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ABSTRACT

A method is presented for constructing

maximal consistent tntepretations of error!lul
data. The method appears applicable to many
tasks (speech understanding, natural language
understanding;, vision, medical diagnosis)
requiring partial-matching of errorful data
against complex, hierarchically defined patterns.
The data is represented as symbolic structures
(word sequences, line segment configurations,
disease symptoms). Errors consist of missing data
(unrecognized words, occluded lines, undetected
symptoms) and extra (possibly inconsistent) data
(incorrectly recognized words, visual noise,
spurious symptoms). Data interpretations
correspond to substructures of a hierarchy of
predef ined concepts. Constraints on consistent
cgnceptual structures embedded the
hierarchy. An impierne ntation of the method has
correctly interpreted errorful sets of sentence
fragments recognized by the HEARSAY-II
speech understanding system. The
Implementation has also correctly interpreted
typed-in ungrammatical sentences. Detailed
examples illustrate operation of the method on
real data.
ODUCT10N

The application of Al methods to complex
domains (e.g., speech, vision, medical diagnosis)
has expanded the dimensions of data
interpretation to incorporate some novel phenomena.
Two of these phenomena are data error and

hierarchically defined data patterns.

Many complex domains are characterized by
errorful data. Errors such as insertion,
deletion, substitution, and repetition of
inforination incrcase as the uncertainty of
source data transduction and interpretation
increases. Datamay be mutviallyinconsistent
in that two or more piece:s of information cannot
be explained consistently, Tolerating error and
inconsistencies in the data requires robust
methods that can not only find the Dbest
interpretation but are able to distinguish the
(ijmt:onsistent and errorful data from the consistent
ata.

Another aspect of data interpretation in
complex domains is that interpretations represent
complex, hierarchically defined concepts (ideas,
rules, patterns) rather than simple, independent
concepts (features). Often the concepts used in
interpretations can be placed in a hierarchy where

each concept is defined in terms "of its
subconcepts. This structure of concepts is
called a conceptual hierarchy. A collection oi

data can then be interpreted by the highest concept
in the hierarchy supported (validated) by the data.

The interpretation of the data is defined by the
concept's descendants (subconcepts, subsubconcepts,
etc.) and the data which supports them. These

descendants form a substructure of the conceptual
hierarchy.
The general data interpretation problem can

now be restated as a search for the concept in the
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consistent
method for

environment, i.e.,
interpretations in a

maximal
describe a

hierarchies and
interpretations. We
interpreting data

finding maximal consistent
conceptual hierarchy. Examples illustrating the
method are shown. Finally, we show the actual
application of the method to the problem of
interpreting errorful sentence fragments recognized

then
in such an

by the HEARSAY-Il speech understanding system
(Erman, 1975).
2. A REAL EXAMPLE

The matching problem used as an example

p
throughout this paper is taken from the HEARSAY-II

speech understanding system. When HEARSAY-Il is
unable to completely recognize a spoken
sentence (utterance), it generat'*s a set of

sentence fragments (Hayes-Rotn et ai , 1976c) which

must be interpreted by the semantic- interpretation
module, named SGI ANT. The generated fragments
can be both errorful and mutually

inconsistent (Example 2.1). A sentence fragment is
a chunk of consistent data in that it consists of a
grammatically plausible sequence of recognized
words. HEARSAY-II mechanisms effective in
identifying such chunks are not suited to combinin
them into an overall consistent interpretation o

tlie utterance.
EXAMPLE 2.1

1: <0> [ WHAT HAS HERBERT <75>
2: <18> PAPER ABOUT PATTERN MATCHING ]<177>

3: <29> IN LEARNING OR PATTERN MATCHING J <177>
4: <0> [ WHO <24>
Correct Sentence:

<0>[ WHO HAS WRITTEN ABOUT PATTERN MATCHING ]<17 7>

Example 2.1 shows four sentence fragments

generated when HEARSAY-Il was unable to recognize
the sentence [ WHO HAS WRITTEN ABOUT PATTERN
MATCHING ]. The square brackets denote the start
and finish of the spoken utterance. The numbers
enclosed in angle brackets specify, in
centiseconds, how long after the start of the
utterance each fragment begins and ends. Fragment
4 correctly matches the initial portion of the
spoken sentence. Fragments 1-3 contain
substitution errors. Fragments 1 and 2 are
mutually inconsistent in that they provide
different interpretations of the the overlapping
time period <18:75>. The fragment pairs 1 6 3, 1 &

4. and 2 & 3 are inconsistent for the same reason.

Also, Fragment | specifics a WHAT question whereas
fragment 4 specifies a question. Thus
Fragments 1 and 4 are semantleally inconsistent,
Irregardless of their times. Each " fragment is
semantically described by a hierarchically
structured collection of concepts. Figure 2.1
shows a portion of the conceptual hierarchy used by
the SEMANT module in HEARSAY-Il. Figure 2.2 shows
the hierarchical description of the correct
sentence.

The problem of interpreting these fragments

and

conceptual hierarchy that explains (is supported illustrates the phenomena of data  error
by) the most data. The data supporting the hierarchically-structured interpretations. The
structure underlying this maximal concept can method used for solving this problem appears
be described as the maximal consistent subset of applicable to a significant <class of problems
data. exhibiting these two phenomena.
In this paper we define conceptual
3. CONCEPTUAL HT FERARCHIES
A conceptual hierarchy can be represented by
This work was supported in part by the Defense a directed graph of concepts. This graph is tree-
Advanced Research Projects Agency under structured In that it has a root at the totop and
contract no. F44620-73-00074 and monitored leaf nodes at the bottom; however cycles are
by the Air Force Office of Scientific permitted. The sons of a node define the
Research. In addition, the first author was subconcepts that compose the father, The root
partially supported by a National Research of the graph defines the highest level (most
Council = of Canada Postgraduate Scholarship and general) interpretation of all the concepts
the second author was partially supported by a  beneath it . .
National Science Foundation Graduate Fellowship. A given interpretation task has a set of
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prespecified patterns, modelling possible data-
generating events (e.g., utterances, scenes,
diseases). Each pattern has its own underlying

collapsed into
purposes) by

hierarchy. These hierarchies are
a single hierarchy (for computational

adding a new root concept. The sons of the root
concept are called the primary concepts of the
hierarchy. The primary concepts are the roots
of the original disjoint hierarchies. A

collection of data is interpreted by choosing one

or more primary concepts matched by the data.
Whether a primary concept can be considered to

be matched by the data depends on which (if any) of

its subconcepts have been matched and on the
relationship between the primary concept and its
subconcepts. A concept that requires all. its
subconcepts (sons) to be matched as a necessary
condition for itself to be matched is a
conjunctive concept. The subconcepts are related

to the conjunctive concept by the
PART-OF) relationship. A concept requiring any
non-empty subset of its subconcepts to be matched
is union concept. The subconcepts are related to
the union concept by the optional constituent (1S-
OPTIONAL-PART-OF) relationship. A concept which

constituent (I1S-

requires one of its subconcepts to be matched is
a dis timet iye concept. The subconcepts are

related to the disjunctive concept by the taxonomic
(1S-A) relationship. Other, more complex
relationships can be defined on the subconcepts of
a concept by defining parameterized constraints on

the data supporting trie subconcepts. Figure 2.1
shows part of the conceptual hierarchy used to
describe the types of sentences expected by the

HEARSAY -Il speech understanding system. The
method used to match sentence fragments to concepts
is parameterless but successful nonetheless. This
metnod is described in Section 6.

Based on the above definitions, a maximal
consistent interpretation of the data is defined
as the primary concept and the subtree
underlying it that is matched by a maximal
consistent subset of the data. A maximal
consistent subset contains the greatest amount
of domain information (measured by some
function) that is mutually consistent. If the
subconcepts of a concept are mutually consistent,
it follows that the domain information that
supports (matches) these subconcepts is
mutually consistent, with an important
qualification. This qualification is necessary
because two or more competing (mutually
inconsistent) pieces of domain data may
support the same concept. A consistent
interpretation must choose only one of these
pieces of data to support the concept. Since

there is a choice of which data to
the interpretation, there are
interpretations derivable from the
the subtree. These interpretations can

incorporate in
many possible
data supporting
be ordered

by the function that measures the quantity of
data incorporated in (explained by) an
interpretation. Thus once concept matching has
been carried out, any subtree within the
conceptual hierarchy defines consistent data sets.
Furthermore, the distinction between conjunctive,
union, and disjunctive concepts allows us to
identify which information is missing in a
particular interpretation. Missing information
corresponds to unsupported sons of partially

supported conjunctive concepts.

Data consistency must be defined relative to a

particular application. A set of data is
considered consistent if it satisfies some set of
application-specific constraints. Some of these

constraints can be incorporated in the structure of
the conceptual hierarchy; a given hierarchy
implicitly defines a class of permissible data
combinations. For example, the data configurations
supporting the sons of a node are mutually
consistent if the node is conjunctive but not if it
is disjunctive. Other constraints can be
incorporated in the chunking process which
enerates configurations of data. Data chunks
ncorporate information about data consistency
insofar as the data in a chunk is mutually
consistent, and subconfigurations of the chunk are

consistent with the chunk itself. This information

is incomplete in that it doesn't specify whether

different chunks are mutually consistent. Finally,
Natural
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constraints not incorporated in the
the chunking process must be satisfied

hierarchy or
by special

tests on appropriate properties of the data
supporting a potential interpretation. One such
constraint in the HEARSAY-11 example is temporal
consistency between the various data fragments

supporting the interpretation of an utterance.

Fragments which assign different transcriptions to

the same time interval are mutually inconsistent.
The measure of an interpretation must also be

defined relative to a particular application. The
measuring function should reflect the differing
credibility of alternative interpretations.
Several factors affect this credibility. One of
them is the amount of data satisfactorily explained

by a given interpretation. An interpretation which
accounts tor a large subset of the data may be more
credible than an interpretation which accounts for

only a small subset. Another factor affecting the
credibility of an interpretation is the cogency of
its conceptual structure. For example, an
interpretation with many missing pieces

(unsupported sons of conjunctive nodes) may be less
credible than an interpretation with no missing
pieces. An extensive interpretation (supported by
many concepts) may be more credible than a limited
interpretation (involving very few concepts). A
third factor is the individual credibility of the

data chunks supporting the interpretation. The
number of consistency constraints satisfied by a
chunk increases with its size. It these
constraints are reasonably rigorous, larger chunks
may be more credible than smaller chunks. Thus the
credib11ity of a particular daturn may be sensitive-
to the context (chunk) in which it occurs. The
more accurately these various credibility factors
are represented in the iunction which rates
alternative interpretations, the more often the

maximal consistent

will

(highest-rated)
in fact be correct.

interpretation

1 MATCHTNC AND FNTKHPH FTT MP.

As previously described, the conceptual
hierarchy is a graph whose nodes are concepts.
We allow each node to act as a repository

of information during the matching and

interpretation. Finding the maximal consistent
interpretation is a three part process.

The first phase matches trie concepts against
the data. We assume that the initial part of this
process is performed by some mechanism which
structures the data by identifying chunks, i.e.,
local configurations of mutually consistent data.
In the current example, this mechanism is HKARSAY-
I, and the chunks are sentence fragments. This
match may be full or partial in that conjunctive
concepts may be completely or partially matched.

When a concept is successfully matched, the domain
information matching the concept is stored at the

corresponding node. This information is said to
directly support the concept.

The secoifd phase integrates the chunks by
finding concepts which explain combinations of
chunks. This is accomplished by "notching" each
matched concept and all its ancestors, i.e.,
increasing their credibility scores according to
the amount of data supporting the matched concept.
The notching process assigns a metric of how well
each concept is supported by data. Various metrics
are possible. The metric used in this paper is
defined as follows. The score of a disjunctive
concept is the size of the largest chunk directly
supporting the concept plus the score of the
concept's highest-rated son. The score of a
conjunctive or union concept is the sum of the
sizes of the chunks supporting it directly, plus
the sum of the scores of its sons. The score of an
unsupported concept is zero. Scoring is computed
by a one-pass notching process which propagates
scores bottom-up starting at the leaves or the

hierarchy. The notching process can be viewed as a

flow of support from the data through the
conceptual hierarchy.

The last phase selects a consistent
interpretation by walking top-down though the
hierarchy starting at the root concept, and
incorporating the visited concepts into the
interpretation. The maximally supported subtree
in the hierarchy is found by interrogating the
score of each concept. When the walk encounters a
disjunctive concept, only its highest-scored son
is incorporated in the interpretation and
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subsequently visited, sons of a
disjunctive concept are mutuaxclusive. When a
conjunctive or union concept is encountered, all of
its sons with non zero scores are included in the
interpretation and subsequently visited, since they

since the

are mutually consistent. Unsupported (zero-scored)
sons of conjunctiveve concepts in the interpretation
identify ~ missing data. (More complex
relationships between concepts and their sons
would allow more complex deductions.) The subtree
produced in tlis fashion represents an
i nterpretation supported by a maximal
consistent subset ot the data. This consistent
subset can be read |y Identified since the subtree
points to the data that supports it.

The nature of the
depends on whether the
hierarchy is dis unctive or
disjunctive, only on* of the primary
incorporated in the interpretation. This property
is useful when the purpose of matching |Is to
cllass ify an event according to which single concept

interpretation generated
root of the conceptual
union. 11 the root is
concepts is

best models it. If the root is union, the
interetation Can integrate multiple primary
concepts in order to explain the data. This
capabilityisuseful in domains such as medical
diagnosis where the primary concepts model
different events (diseases) which can occur

s imult aneously.

6.___A DETAILED EXAMPLE

SEMANT s ratitelling domain is composed  of
errorful, sometimes mutually inconsistent sentence
fragments (chunks). A portion of the conceptual
hierarchy is shown In Figure 2.1.

Trie initial process of matching the domain
(fragments) to the concepts, i.e. |nterpret|ng
individual chunks, is done by parsing.
parser called PPARSE (Erman, 1977), taken from
the HEARSAY-11 syntax and semantics module
(Hayes-Roth, Mostow, and Fox, 19//; Hayes-Roth et
al, 19 76a), is used to parse each sentence
fragment. PPARSE generalizes existing parsing
techniques to parse connected subsequences of
sentences generated by the grammar. Such a
sequence may cross the boundaries of the
grammatical nierarchy in that it  may not be
grammatically derivable from any single non-
terminal. PPARSE produces all derivation trees
for each fragment. (An ambiguous fragment has
more than one derivation tree.) The rammar used
by PPARSE is a semantic grammar Hayes-Roth,
Mostow, and Fox, 1977) in which some of the non-
terminals have associated semantic meanings.
These non-terminals, called semantic nodes,

correspond to matched concepts in the hierarchy.
In the present grammar, a semantic node has the
same name as the corresponding concept. Thus the

derivation tree for a sentence fragment points
directly to the concepts it matches.
The matching process can be described as
follows:
1) The data is chunked by HEARSAY-lLI into
possibly overlapping sentence fragments.
2) The process of single-chunk

interpretation determines how each chunk fits

into the conceptual hierarchy:
2a) Eacn fragment is parsed by PPARSE.
2b) For each semantic node in the
parse, the corresponding concept in the
nierarchy is found, and a pointer to the
semantic node is placed at the concept.

Thus one can retrieve the
supporting any given concept.

J) The concept and its ancestors are
notched by the number of words underlying the
semantic node in the parse of the fragment.

The detaiis of the notching metric have

already been discussed (Section 5).

Figure 6.1 shows the parse trees for the
fragments "PAPERS ABOUT  PATTERN MATCHING" and
"ARTIFICIAL INTELLIGENCE". Nonterminals are
distinguished by the "S" prefix. Only the circled
nodes are matched into the conceptual
hierarchy: $TOPIC because it is semantically
meaningful and $SMENTION!TOPICS because it is
the root node of a parse. When the root node of a
derivation tree is not a semantic node, it matches
the concept(s) corresponding to its nearest
semantically meaningful ancestor(s) in the grammar.
In thls example, the nearest such ancestors of the

node AMENTIONI!TOPICS are $QUERY!ITOPIC and
$QUERY'TOPIC'AUTHOR

word sequence(s)

Natural

Figure 6.2 shows the matching of the TOPIC
concept by the STOPIC node. (Note that concept
names are not prefixed by "$"). The score of the
$TOPIC node is 2 because the sub-fragment "PATTERN
MATCHING" underlying it is two words long. This
score contributes to the scores of all the
ancestors of TOPIC in the conceptual hierarchy.

Figu 6.3 shows the matching of
the QUERYLTOP1C and QUERY'TOPIC!IAUTHOR
concepts by the SMENTION!TOPICS node. The score
for this node is 4, since  $MENTIONITOPICS is
supported by the 4-word sequence PAPERS ABOUT
PATTERN  MATCHING. All concepts supported by the
SMENTIONITOPICS node are accordingly notched by 4.
Figure 6.4 shows the matching of the TOPIC concept
by" the STOPIC node supported by the fragment
"ARTIFICIAL  INTELLIGENCE. The TOPIC concept and
all its ancestors are notched by 2. Note that
while the fragment parse trees contain more than
one $TOPIC node, the conceptual hierarchy contains
a single canonical TOPIC node.

The construction of the maximal consistent,
interpretation starts at the root of the
hierarchy. At a disjunctive concept SEMANT chooses
the highest-scored son to be in the interpretation.
In Figure 6.4 the highest-scored primary concept

is REQUEST and is therefore chosen instead of
PRUNE. SEMANT next looks at the sons of the
REQUEST concept, which is also disjunctive. The
QUERY concept is chosen _since it is the highest-

scored son of REQUEST. The highest-scored sons of

QUERY are QUERYITOPIC and QUERY!TOPIC!IAUTHOR
(both are supported by SMENTION1TOPICS). Either
one can be chosen to be part of the
interpretation. When SEMANT readies the TOPIC
concept, it must choose which supporting data to

incorporate in the interpretation. Since SEMANT

has traversed a concept supported by the node
.SMENTION! TOPICS in order to reach the TOPIC
concept, tlie choice of topic arried out
in the context of the SMENTION 1TOPICS Hence
PATI'ERN MATCHING is chosen since it is part of that
conte (i is part of the fragment supporting
SMENTION'TOPICS) Figure depicts a
resultmg interpretation and its corresponding

Note that choosing the concept

uppo (
QUERY'TOPIC'AUTHOR
equally well-supported

instead of QUERY1TOPIC yields an
interpretation.)

Figure 6.6 shows the matching of fragments
generated when HEARSAY ] was unable to
recognize the entence "LET'S RESTRICT OUR

ATTENTION TO PAPERS SINCE NINETEEN SEVENTY FOUR".
The fragments "TO PAPERS SINCE NINETEEN SEVENTY
FOUR" and "LET'S RESTRICT OUR ATTENTION TO" are
mutually consistent while the fragment "DESIGN IN

THE ARTS" is not ~consistent with either of the
other two fragments according to the structure of
the conceptual hierarchy. The ligure shows the
state of the conceptual hierarchy after notching
has taken place. The maximal consistent
interpretation generated is shown in Figure 6.7.
This interpretation is the same as that of the
correct sentence. Thus the inconsistent
information is ignored and the two consistent
fragments are semantically combined to
form a maximal consistent interpretation of

the utterance.
SEMANT can use
discard the incorrect

contextual information to
portion of a partially
correct fragment. This capability is most clearly
Illustrated by a hypothetical problem. Suppose
HEARSAY-Il fails to recognize the utterance DID
REDDY WRITE ANY ARTICLE ABOUT LEARNING" but
generates the fragments "DID REDDY WRITE ANY
ARTICLES ABOUT" and "INTERESTED IN  LEARNING."
Figure 6.8 shows how these fragments are matched
into the conceptual hierarchy. The first fragment
supports AUTHOR and QUERY!AUTHORITOPIC. The second
fragment supports TOPIC and SELECTION. The
enerated interpretation is shown in Figure 6.9.
t incorporates the highest-scored primary concept
REQUEST, in preference to the lower-scored
SELECTION. The incorporated conjunctive concept
QUERYI!ITOPIC!IAUTHOR is supported by both AUTHOR and
TOPIC. Since these two concepts are mutually
consistent, they are both included in the
interpretation, even though they are supported by
different fragments. Consequently the
interpretation Incorporates the correct word
"LEARNING" from the second fragment, but discards
the incorrect sub-fragment "INTERESTED IN," since
the SELECTION concept is not part of the
interpretation.

Language-9: Fox
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Another feature of SEMANT is its ability to context can only decrease the size of this set.

identify which data is missing. Suppose in the Thus one indication that a node may need to be
receding example HEARSAY-II generates the reevaluated in context is a failure to support it
with a data set as large as its score.
ragment" "PUBLISHED IN IJCAI" instead of the These approaches have a common defect: the
fragment "INTERESTED IN LEARNING." Figure 6.10 "maximal consistent interpretations” they generate
shows the matching of the generated fragments. may fail to satisfy certain consistency constraints
This example differs from the preceding example in not represented in the structure of tne conceptual
that the second fragment contains no information hierarchy. For example, a consistent
consistent with the first. The maximal consistent interpretation of a spoken utterance cannot be
interpretation, shown in Flgure 6.11, is supported supported by two conflicting data fragments (word
only by the first fragment It mcorporates the sequences) spanning the same temporal interval of
conjunctive concept QUERY'TOPIC'AUTHOR whose son the utterance. Similarly, a consistent
TOPIC is unsupported. Thus SEMANT can predict interpretation of a scene cannot assign two
that the missing data (unrecognized portion of the conflicting labels to the same region.
utterance) includes data which would support TOPIC. Representation of such constraints In the
Such a semantic prediction could be used to guide conceptual hierarchy appears to require the
further efforts by HEARSAY-Il to recognize the propagation of temporal or spatial information
utterance (Hayes-Roth et al, 19 76b; Hayes-Roth, through the hierarchy and the parameterization of

Mostow, and Fox, 1977). Alternatively, it could be node relations (currently AND, XOR, UNION) to test
used as grounds for asking the user to repeat the such information for consistency.

topic (Hayes-Roth, Gill, and Mostow, 1977). The third approach, currently under
7.COMPLICATIONS development, uses a parameterized conceptual
The problem of finding a maximal consistent hierarchy. After data support is attached to
interpretation of the data is complicated by a appropriate, nodes in the hierarchy, notch tokens
conflict between maximality and consistency. are propagated up from the leaves of the hierarchy.
Maximality is defined in terms of a scoring metric Each token represents a particular set of data
on concept support. A correct metric function will supporting (instantiating) a concept. A token is
score the nodes in such a way that a simple top- Propagated upward from a node by passing copies of
down walk that selects the highest-rated son of It to the node's parents. When tokens are passed
every disjunctive node will in fact generate the to a conjunctive or union node from several of its
maximal ‘consistent interpretation. I[deally, the subconcept  nodes, a new token is formed
scoring process should require a single bottom-up representing the combined data  supporting the
pass which visits each node at most once. concept. If this data is mutually inconsistent, it
Unfortunately, the context-sensitive nature of is split into maximal consistent subsets, each
consistency may preclude the realization of this represented by a new token. ) )
ideal. The incorporation of a chunk of data as ~Such parameterized conceptual ~hierarchies
support for a high-level concept in an provide stronger domain models by incorporating
interpretation creates a commitment to incorporate additional consistency constraints.  However,
subparts of that data chunk as support for lower- experience with such ' parameterized hierarchies
level concepts. This idea is illustrated in Figure shows that they involve 'more computation than do
7.1. The nigh-level disjunctive concept QUERY is unparameterized hierarchies, since the various

supported by the 5-word fragment (chunk) "DO ANY instances (tokens) of each concept (distinguished
ARTICLES MENTION LEARNING " and has score 8. QUERY by their different parameter values) must, be
has two sons: QUERYITOPIC, which is supported by processed (e.g., scored) separately (Hayes-Roth and
the 2-word sub-fragment "MENTION LEARNING " and Mostow, 1975;" Mostow and Hayes-Roth, 1977). Thus

QUERY!ISOURCE, which is supported by the 3-word it may be desirable to develop a hybrid matching
fragment "IN 1JCAT. PROCEEDINGS." "~ Accordingly, scheme that tests as many constraints as possible
QUERYITOPIC has score 2 and QUERYISOURCE has score in a parameterless conceptual hierarchy and only
3. Consider the behavior of a top-down walk which tests residual constraints afterwards. In this
selects the highest-rated son of every disjunctive fourth approach, the parameteriess hierarchy

node. Such an algorithm incorporates ~the fragment functions as a weak model of the domain. The
supporting QUERY “into the interpretation, thereby matching process efficiently filters the data,

morally committing itself to incorporate the generating ~maximal interpretations satisfying all
subfragment supporting QUERY!ITOPIC. The algorithm the constraints embedded in the hierarchy. If “such
then violates its commitment by selecting an interpretation fails to satisfy tne residual
QUERY!SOURCE over the lower-scored QUERYTOPIC and constraints, the matcher _finds the next highest-
consequently generates the inconsistent scored interpretation. This ~ process continues
interpretation shown in Figure 7.2. The correct Until an interpretation satisfying all constraints
maximal consistent interpretation, shown in Figure (S found. This Is the desired maximal consistent
7.3, is constructed by fulfilling this commitment. interpretation.

What exactly Is the problem here? The
inclusion of a chunk of data as support for a fit DISCUSSION
concept in an interpretation creates a commitment Several points about the presented method
to include concepts supported by subchunks of that should be emphasized.
data. In short, the selection of support for a .
concept is context-sensitive, since it depends on 8.1 Importance of Chunking
the data chosen to support the concept's ancestors Chunking contributes to the success of our
in the conceptual hierarchy. However, the scores method in several ways. The chunking process
assigned by a one-pass bottom-up notching algorithm identifies semanticaily meaningful configurations
are context-free. Consequently they do not always of data, i.e., configurations ~corresponding_ to
select the correct (maximal consistent) (substructures of) known concepts. This
interpretation. as the preceding example structuring of the data is essential to the
illustrates. We see several possible approaches to construction of a _coherent interpretation.
solving this problem. Chunking provides information  about data

first approach compensates for consistency insofar as the data in a chunk is

def|C|enC|es of the context-free scoring function mutually consistent. This information is
by introducing some search in the top-down Incorporated in the process of constructing an
selection of an interpretation. If incorporating Interpretation. Chunking also provides information
the highest-scored son of a disjunctive node leads about the contextual credibility of data insofar_ as
to an Inconsistent interpretation, the next-highest the data in a chunk is mutually confirmatory. This
node can be tried. information, represented by varying chunk size, is

The second approach uses a context-sensitive incorporated in the scoring metric and helps
scoring scheme so tnat a non-backtracking top-down discriminate between alternative interpretations.
walk will work correctly. One way to do this is to .
notch concepts using a bottom-up process, but under tL2—Importance of Hierarchy
certain circumstances to reevaluate descendants of Another important aspect of the method is its
a concept in the context of its supporting data. use of hierarchical structure to embed constraints
Note that the context-free score of a concept is an on data consistency. Mutual exclusion. mutual
upper bound on the size of the largest consistent necessity, and mutual consistency of suDconcepts
set  of data supporting that  concept. The are modelled respectively by disjunctive,
application of additional constraints such as conjunctive, and union nodes. Any subgraph of the
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hierarchy in which no disjunctive node lias more
than one son constitut.es a consistent (possibly
incomplete) conceptual structure. The data

supporting such a structure consequently satisfies
many constraints on data consistency.

The hierarchical structure also permits the
identification of missing data. Mutual necessity
of concept constituents is represented by
conjunctive nodes. Unsupported sons of conjunctive
concepts incorporated in an interpretation
therefore represent missing constituents.

The parameterless nature of
hierarchy precludes the embedding of certain types
of constraints. In the speech understanding
example, since temporal information is not
propagated through the hierarchy, temporal
constraints such as adjacency, ordering, and non-
overlap are not represented jn the hierarchy. In
the vision domain, since location information is
not propagated through the hierarchy, spatial
constraints such as allignment, adjacency,
proximity, ordering, and non-overlap are not
represented. This reduction of constraint allows
semantically consistent chunks to be incorporated
in an interpretation even if they don't conform to
a stronger (more constrained) model of the domain.

the conceptual

This aspect of the representation permits increased
flexibility in the matching process, in that the
constraints on the integration ot multiple chunks
into an interpretation are weaker than the
constraints on the local integration of data into
individual chunks. Furthermore, the simplicity of

the representation should make the matching process

faster than methods which represent consistency
constraints as tests on propagated parametric
information. The disadvantage of the simpler
representation is its greater potential for

constructing inconsistent

ft.i.4. rower oj Lht; Method

interpretations.

The presented method interprets sets oi
hierarchically structured, possibly mutually
inconsistent chunks of data. Although it exploits

information incorporated in the chunk structure,
the method is not restricted to accepting or

rejecting chunks in an all-or-none fashion; the
method can discard part of a chunk in order to
construct a consistent interpretation which
incorporates the remainder of the chunk. The
constructed interpretation corresponds to a highly
partial-matched substructure of the conceptual
hierarchy. Unsupported constituents of the

substructure identify missing data.
6-Ja__Applications oJLliie Current Implementation

SEI was originally developed to interpret
and sentence fra recognized by
HEARSAY-1l (Hayes-Roth et a1,1976b). In addition
to this task, SEMANT has been applied to the
interpretation of ungrammatical sentences. A
sentence is chunked into its maximal grammatical
subsequences, which are input to SEMANT as
fragments. SEMANT then integrates the fragments
into an interpretation of the sentence. This
method has been used to correctly interpret
sentences containing errors of insertion, deletion,
substitution, repetition, and re-ordering.

9, CONCLUSIONS

We have designed and
for identifying and
consistent subsets of

sentences ments

implemented a method
interpreting maximal
data in hierarchically
modelled domains characterized by data error and
inconsistency. The implementation has correctly
Interpreted spoken sentence fragments recognized by
the HEARSAY-Il speech understanding system. It has
also been used successfully to interpret typed-in
ungraminatical sentences.

The method appears applicable to
(e.g., speech understanding, natural
understanding, scene analysis, medical analysis)
requiring matching of error!lul data against
complex, hierarchically describable structures.
When missing data or tne inherent nature of the
task causes the structures to be
incompletely instantiated, partial-matching ot
these structures provides consistent, meaningful
interpretations of the data.

The continuing progress of Al
problems will be

by intelligent

many tasks
language

beyond toy

Natural

programs performing real-world tasks. Such
programs will have to handle uncertain,
inconsistent data corresponding only approxinuitely
to known concepts. The problem of identifying
consistent subsets of data and integrating "them
into a hierarchically organized conceptual
knowledge base can accordingly be expected to
assume Increasing importance.

Erma L.U., 19/5, Overview oi the HEARSAY

Speech Understanding Research. Computer
Science Research Review (19 74-1975), Computer
Science Department, Carnegie-Mellon
University. Pittsburgh, PA.
n, L.I),, 1977. A Functional Description of
th«! HEARSAY-II Speech Understanding System,
Proc. 1977 IEEE Inter. Conf. on Acoustics,
Speech and Signal Processing (to appear).

Have s-Roth K.¢ I/.D.Erman, M.S. Fox, and D.J.
Mostow, i9 76a, Syntactic processing in
HEARSAY-II, Speech Understanding Systems:
Summary of Results of the Five-Year Research
Effort, Departme nt of Computer
Science, Carnegie-Mellon University,
Pittsburgh.

Haye s-PvOth F., M.S. Fox, C. Gill, and 1).J. Mos tow,
19 76b, Semantics and pragmatics in the
HEAKSAY-1I speech understanding system.
Speech Understanding Systems: Summary ot
Results of the Five-Year Research Effort,
Departme nt of Computer Science,
Carnegie-Mellon University, Pittsburgh.

Have s-Roth" F., V. Lesser, D.J. Mostow, and L.D.
Erman, 19 76¢, Policies for rating
hypotheses, halting, and selecting a
solution in the HEARSAY-II speech
understanding system, " Speech Understanding
Systems: Summary of Results of the Five-
Year Research Effort, Department of
Computer Science, Carnegie-Mellon University,
Pittsburgh.

Haye s-Roth F., and D.J. Mostow, 1975, An

automatically compilable
for structured patterns.
Fourth International Joint Conference on
Artificial Intelligence. Cambridge: MIT.
Haye s-Roth F., G. Gill, and D.J. Mostow, 1976,
"Discourse analysis & task performance in
the HEARSAY-II speech understanding system,
" Speech Understanding Systems: Summary of
Results of the Five-Year Research Effort,

recognition network
Proceedings of the

Department. of Computer Science, Carnegie-
Mellon University, Pittsburgh.

Hay< s-Roth K., D.J. Mostow, and M.S. Fox, 1977,
Understanding Speech in the HEARSAY-Il System,

To appear: Natural Language Communication With
Computers, L. Bole (Ed.), Berlin: Springer-
Verlag.

Mos tow D.J., and F. Hayes-Roth, 1977, A duction
Waterman and F. Hayes-Roth (Eds.), Pattern
Directed Inference Systems. New York:

LanAua®e *9:
169

Academic Press, (in press).
ST
Ouo ity
QAL RG]
N

TG

[WHD I w1 e,

—- -
I Y B TR .‘:,\nm:]‘l':‘(

LI

Fox



M LI RER T

REfLLATETRE OF IR
e L er i

et
e
H He g £

[
[N
JPR—

i ARTIFICIAL TNTELUGENCEl

/ \\

T r;,\-__:n: .

| i
| PRPERS ALDUT PATTERY MRTOHING

—ypr gzge
TICUI g3

-,

P T

A3CUT FAT

r rrarzmmrns g
B e ] .
L

LMETCHENG

| e b
1r O | papERS AnOUT PATTIRN MATCHIG [ antIFicIaL mrewLieonet
s . § 1GURE 8.4
L= 4] ! ———
h ARTIFICTAL INTELLIGTNCE ) :
, AETR [
FICUREZ.L

M -
‘ -
Lt oL Ll T g . i
———h e .
[
st

| prPERS ABOLT PATTLRN MATEIING
FIGURE 8.5

e,
i P .
- ot
LT HL L - ’I Qoir LD
=1, o wnc?l- , L]
Tt H . I
r ’ H
! PAPEARS AB0OUT PATTLRN MATCHING [ ARTIFICIAL INTELLIGENCE! -~ n—w‘«’ :
! "l-“' i |a.urmnut|

FIGURE .2 £O ANY ARTICLES MENTION LLARNIYE IN 1JCA! PROCEED:: ‘cg

Hatural Languare-9: Fox
170



(e

Elount 6.6

P Thean
i RRTTV

FEL
- v

- 4
T ATERE

INTERESTED IN LEAlies

JUSD;FE?.DJ WRITE ARY ARTICLES aB;\[
g

FIGURE <9

[TETN-) |

L1} ‘T’
pRT—

RS -
TQ PAPERC, LUITE P FLLL SLYeRTY PO : LET™S ML%THILT oUW ATTENTION Ty

FIGURE .7

2

| PLLLISUCD IV LInAl

FICLFREé.I.D

—_—
| e [ e I'J “
e — - \
.
.
"
\
.
.
v
[y
.
.
\
"
el .
o - Trr e, +
[ Lo NI *
Pt LT s e

] oin ECDq WRITE ANY ARTICLES AEOUL

FIGLRE 6B

i ETYTENTE

PUBLISHMED 1M LJCAL

H

. H
L r
i !

[LAEL Y]
I 1N LICAl PROC EEBI:\’:Q

2
| DO ANY ARTICLED MENTION LEARNING

%
s

r
| o0 aMr ARTICLES

IN LJCAD PROCEEOINGS

Matural Lanpuare-9: Fox

171



