebraic,
operations in order to show the relational
completeness of the relational algebra. His
algorithm can be considered as a formal question
answering (QA) procedure on a relational data
base. On the other hand, Green, C. and Raphael,
Natural

F'urukawa

Electrotechnical Laboratory

Japan
B. \k] formalized a deductive QA system based
on first order logic. The essential point oV
their formalism is that knowledge is represented
by a set of axioms and the answer of the question
is extracted from the refutation proof of that
question.

In this, paper, these two formalisms are
combined by introducing a proof procedure for
a finite set, where logical expressions are
interpreted as set operations on the set. A proof
procedure for queries which require all answers
satisfyingthegivenspecifico.tionispresented.
It is a direct proof procedure based on
substitutions of equivalent formulas. As an
intermediate result of the direct proof, the
system generates an access plan to the data base,
and then the plan is executed to get the all
answers satisfying the specification. The set
operations of the relational algebra are
considered as expanded notions of the breadth
first search strategy and are incorporated into

Lanr:uarf»-3:

50

the proof procedure to express the accees plan.
Stonebraker, M. [10] introduced the notion of
views (we call them virtual relations) in order to
provide users with the deductive capability, and
realized them by means of query modification. In
this paper, virtual relations are considered to
provide a semantic model of the base relations and
are defined by a set of non-ground axioms. The
query modification process can be considered as
substitution process of a formula by an equivalent
formula, the rule of which is given by the
associated axiom. An axiom called a conditional
domain axiom is particularly interesting. It is
used to give a relational view to a pseudo
relational data base which can represent
exceptional cases using some link information.

some considerations on deletion
of redundancies will be presented. Optimization
of the access plan will also be eoneidered. The
implemented query transformation system DBAP will
be briefly explained. In the last section, the
conclusion and some future research works to be

In addition,

done will be described.
2. Formalization

Generally, a formal QA system consists of a
set of axioms and a theorem prover to get answers
for a given query. Fig. 1 shows the configuration
of our system in terms of the formalism.

In a formal system, each datum in the data
base has to be expressed by a ground clause (a

clause which does not
There are two typical
the tuple-wise

contain any variables).
representations: namely,
representation and the domain-wise

Furukawa

I Data //’Tntensional

| Base ____’{" File |

| Access)

Planner Subachema, —7

o Views
Thearem DB Access — b Ax i oms
Prover * Program J

/’%xtenniunal’
File
Executor|[— .

Relat {onal
‘. Data Base

AnBwer

Fig. 1. A forma)l QA system on a relational
data hase,

representation, Huch ground clause of the

tuple=wise represcentation expresses u tuple of
some reliatlion, whose name iz designated by the
ruune of Lhe predicate,. 10 we use this predicale to
express queries, the expression tooks like NEDUCE
expression [1] which is considered us one of the
relalional =lgebralc sublenguagen. Un the other
had , Lhe domuin-wine reprecentoalion iz relntod to
the relationa]l caleuwlus. Siunce the relationsl

culeulus in closcly related to the general
predicate caleulun, Lhe domuin-wise roprecentation
is expected Lo suit the Tormal system more

nnturally Lhun thie tuple-wise roepresentetion.
Thin is why we adopt the domuin-wise

representation,

in order Lo designuale o datum in a relationel
dats base, wWe necd Lo specify a relation neme, n
domain nmme und n tuple jdentifier. We introduce
n Xepipee predicate ~relation namess<domuin neme>
which hus g tuple identifier {tuple id) ax its
irei wryument and the detum nn ibs second
urgument, A tuple id assoclates clawses which
ropstitute Lhe tuple. An exumple relation FEMP is
shown in Fig, o) and the corresponding ground
clause representution is shown in Fig., 2{n).

Green, . [%] introduced the AND predicate to
exXpress 4 guery by & logical formula. The gquery
"Uel the names of all employees who belong to Lhe
research and development {(R&D) depariment” s
expressed logicnlly by

(Vo (Vi) (eMr.naAME(1 ,x) A BME.DNAME(D, 'RED')
-~ ANE(X)).

This formulu means that every name af t.he
employees whir belong to the "KR&D' depariment is an
annwer, but doces nol meen that mll such names uare
roquired,

We adopt the following representatlion:

(T YO) (EMP.NAME(1,%x} A EMP.DNAME(i,'R&D'}).

That is, we express the required wvarisbles by

EMP(NAME DNAME S5AL)

SMITH R&D 12000
BROWN SALES 16000

(a}

FMP .NAME(1, SMITH)
EMP ,DNAME (1, R&D)
EMP,SAL{1, 12000)
EMP,NAME(Z, BROWN)
EMP.DNAME{2, SALES)
EMP.SAL{2, 16000)

(b)

fig., 2. An employee rela-
tien EMP and its ground
clause represenLation.

putting a prefix symbol and read the
expression as 'Find ail ?x such that (i)...'

The intentional file consists of non-ground
axioms which define users' views or Vvirtual
relations. The objective of introducing wusers'
views is to keep the query language independent of
the logical structure of the relational data base.

Assume that we have a relational data hase
which consists of the following base relations:

EMP(NAME, DNAVE SAL)

DEPT(WAME MGR)
where the domais DNAVE in VP and NAVE in DEPT
are both the set of departments. Assume also that
a wuser wants to define a virtual reallion
VEMP(NAME DNAME SAL MGR). In the virtual relation
VEMP, the domain MXR belongs to the employee
relation, but in fact it belongs to the department
relation. The domain MR is considered to have
been transfered from the department relation to
the employee relation, and we call this kind of
virtual domain a transitive domain.

in terms of the VBEMP relation, the fact that
the manager of an employee i is x is expressed as
VEMP.MGR(i,x). The QA system has to transform
this expression to the following conjunction of
literals on the base relations:

(L)) (Ay) (4P UNAME(1 ,¥) h DEPT.NAME(),y)
A DEPT.MGH(],x}).

This formule is deduced by applying Lhe following
equivalence stelemenl. on the former exprecsion:

(VI3 (V) () (Fy) (VEME .MGR(1 ,x)
EMF.DNAME{ i ¥} A DEPT.KAME(],y)
& DEPT.MGR{j,x)). (1)

This type of =atetement 1is called a transitive
axiom.

Let us consider the query "Who is the manager
of Mr. SMITH ?". In terms of the virtual relation
VEMP, this question is logically expressed by

Natural Lanrua£0-3: Furukawa

C2x)Ci)(VEMP.NAME(i, 'SMITH'

A VEMP.MGR(i,?x)). (2)
By substituting the second term in (2) by the
righthand expression of the equivalence sign = in
(1), we obtain the following expression:

(*?x)(3i)(aj)(3y)
(VEMP.NAME(,'SMITH') A EMP.DMME(i,y)
A DEPT.NAME(j,y) A DEFTMGR(,1,?x)) .

So for, we have obtained the expression in terms
of the base relations except the underlined
literal. This literal is transformed to the
corresponding base relation literal by the

following axiom:

“i)(X)(VEMP.NAME(i,x) i EMP.NAME(i,x)).

This type of axiom is called a_ simple domain
axiom, and a query which does not include any
virtual relation literals is called a base query.

It is obvious that any query which is
specified in terras of virtual relations is
translated to an equivalent base query by logical
inference. However, the trnasfromation by the

resolution rule which is based on the modus ponens
is insufficient if we want to get all answers
which satisfy the given specification. We can
prove it easily. Denote a query by F[?x] and the
required answers by {?x| F[?x]}. If we obtain
a base query G[YxJ by applying the resolution
rules, then G[?x]~YF[?x]. Therefore,
{?x] G[?xIl £ {?x| Ff?x]l, where the equality
holds only if G[?x] ~ F[VxJ.

So far, these transformations can be realized
by the query modification technique [10]. As far
as the control structure is concerned, it is
equivalent to the input resolution in the
GL-resolution which is known to be valid only for
a horn set [13]. But there exist more complicated
axioms which require the whole inference
capability including the ancester resolution. We
will introduce a few such axioms later on.

A virtual domain can be defined in terms of

other predefined virtual domains. The axioms for
such domains transform a literal to a conjunction
of literals some of which are not the base

relation 1iter als.
In this paper,
quantified queries. It
resulting base queries
transformations are also
quantified. Therefore, we
notation for queries by omitting all

we consider only existentially
is easily shown that the
after applying the
only exsistentially
further simplify the
quantifiers.

3. Deletion of Redundancies

A base query which is obtained so far may
have some redundancies. Let us consider the base
relations: BEVPNAVE DNAME);, DEPTNAMVE MIR LOG),
and the virtual relations: VEMPNAVE DNAVE LOG);
VDEPTNAME MGR). Note that the LOG domain is
transitive. Assume that the following query is
given:

VDEPT.MGR(,?x) A VEMPLOG(i ,1*12)

A VEMP.DNAME(,y) A VDEPT.NAME(,y) (3)

Natural

Lanfuiajre-3:

61

Tt inquires the manager of the department vy to
which the employee i located at 12 belongs. The
expression (3) is transformed to the following
base query:
DEPT.MGR(,1,?7x) (M
A EMP.DNAME(i,z) (5)

A DEPT.DNAME(K,z) (6)
A DEPT.LOC(k,1*1*2) (7)
(

A EMP.DNAME(,y) 8)

A DEPT.NAME(1,y) . (9)
Let us concentrate our attention on the literals
(S) and (8). They are the same except the values.
However, as a datum is wuniquely designated by
specifying the relation name, the domain name and
the tuple id, these two variables z and y must
refer the same datum. This fact can be expressed

by the following axiom:

Tuple Id Axiom
For any relation REL and its arbitrary domain

D, the following statement holds:
iy(Yx)(Vy)(REL.D(i,x) A REL.D(i,y)

= REL.D(i,x) A x =y). (10)
By applying this axiom, to the above two literals,
y is replaced by z and these two literals become
exactly the same. Further, the literal (9) s
transformed to

DEPT.NAME(,z). (9)

This
factoring

simplification is not the same as the
operation in the resolution proof
procedure, because all variables are quantified by
a. Therefore, the tuple id axiom is a meaningful
axiom. Note that the application of this axiom
cannot be done by input resolution, because we
need to resolve two literals simultaneously.

Now, let us assume that the domain NAVE in
the DEPT relation is a key domain. Then, it is
easily shown that the literals (6) and (9)' are
the same. This fact is represented by the
following axiom:

Key Domain Axiom

For any relation REL and its key domain K,
the following statement holds:
CDENDEX)(REL.K(i,x) A KEL.K(j,x)
= REL.K(@i,x) Ai =]j). (U)

By applying this axiom on (6) and (9)', we obtain
the following simplified base query:

DEPT.MGR(k,?x) A EMP.DNAME(i,z)

A DEPT.NAME(k,z) A DEPT.LOC(k1*1"2) . (1?)

and Proof Procedure

1*. Data Base Acc

When a
accesses, it
accesses very carefully
process efficient. We will
design objectives:

proof contains multiple data base
is recommended to plan the data base
in order to keep the proof
set up the following

Furukawa

1. Do not access to the (logically) same tuple
in a relation more than once.

2. Get all tuples which satisfy the given
conditions to a certain relation at a time.

3. When more than one tuple are to be accessed,
plan the access order to minimize the number
of data base accesses.

As mentioned in section 2, each constituent
of each tuple is expressed by a ground clause.
But the expression is merely conceptual and we do
not have such representations in the actual data
bases. Instead, relational databases are usually
organized in such a way that the data base access
by tuples is much more efficient than by domains.
In order to achieve the tuple-wise access to the
data base, all literals in a base query associated
to the same tuple of the same relation have to be
grouped together. We call such a set of literals
an_access subclause. Since all literals in an
access subclause have the same relation name and
the same tuple id which is introduced only to
associate those clauses in the same tuple, we can
abbreviate the notation for access subclauses by
factoring out the relation name and omitting the

tuple id. For example, the access subclauses of
(1 ?) ar e expr es sed as.:
Al: DER' (MGR(?x), NAME(z), LOC(M2)J, (13)
A2: Bw {DNAME(z)}. (lh)

The second objective is deeply related to the
discussion on the inference rule mentioned in
section ?. The same argument holds in getting
data; namely, any access subclause must be
substituted by an equivalent set of tuples. But
since the set consists of all tuples which satisfy
the access subclause, it is obtained by the
associative retrieval with the breadth first-
search strategy.

The breadth first
operation (we denote it by r) on an access
subclause can be expressed by a ocompound
operation of the selection and the projection of
the relational algebra. Denote the selection of a
relation REL1 with a condition Di = a by
RELI[Di = a] and the projection of a relation RE?

associative retrieval

to the domains Dj,...,.Dk as REL2(Dj ... Dk).
Assume that

A = RELDI)I(xI]),...Jd)i(xi) ,Di+l(c)} (15)
where x],...,xi are variables and c is a constant.
Then, r(A) is given by the following algebraic
expression:

r(A) - REL[Di+l = C|(D1 ... Di.) . (18)

For example, the application r on (13) results in:
r(Al) ~ DEPTLOC = 442MGR NAME). 17)

We denote the relation from the

application of r on A by A..

resulting

Now, let us consider the third design
objective. Any query can be described in FANNER
language [6] simply by expressing each access

Natural

Lanpiiap:e-3 :

subclause by a goal statement with a corresponding
associative retrieval pattern. But as mentioned
earlier, the depth first search strategy employed
in it is very inefficient when we want to get all
answers which satisfy the given condition. On the
other hand, OQINNMER [12] has a programming
support to deal with the breadth first search
strategy, but programmers are responsible for
controlling the overall proof procedure. We will
generate an efficient data base access program
from the given set of access subclauses. This
approach resembles the PODB's approach developed
by Haral.dson, A. [s].

Let us consider the case in which there are
more than one access subclauses. We say two
access subclauses are associated if and only if
they share at Ileast one variable in common.
Assume that two associated access subclauses are

given. The proof procedure first obtains two
separate one-level search trees Al and A2 by
executing each associative retrieval. Then, it

generates another one-level tree which consists of
all answers satisfying both access subclauses by
equating the shared variables in these trees.
This operation corresponds to the equi-Join
operation of the relational algebra [I]|, [2]. We
denote the equi-join of Al and A? with ocommon
variables xlI,...,xi by Al[xI] xi |JA2, or simply
by A1.A2 when the oomon variables are not
required to be specified explicitly.

The association relation is a binary relation
and can be described by a graph having access
subclauses as nodes and the shared variables on
the corresponding arcs. We call this graph an
association graph. When there are three access
subclauses, the corresponding association graph is
either straight-line as shown in Fig. 3 or
triangular as shown in Fig. 4. In either cases,
the result is obtained by executing two successive
join operations in an arbitrary order. In order
to specify the order of join operations and give

proper output relations, we introduce a kind of
tree called a program tree. It is constructed

from the association graph by an algorithm P which
will be given in the appendix. Some examples
shown in Fig. 5 and 6 may be helpful to get the

idea of program trees. The program trees in
Fig. 5(@) - 5(c) correspond to the association
graph in Fig. 3 and Fig. 6(a) - 6(c) to Fig. 4.

Let us consider about the execution of a program
tree. A leaf node is executed at first, and a
father node is executed only after all of its sons
are executed, where an execution of a node A
consists of r(A), followed by the join operations
with its all sons (no join operations are defined
for leaf nodes). The multiple join operations for
a single node can be done in an arbitrary order.
Moreover, they can theoretically be done
simultaneously. The multiple joins for a branched
tree Tl in Fig. 7 are expressed by

Bn.(Bn-L(.. .(B2.(B1.A))...)).

On the other hand, the
straight-lined program tree T2 in the same
are expressed by

successive joins for a
figure

Bn.Bn-1 B2.B1.A.

Furnkawa

Al: EMP [NAME(?x), MGR(y}}

y

?x A2: CLUB | CNAME(z),MEMB(y)}
z

A3: CLUB | CNAME(z), MEMA(7x)}

Fig. 3. An asmociation graph which
containg a clrculr.

1 A3 Al A?
%7 Ix,y ¥,z
Y Az A3 ¥ Al
253 TE x,z2
Y Al ¥ Az Y A3
7K 7x 7%
ANS ¥ ANS ¥ oANS
(a) () (c)

Fig. 5. Three program trees of
the association graph in Fig. L

B1 B2 ... Bn-1 Bn Bl
//, ; B2
Bn-1
A % Bn
A
Tl
T2

Fig, 7 Two oxtreme types of
program trees.

Note that these expressions are evaluated from
left to right. The new relation obtained by
executing a node consists of only the domains

which are to be used in the succeeding operations.

We will put the variables which represent the
output relation on the arcs from the node to the
father node. Some of them are shared by the
father node and the groundfather node, which in
turn will be used as the Ilink variables on the
corresponding Join operation. In Fig. 5 and 6, the
underlined variables are of this kind. As a
result, the algebraic expression for a program
tree, e.g. Fig. 6(a), is given by:
ANs = (((B3 [7x] B2)(?x 4)} (4] B1){2x}. (18)
A base query may contain some comparison
literals between two variables and/or between a
variable and a constant, such as y =z or y >
15000. They are put on the appropriate nodes or

Natural

Language-3:

63

B1: DEPT {NAME(d), MGR('SMITH'}

B2: EMP | NAMR(?x), DNAME(d)}
Tx
B3: CLUE { NAME(TMUSIC'), MEMR(7x)}

Fig. 4. An associatlion graph which
does not contain circults.

B3 Rl Vs B3 Bl
2x d x4
Y B2 B2 Y B2
PH,d x x
Bl ANS ¥ B3
% X
¥ ANS ¥ ANS
(a) (h) (e}
Fig. 6. Three program trees of

the association graph in Fig. 4.

arcs in the association graph.

Now, the third design objective is
as the problem of constructing an optimal
tree. It is reasonable to measure the efficiency
of a program tree by the total size of all output
relations generated during the proof process. The
size of a relation is proportional to both the
domain number and the tuple number in it. The
optimization of the program tree construction
algorithm is done by embedding a few heuristic
strategies which select a suitable node in the
association graph. The algorithm P constructs a
program tree in reverse order to its execution.
Therefore, we select less restricted nodes
earlier. The heuristics we adopt are the
following:

restated
program

1. Select a node with

2. Select a node
earlier.

3. Select a node with more ? variables earlier.

smaller
with

degree earlier.
less constant literals

The heuristics 1 is applied prior to 2 and 2 prior
to 3. We denote the algorithm P with these
heuristics as P*.

5.. Conditional Domain

It is not easy to deal with exceptional cases
in the relational data base. For example, assume
that the domain NAME in Fig. 2 is a key. Since no
employees are allowed to appear in more than one
tuple, this organization is adequate only if no
employees belong to more than one department.
However, it may happen that, say, Mr. SMITH has
come to belong to both 'R&D' and 'SALES'. Then,
we cannot express this fact in this relation as

Furukawa

long as we keep the NAVE domain as a key domain.
The traditional way to manage this situation is to

use a general schema to represent many-to-many
correspondence. That is, the domain DNAMVE is
removed from the relation HBVWP and a new relation
ED (NAME DNAME) is created to store all
correspondences between employee names and
department names, as shown in Fig. 8. This

inconvenience is due to a strong constraint on a
relational data base which requires that all data
in a domain must be homogeneous. It is more
natural to treat the exceptional cases as
exceptions. We use a special symbol, say '*', to
represent the exceptions. In the above example,
an '*' is put on the Mr. SMITH'S DNAVE field and
only the two pairs, <'SMITH' 'R&D'> and <'SMITH'
'SALES'>, are stored in the newly created ED
relation, as shown in Fig. 9- The domain DNAVE is

no more homogeneous, because the special symbol
'*' does not belong to the domain of department
names. This symbol can be considered to carry

link information to the ED relation.

It is desirable to protect users from the
struictural change of the data base by supplying
the old relation EMP(NAME DNAME SAL) as a virtual
relation. To avoid the conflict of the relation
names, we rename the base relation BW as, say,
CEMP.

The fact that the employee i's department is
x is expressed as EMP.DNAME(i,x), but the actual
information is not always in the CBWP relation.

In some case, it is in the ED relation.
Therefore, we require a conditional treatment. We
call this kind of domain in the virtual relations
a conditional domain. A conditional domain is
defined in terms of a conditional statement as
follows:

(Yi){¥%) (F2) () (Zy) (EMP.DNAME(i, x)

= (CEMP.DRAME(i,z) A CEMP.NAME(i,u)

A (IF z = '#' THEN ED.NAME{J,u) A ED.DNAME(J,x)
ELSE z = x)). {19}

This axiom is called a conditional domain axiom.
Now, we will consider how to deal with the
conditional expression. Assume that the following

CEMP (NAME SAL) ED{NAME DNAME)
SMITH 12000 SMITH R&D
BROWN 16000 SMITH SALES

N BROWN SALES

Fig. 8. A reorganized relational data

base to express an exception. Fig

CEMP(NAME DEPT SAL) ED(NAME DNAME)
SMITH * 12000 SMITH R&D
BROWN SALES 16000 SMITH SALES

Fig. 9. A more natural way to express the
exception.

Natural

Language-3:
64

query is given:

EMP.NAME(i,?x) A EMP.DNAME(i,'SALES"). (20)
This query can be transformed to

CEMP . NAME(i,%x) A CEMP(1,z)

A {IF v =%

"THEN ED.NAME(),?x) A ED.DHAME(J, 'SALES')
ELSE 2z = 'SALES"). {21)

by using the conditional domain axiom (19), a
simple domain axiom for the simple domain NAMVE and
the tuple id axiom.

Let us denote the conditional expression in

(21) as B. The literals in each branch of B are
then grouped separately in order to make access
subclauses. Then, if there are literals outside
B which are to be contained in any access

subclauses in B, they are distributed to every
branch of B and put into the corresponding access
subclauses. After that, the rest literals are
also grouped to make the access subclauses. The
result of applying these steps to (21) are given
as follows:

CEMP {HAME(?x), LNAME(z})

f (E z = &
THEN FED {NAME(?x), DNAME('SALFS'}}
ELSFE z = 'SALES'). (22)

Generally, the result consists of one or more
access subclauses and one or more conditional
expressions. We regard this kind of conditional
expression as an access subclause and call it a_
conditional access subclause. A program tree is
constructed by applying the algorithm P*
introduced in section 4. The program tree of (22)
is shown in Fig. 10.

Now, we will consider the execution of the
program tree. Generally, a conditional access
subclause C has the following form:

(TF P THEN C1 ELSE C2)

where Cl and C2 are sets of access subclauses

C: (IF z = '%' THEN ED { NAME(?x), DNAME{'SALES')}
ELSE z = 'SALES')

1
Ix,z
A: CEMP { NAME(?x), DNAME(z)}
x
\%

'ANS

10. The program tree of (22).

¢ A: CEMP) NAME ('SMITH'), DNAME (z) |

€t (IF z = "#' THEN ED { NAME("SMITH'), DMANE(?x)}
ELSE z = TX)

ANS

Fig 11. The program tree of (23}.

Furukawa

and/or conditional literals. This expression is
equivalent to the following OR expression:

(P& CLY V {~FhcC2)

Assume that the output relation A of C's father A
contains all variables which appear in P. Then,
the conditional join between C and A can be
defined by:

c1.(a [P]) wee.(a [~ P]).

The algebraic expression for the program tree in
Fig. 10 is given by:

ANS = (C1 [9x]) (A [z = "' 1))
v {c2 [2] (A [z % "* 1))

Note that the literal P and HP are passed to the
father node A and tneir evaluations are delayed
until the node A is evaluated.

As a matter of fact, the literal P (and ~P)
can often be evaluated at the evaluation time of
C. Consider the following query:

EMP.NAME(:,'SMITH') & FMP.DNAME(I,?x]). (23)

The corresponding program tree shown in the
Fig. 11 has such a property. Tn this case, we
need not postpone the evaluation of P.
Furthermore, it is evaluated in conjunction with
A. Namely, the relation .A can be divided into two
subrelatioApand A~p such that a tuple
satisfies P if and only if it belongs to Ap. The
conditional Join between A and C is expressed by

(A [P1).gL v (A [~ P}).ce,

In this case, the literal P works as a conditional
branching statement for the node C if A_ consists
of only one tuple. Therefore we express the
conditional access literal 0 by the following COND
statement:

{conp (P C1)(T r)).

We can choose the OB
expression properly in the construction time by
investigating the variables on the arcs between
the conditional access literal node and its sons.

Another approach to deal with the conditional
case might be to transform a query to a
disjunctive normal form and to solve each
conjunction separately. But it is difficult to
remove the redundancies caused by the separation.
This is the reason why we keep the conditional
statement in a unit form.

expression or the COND

6. The Implementation of DBAP

half of the total system shown in
Fig. 1 was implemented on an Al language called
QLISP [9]. The DBAP is not a formal theorem
prover like the resolution theorem prover. The
various kinds of heuristic strategies described
through section 2 -5 were realized by informal
procedural methods.

Virtual domain axioms
functions which are invoked by the

The upper

are actually QLAVBDA
patterns of

Natural Language-3
65

virtual literals in a query, and perform the
corresponding transformations. The axiom definer
was implemented in order to define virtual domain
axioms through their logical expressions.

The tuple id axioms are treated in a very
different way. There are no explicit functions
for the tuple id axioms. The deletion of
redundancies is done by a search and substitution
procedure embedded in the DBAP.

The key domain axioms are
simpler form than (Il); for example,

defined in a

{Yi){(¥x){DEPT.BAME(i.x}
= DEPT.NAME(x,x) A { = x).

This axiom replaces the tuple id i by the value x
and causes the same effect as applying the
original key axiom (Il). This treatment of key
domain axioms solves the interaction problem
between tuple id axioms and key domain axioms, and
therefore increase the efficiency.

7- Conclusion

This research is considered to be a step
toward a natural language QA system. In order to
access the data base through the user's intention,
the semantics or the real world model of the data
base must be represented explicitly and be used to
remove the gap between the semantic expression of
a query and the logical data base structure.

On the other hand, the virtual domain axioms
can be considered to be a representation of the
data base semantics, because the virtual relations
which are defined by a user can be regarded as his
conceptual model of the real world [I1].

We limited our consideration on queries
modified only by the existential quantifiers.
Universally quantified queries are related to the
division operation of the relational algebra as
shown by Codd, E. F. [2]. It is expected that we
can deduce the division operation if we pose the
range separability condition [2] on the queries.

Another difficult problem occurs if some of
the virtual domains are associated more than one

conjunction of base relation literals. In this
case, the whole virtual domain axioms are
expressed in an and-or graph. Therefore, a

general algorithm which performs the breadth first
search on an and-or graph will be required.

Acknowledgement

This research was mainly done during my stay
at SRI. | would like to thank Dr. Bertram Raphael
and other many people who helped me to study
there. | would like to especially thank Dr. Daniel
Sagalowicz and Dr. Earl Sacerdoti for their
stimulations and important suggestions concerning
the ideas in this paper.

Aurukawa

References

Chang, C. L., "DEDUCE - A deductive query
language for relational data bases," To
appear in Artificial Inteligence and Pattern

Recognition, (ed. Chen, C. H.), Academic
Press.
Codd, E. F., "Relational Completeness of Data

Rase Sublanguages,” Courant Computer Science

Symposium 6, Prentice-Hall, (1977?)«

Green, C, "Application of theorem proving
t o pr o blem solving" Pr oc. 1st 1 JCAI,
pp.219-239, (1969).

Green, C, and Raphael, B., "The use of
theorem proving techniques in question
answering systems," Proc. 23rd Nat. Conf.
ACM, Brandon Press, Princeton, New Jersey,

(1968).

Haraldson, A., "A procedure generator for a

predicate calculus data base," Proc. IFTP
Congress 74, pp.575-579, (1974).

Hewitt, C, "Description and theoretical
analysis (using schemata) of PLANNER: A
language for proving theorems and
manipulating models in a robot," Al Memo

No. 251, MIT' Project MAC, (April 197?).

Levien, R. E., and Maron, M. E., "A Computer
system for inference execution and data
retrieval," CAOM Vol. 10, No. 11, pp.715-721,
(November, 1967)

Raphael, B., The Thinking Computer, W. H.
Freeman and Company, San Fransisco, (1976)e

Sacerdoti, E. D. et. al., "QLISP - A language

for the interactive development of complex
systems," Proc. AFIPS 1976 NCC, Vol. 45,
pp.349-356, (1976).

Stonebraker, M., "implementation of integrity
constraint and views by query modification,"
Proc. 1975 SIGMOD Workshop on Management of
Data, San Jose, Calif., pp.65-78,(May, 1975).

Smith, J.M. and Smith, D. C. P, "Data
abstruetion: Aggregation and generalization,”

To apear in ACM Transactions on Database
Systems.
Sussman, G. J. and McDermott, D. V., "From

PLANNER to CONNIVER -
Proc. FJCC, pp.II71-1179,

A genetic approach,"
(1977).

VanderBrug, G. and Minker, J., "State-Space,
Problem Reduction, and Theorem Proving - Some
Relationship," CACM Vol. 18, No. 2,
pp.107-115, (February 1975).

Natural

Language

66

Remark.
the corresponding tree node Mt must be on the pass
which
easily proved as
constructed
expanded
nodes, in the tree are on the pass.
reached the
expandable.
from Nt to the root.

Appendix

Algorithm P. [Construction of a program tree]
This algorithm constructs a program tree in

the reverse order to the execution through
marking the nodes and arcs of the association
graph. We use M and N to denote nodes in the
association graph, and use Mt and Nt to
denote the corresponding nodes in the program
tree respectively.
1. [Root construction]
Put a node ANS as the root of the program
tree. Then, select an arbitrary node N in
the association graph and put it above the
root as a son node. Mark the node N.
2. [Tree construction]
If there is an unmarked arc from the node N
(we denote this arc as A), then mark it and
move to the other node M of arc A.
Tf the node M is, marked, then put the
variables of arc A on every arc which s
on the pass from the node Nt to the node
Mt. Go to 2.
Otherwise (i.e. if the node M is
unmarked), put the node M as a son of the
node Nt and put the variables of arc A on
the new are. Mark the node M. Rename
the node M as N. Go to 2.
Otherwose (i.e. if all arcs from the node N
are marked), traverse the tree from Nt to
the root until a node of which the
corresponding node on the association graph
has an unmarked arc is found. If there
exists such a node, name the node as Nt and
the corresponding node on the association
graph as N. Go to 2. Otherwise, go to 3.
3. [Carrying ?variables to the root]
For each ?variables, put it on all arcs on
the pass from the node which contains the
variable to the root. Terminate.
If the node M is marked in step 2, then
connects the root with Nt. This fact is
follows. Since the tree s
in pre-order, all nodes are completely
except those (JV which the corresponding
But since we
it is
pass

node M via an unmarked arc,
Therefore, the node M is on the

Furukawa

