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The goal of the KRL research group is to develop a knowledge 
representation language with which to bui ld sophisticated 
systems and theories of language understanding. This is a 
d i f f i cu l t goal to reach, one that wi l l require a number of 
years. We are using an iterative strategy with repeated cycles 
of design, implementation and testing. An in i t ia l design is 
described in an overview of KRI (Bobrow & Winograd, 
1977). The system created in the f i rst cycle is called KRL-o, 
and this paper describes its implementation, an analysis of 
what was learned f rom our experiments in using KRL-o, and a 
brief summary of plans for the second iteration of the cycle 
(the KRi.-i system). In wr i t ing this paper, we have 
emphasized our d i f f icul t ies and disappointments more than 
our successes, because the major lessons learned f rom the 
iterative cycle were in the form of problems. We mention 
only br ief ly in the summary of experiments those features of 
Krelo that we found most satisfactory and useful. 

In order to put our experiments in some perspective, we 
summarize here the major intuit ions we were testing in the 
design of KRL-O: 

1. Knowledge should be organized around conceptual 
entities with associated descriptions and procedures. 

2. A description must be able to represent partial 
knowledge about an entity and accommodate mult ip le 
descriptors which can describe the associated entity 
f rom di f ferent viewpoints. 

3. An important method of description is comparison 
with a known entity, with further specification of the 
described instance with respect to the prototype. 

4. Reasoning is dominated by a process of recognition in 
which new objects and events are compared to stored 
sets of expected prototypes, and in which specialized 
reasoning strategies are keyed to these prototypes. 

5. Intelligent programs wi l l require mult iple active 
processes with explicit user-provided scheduling and 
resource allocation heuristics. 

6. Informat ion should be clustered to reflect use in 
processes whose results arc affected by resource 
l imi tat ion and differences in in format ion accessibility. 

7. A knowledge representation language must provide a 
f lexible set of underlying tools, talher than embody 
specific commitments about cither processing stiatogies 
or the representation of specific areas of knowledge. 

Some of these intui t ions were explored in GUS (Bobrow, et al, 
1977), a dialog system for making air l ine reservations. GUS 
used ideas of procedural attachment (Winograd, 1975), and 

context dependent description (Bobrow & Norman, 1975). 
Experience with GUS led to some changes to our ideas for 
KRL-o, although GUS and KRL-O were basically concurrent 
projects; we started programming GUS just prior to intensive 
design on KRl-o. The GUS system was pr imar i ly an attempt to 
explore the integration of already existing programming 
technology for a performance demonstration, while KRL-o was 
a f i rst attempt at out l in ing a new basis for representation. 

I. Building the KRL-O System 

KRI -o was implemented in JNTERI.ISP (Teitelman, 1975), along 
the lines described in Bobrow and Winograd (1977). The 
design was specified mostly during the summer of 1975. The 
ini t ia l KRl-o implementation was programmed pr imar i ly by 
Bobrow, Levy, Thompson, and Winograd dur ing December 
and January, with parts of the development being done by the 
rest of the KRL group. It included basic structure 
manipulating facil it ies, a reader and printer for KRL 
structures, a simple agenda manager and scheduler, a 
procedure directory mechanism, and a matcher which handled 
only the most elementary cases. Many more pieces were bui l t 
into this system by people working on the test projects over 
the fo l lowing (» months. The system was first implemented 
on the M A X C computer at Xerox PARC and later transferred 
to the SUMI.-X PDP-10, (where one of the projects was done 
as an A I M Pilot project), and to the IMSSS PDP-10 at 
Stanford. When the test projects were complete, the system 
was retired f rom active duly. 

As an experimental system, there was no commitment to 
continue support after the ini t ia l purposes were satisfied. 
Despite its avowed experimental natuie, however, bui ld ing 
KRL-o was a major system programming effort ; programming 
any "new Al language" for users is larger task than just try ing 
out the new ideas. Having the many facil i t ies of INILRITSP to 
build on eased our programming burden, but a number of 
new facil it ies were built for the project: 

► Ron Kaplan developed a set of uti l i t ies, including special 
data structure manipulation and formatted pr int ing 
routines, as a base for much of the implementation. 
The entire ut i l i ty package (called USYS) was interfaced 
so smoothly that the user could think of it as simply an 
extended lNTLERSP This package wi l l be used in the 
development of KRL-1. 

► An on- l ine cross-reference and documentation system 
(called the N.Utls system) was used to coordinate the 
efforts of the people doing interactive debugging of a 
shaicd set of programs. The faci l i ty was designed and 
built by Ron Kaplan and Mart in Kay. It 
communicated with the editor and f i le package 
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facilities' in INTERLSEP so that the. r rogiammcr was 
prompted for a comment whenever programs or n r o i J 
declarations were created or edited. The in format ion 
available to the system (e.g. procedure name, variable 
names, etc.) was combined with user supplied comments 
in a standardized data base which could be interrogated 
on line. The programmer was automatically warned of 
potential naming confl icts with anything anywhere else 
in the system. It also provided facil i t ies for entering 
comments associated wi th global variable names and 
f i le names. The f i le of names grew to contain over 
1000 entries during the course of implementing KRL-o. 
l o r the K R L - 1 implementation we are extending the 
interface to work with Masterscope. the INTLRITSP 
cross-reference and program analysis package writ ten 
by Larry Masinter. 

► A simulated match interface was built by Paul Mar t in , 
which enabled the programmer to intercept calls to the 
matcher and gather data on what kinds of problems 
came up before programming the necessary extensions. 
The user returned an answer for the match, and on 
future identical matches the same answer was used. 

► A tracing faci l i ty for the matcher was implemented by 
Jonathan King, to facil i tate debugging of programs 
which were organized around matching 

As problems came up in using KRL-o, they were handled in 
several ways. Those which seemed general and could be 
handled wi th in the existing framework were set up as tasks 
tor the KRL-o programming effort . Usually design discussions 
were shared by everyone, and the implementation clone by the 
person whose program faced the problem. 'Those problems 
which were either too specialized or obviously beyond the 
scope of our current design were programmed around by the 
problem-f inder. Most of these cases led to changes in the 
KKI-1 design to accomodate solutions more naturally. 
Because ;<RL-() was embedded in INTERSP, "patching" was 
usually straightforward in that it was the same as what would 
have been involved in trying to write the program in a bare 
INTERIEP in the first place. Of course, sometimes these 
"patches" interacted with other parts of the Kin. code in 
unpredieted and confusing ways. "I hose problems for which 
there was no acceptable way to escape were chalked up It) 
experience, and the goals of the program reduced accordingly. 
Usually this was in cases where there had been an unresolved 
question as to how much.Ii the program should be expected to 
handle. Issues raised by these problems were a major dr iv ing 
force in t he KRL-1 design. 

A very re ugh draft of a manual was distr ibuted, but became 
rapidly obsolete as the system evolved. It was highly 
incomplete ( for example, the section on the matcher consisted 
of a single paragraph describing why the section was going to 
be d i f f i cu l t to write). It was never completed or re-edited, 
and those doing the programming had to rely on discussion 
with the implemented and on the source code of the 
interpreter for up to date in format ion. It worked reasonably 
well, wi th some frustrat ion, but not enough so that anyone 
ever felt moved to volunteer the time to do the wr i t ing 
needed to produce a real manual and keep it current. We 
were somewhere around the upper bound of the size of 
project (number of people, amount of programming) where so 
informal an approach was feasible. 

2. Experiments using KRL-o 

KRL-O notation and programs were tested in nine di f ferent 
small projects. Each of these projects was intended to test 

some aspect of the KKL-0 language or system. They took f rom 
3 to 15 person-weeks of ef for t each. In most cases, the goal 
was to produce an actual running program which could 
handle enough examples to convince us that it d id what the 
original program was intended to. In no case was an ef for t 
made to do the kind of f inal debugging and polishing which 
would make the program robust or usable by anyone but the 
original author. We wi l l describe three of these in detail: a 
cryptarithemetic problem solver; a story analysis program; and 
a medical diagnosis system. We list below the other projects 
that were done to give a flavor of the range of projects tried: 

► L L G A L -- done by Jonathan King -- an 
implementation of a port ion of a legal reasoning 
system sketched by Jeffery Meldman (1975) in his 
doctoral dissertation. This program forced 
consideration of matching in which both patterns and 
data could specify bindings that were needed. 

► ARCH IS -- done by Paul Mart in -- a concept learning 
progam based on Patrick Winston's (1975) program for 
recognizing visual scenes. Matching sets of 
descriptions, and the use of instances as patterns were 
the interesting parts of this project 

► COIL -- done by Wendy l.ehnert -•- a new program for 
drawing inferences about objects, based on methods 
related to those of conceptual dependency. This 
program used the contingent description mechanism to 
select knowledge to be used in a particular context, and 
the agenda lo interweave syntactic and semantic 
processing, of input English. 

► FLOW -- done by Dan E'obrow and Don Norman -- a 
program sketch whieh .simulated a person's access to 
long term memory while using, a recently learned 
simple computer language. The indexing mechanism of 
K K L was used lo simulate propel lies of human 
associative retrieval (including, errois of various kinds). 

► PIIYSIOI.OCJY — done by Buan Smith — a program 
sketch which explored the problems of using KRl o for 
a system which could reason about physiological 
processes. This project forced consideration of the gaps 
in KRL-O wi th respect to specifying temporal and 
causal structures, and the need for stronger structuring 
to factor in format ion in units by viewpoints, e.g., 
in format ion about the heart as viewed as a mechanism, 
versus in format ion when viewing it f rom an anatomical 
perspective. 

► KINSHIP -- done by Henry Thompson — a theoretical 
paper, using the KRL-O notation as a basis for 
comparing kinship terms in English and Sherpa. The 
attempt to communicate results of encoding to 
non-computer scientists led to a s impl i f ied notation 
which has contributed to the syntax for KRL-l. 

Cryptarithmctic 

The in i t ia l test program was a simple cryptari thmctic problem 
solver (see Newell and Simon, 1972 for a description of the 
domain) written by Terry Winograd and debugged and 
extended by Paul Mart in . It exercised the basic data 
structures, agenda, and triggering facil i t ies, and was 
successfully tested on several problems ( including D O N A L D 
♦ G E R A L D = ROBERT with D=5). No attempt was made to 
provide complete coverage of the class of problems handled 
by humans. Interesting aspects of the design included: 

► Use of triggers to combine goal directed and data 
directed processing 
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► Use of "patterns" to suggest strategics 

► Use of levels on the agenda to control ordering of 
strategics 

► Use of mult iple descriptors to accumulate in format ion 
about the value of a letter 

► Use of contingencies to handle hypothetical assignments 

► Use of the signal table to control work wi th in 
hypothetical worlds 

Much of the processing was associated with procedures 
attached to the units for Column (a vertical column in the 
addit ion problem) and Letter. The Unit for Column is given 
below. It gives some idea of the use* of procedural attachment 
to propagate in format ion, search for patterns sm h as a 
column with Two Blanks and trigger arithmetic p iocss ing 
(using the i.isi* funct ion ProeessColuajn). 

(DoWhenknown (topLetter) Column 
(ClryToFuthers Specify UNIT 

'(TwoBlanks OneBlank TwinAddend) 
'Addcnd'l'ype]> 

<suml,cttcr (:i Letter) 
(triggers (When Known 

(DoWhenKown (topl.ettcr hotomLettcr) Column 
((.Check SumEqual Addend UNIT]> 

<lopnicif (;t Digit) 
(triggers (VVhenknown (Assign 'topletter (Process Column)))> 

OmtinmDigit (;i Digit) 
triggers (Whenknown (Assign ,ho!toml.etter)(Process('aluiiin)))> 

<sumldigit (a Digit) 
(triggers (Whenknown (Assign ,suml,etter)(l>roeessColunin)))> 

<sum { (can Integer) 
(which IsStiinOf 

(Alllteitis (Ilie Ciirryln) (the |npDigil)(llie holtoniDigit)))} 
(triggers (Whenknown (Process Column)))> 

<c;iiryln { (an Integer) 
(XOR 0 I) 
(the carry Out from Coluuman(the righlNeigh)mr))(; CARRYOUT)} 

(triggers (Whenknown ((GoFill '( ARRN <-)UI )(l»rocess( Coluum)))> 
<carryout it { (;in Integer) 

(XOR 0 I) 
(The carryin from Column (the IrftNclghhor)) (; CARRYIN)} 

(triggers (WhenKnown (GoFill ( ARRYIN) (I'nnessi oliimn)))> | 

There was a set of recognized patterns for columns ( for 
example, a column with the sum letter identical to one of the 
addends) and a set of pattern driven strategies was associated 
with each. Each strategy was a I I'.c procedure which used the 
KRl-o structures only as a data base. Some of the strategies 
caused values to he computed. Whenever a new value was 
f i l led into a column, triggers caused data driven strategies to 
be suggested, such as trying to bound the possible value of 
other letters based on this informat ion. Constraints on values 
were added in the form of new descriptions for the value of 
the letter, for example specifying that the value must be an 
even or odd integer, Laeh such description was added to the 
existing description of the value of that letter, so that at any 
point in the compulat ion, some letters had a value described 
as a specific digit , while others had complex desciptions, such 
as "Greater than 3 and odd". Each time a new description 
was added, a trigger in the unit for Letter caused a procedure 
to be run which matched each still-unassigned digi t against 

the accumulated description, and if only one matched, it was 
assigned. 

When new strategies were suggested by a new value being 
t i l led in, or by the match of one of the patterns describing 
columns, all of the triggered strategies were put onlo the 
agenda. They were assigned pr ior i ty levels on the basis of a 
f ixed scheme: Level I was immediate propagation of 
in format ion (e.g. if the value of a letter is determined, then 
that value gets entered into all of the places where the letter 
appears). Level 2 was for straightforward arithmetic 
computations. Level 3 for the strategy being worked on 
currently, Level 4 for other simple strategies, Level 5 for 
more complex and less likely strategies. Level 6 for last-ditch 
strategies (brute force trial and error) and Level 7 contained a 
single entry which caused the problem to be abandoned. 

This rather ad hoc use of agenda levels achieved a number of 
goals. The use of Level 1 fo i simple propagation served as a 
kind of data locking scheme to maintain consistency. As long 
as there were more results to be propagated, no other part of 
the program would run. This meant, for example, that if 
some letter were assigned to a digit, no other letter could be 
assigned to the same digit before the result had been properly 
recorded. The use of a separate level for the current strategy 
allowed it to trigger sub-strategies without getting put aside 
for work on a different strategy. Ibis meant that each 
strategy could run to completion. The use of levels to 
distinguish how promising di f ferent strategies were allowed 
the system to focus its effort on whatever were the most 
l ikely things at the moment. Placing last-ditch strategies on 
lower levels when they were thought of made it easy for the 
program to fal l back on them -- they automatically ran if 
nothing at any higher pr ior i ty was scheduled. This provided a 
weak global structuring in what was inherently a data-driven 
process. 

The mechanisms for mult iple worlds and contingent 
descriptors made it possible to deal with hypothesized values 
while using the normal mechanisms. When all but two 
possible values had been eliminated for some letter, and no 
other strategies were pending, the program chose one of them, 
and created a hypothetical world, in which the letter had that 
value. Describing the letter as having that value 
hypothetically caused all of the same triggering as would 
nonconling.enl assignment of the value, leading to propagation 
of new informat ion, computations, strategies, etc. However, 
by modify ing the signal table, all derived in format ion was 
asserted as contingent on that hypothetical world. This 
special signal table also affected the processing in two other 
ways: hirst, only simple strategies were allowed to be placed 
on the agenda. Second, it a contradiction occurred, the 
hypothesis was rejected instead of the problem being declared 
impossible. If a hypothec;, was rejected, the contingent 
descriptors were not removed, but would not be accessed by 
programs looking for descriptions in other hypothetical 
worlds, or in the world of actually inferred facts. 

Sam 

David levy implemented and tested a program which 
reproduced the simple text analysis and questioning aspects of 
the SAM program (Schank ct. al, 1975) which uses scripts in 
analyzing short "stories" containing stylized sequences of 
events. It used Ron Kaplan's GSP parser( Kaplan. 1973), and a 
grammar written by Henry Thompson for the in i t ia l input of 
the stories. It processed two stories (Schank, p. 12), 
summarized them and answered a number of simple 
questions. It was a fu l l fledged language-processor in that it 
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took its input in English and generated English output. 
Questions were entered in an internal representation. Its 
main features were: 

► Interfacing an existing parser (Kaplan's GSP) wi th a 
KRt,-o program which used the results of the parsing for 
further analysis 

► Using slots to represent the basic elements (both events 
and participants) of scripts, and perspectives to 
represent instances of the scripts. 

► Using the notion of "focus lists" as the basis for 
determining def ini te reference, including reference to 
objects not explicit ly mentioned in the input text. It 
used the index mechanism to speed up search through 
the focus lists. 

► Using the matcher in a complex way to compare story 
events to prototypical script events, with side effects 
such as i den t i f y i ng objects for future reference 

► Using units describing lexical items and English 
grammatical structures as the basis for analysis and 
generation, using signals and procedural attachment 

SAM's basic processing loop consisted of parsing, construction 
of conceptual entities followed by script lookup: 

Parsing A sentence f rom the story was fed to GSP, which 
produced as output a surface syntactic parse ident i fy ing 
clauses, noun phrases, etc. as a KRt declarative structure. For 
example, for the sentence "John went to a restaurant" GSP 
produced the fo l lowing rather shallow syntactic structure: 

(;» Declare with clause * 
(a Clause with 

surfaccl'orm = ".lohn went to a restaurant" 
verb = (A) 
subject = (a NounPhrase with 

' heed - JO/ IN) 
prcpPI = (a PrcpositionalPhr ase with 

preposition - TO 
object = (a NoiinlMirasc with 

head - RESTAUANTiK terminer - A)))) 

Construction of conceptual entities. The next step was to map 
this syntactic object into a set of conceptual objects wi th the 
help of declarative and procedural in format ion stored in the 
prototypical syntactic units (Clause, NounPhrase, etc.) and in 
the lexical units. For example, the Clause unit specified that 
the f i l ler of the verb slot would guide the mapping process 
for the entire clause, and the lexical representation of each 
verb included a case frame mapping f rom syntactic to 
conceptual structures. Fol lowing is a partial description of 
SAM's representation of the verb "go": 

[(GO UNIT Individual 
<self {(a Verb with 

root = "Go" 
past * "went") 

(which IsAConslitucntOf 
(a Clause with 

referent = 
(a Go with 

goer = (the referent from Nounlphrase 
(T(he subject from (lause (a Clause))) 

source = (the referent from NounPhrase 
(the object fror.i PreppositionalPhrrtse 

(a PrcposilionalPhrase with 
prepositioa = I ROM))) 

destination = (the referent from NounPhrase 
(the object from PrcposilionalPhrase 

(a PrepositionalPbrase wits 
preposition - TO)) ) ) ) ) }> ] 

As a description was created for each conceptual object (e.g. 
as it was determined that the appropriate Idler fo r the goer 
slot in the above example was (a Person with name = "Jolm")) , 
this description was matched against a list of units in a focus 
list which contained the conceptual objects thus far created. 
It the description matched one of these objects, the slot was 
f i l led with a pointer to this object, and this object was moved 
to the front of the focus list. In order Lo make the search 
through the focus list faster, I he index facl i l ty was ased to 
f ind good potential matches f rom the list. If the description 
matched no object, a new object (a KRI unit) was created, the 
description was attached to it, and this objt.et was pushed onto 
the front of the focus list. In this way referents were 
established and maintained. 

This scheme handled pronominal as well as def ini te 
reference, f r o m the word "she", for example, the conceptual 
description (a l-eiualei't'isoa) was constructed, a description 
which would match the last mentioned reference ( i f any) to a 
female person (e.g. "the waitress"). 

Script lookup. Next the program tried to identify the 
conceptual event just created as a step in an active script. It 
d id this by stepping through the script f rom the last event 
ident i f ied, and matching the description of this prototypical 
event to the event just created f rom the input sentence. This 
process exercised the KRt matcher rather heavily. Once the 
step in the script (represented as a slot) was ident i f ied, this 
slot was f i l led with the new conceptual event. In addi t ion, 
any previous steps not explicit ly f i l led by story inputs were 
then f i l led by creating conceptual events f rom the 
prototypical descriptions contained in the script. These 
events too were added to the focus list. The program also 
dealt wi th what-ifs or predictable error condit ions, but these 
wi l l not be discussed here. 

The result of this iterative process was therefore the 
construction of a representation for the story consisting of : 

► a set of syntactic units representing the surface syntactic 
form of the input sentences 

► a set of conceptual units representing story objects: 
people, events ( including inferred events), physical 
objects 
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Having analyzed a story, SAM could then summarize, 
paraphrase, and answer questions. 

The di f ferent stages of processing in the analysis of inputs 
were controlled through the use of special signal tables, 
these tables provided special responses to the addit ion of 
descriplions to units. For example, the search for a referent 
was keyed by a signal set o f f by the addit ion of a perspective 
of type Noun Phrase. The generation process used a di f ferent 
set of signal tables to direct the inverse process of bui lding a 
surface syntactic construction f rom a conceptual object. SAM 
was an interesting exercise in system construe!ion, useful 
mainly as a tool for understanding problems in representation 
and debugging KRI-o. When f inished, it d id not, and was not 
intended to, rival the power of the Yale group's original 
program. 

Medical 

Mi tch Model implemented and tested a progiam for medical 
diagnosis based on a model for diagnosis which had not been 
dnectly implemented before (Rubin, 197.')). In wri t ing the 
program, it was necessary to f i l l in a number of details, and 
correct some minor inconsistencies in the or iginal . The 
program successfully duplicated, wi th some minor exceptions, 
the performance described for Rubin's hypothesized system. 
Part of the reason for the exceptions was incomplete 
specifications in Rubin's thesis, but there was also a major 
problem in that the implementation LISP code and data base 
completely f i l led the storage available in the KRL system. 
(This program, S A M , and con were the most extensive tests, 
and all ran into space problems discussed below). Some of 
the major features of the implementation were: 

► The use of the abstraction hierarchy to represent the set 
of disease types and f ind ing types, with in format ion 
and procedures attached at dif ferent levels of 
generality. 

► The use of KRL-o triggers to implement the conceptual 
" tr iggering" of potential diagnoses on the basis of 
having relevant symptoms described 

► The use of signals to provide run- t ime moni tor ing of 
what the system was doing as it generated new 
hypotheses and evaluated them 

► A direct encoding of the declarative "slices" of Rubin's 
version in to the declarative forms of KRL-O. This 
included extensive use of the "Using" descriptor (a 
declarative condit ional) to expl ici t ly represent the 
decision trees in the units fo r diagnosing di f ferent 
condit ions 

There were four major kinds of representational objects in the 
system. 

► "Elementary hypotheses" which corresponded to the 
"slices" of Rubin's thesis; these were named after the 
disease [c.g Glomerulitis or Renal Infarction] the data 
structure was intended to represent. Elementary 
hypotheses had descriptions in slots to indicate such 
things as l ikely symptoms, l inks to other elementary 
hypotheses that might be related, and how to evaluate 
how well the patients symptoms would be accounted for 
by a diagnosis of this disease. 

► "Elementary hypothesis instances" were data structures 
created fo r each diagnosis the system decided might 
account fo r the presented symptoms; these contained 
pointers to the findings that suggested the diagnosis, 
and a pointer to the elementary hypothesis representing 

the disease of the diagnosis. It also contained values 
for how well the diagnosis accounted for the s>mploms f 

obtained by applying the evaluation in format ion 
represented in the elemental') hypothesis to the specific 
details of the elementary hypothesis instance. 

► "Findings" were units for specific symptoms, facts, 
hisloiical i nhumat ion , phvstcal examination data, or 
lab data (e.g.. /■'ever, Hcnutinriii, or liinpsy)\ a f ind ing 
was mostly a hook on which to hang pioccdura) 
in format ion about what to do when the patient 
exhibited soinel.hin» abnormal with respect to the 
particular kind of f i nd ing . 

► Finding instances were the input to the system, having 
a structure similar to that Rubin suggested in her thesis, 
having slots for such things as f ind ing , durat ion, 
severity, and normali ty. There were also fur ther 
specified f ind ing instances such as symptom instance. 

The system worked essentially as fol lows. A unit might be 
described by: 

(a Symplomlnstance with 
main(Concept = Hematuria 
presence = "present" 
severity = "yross" 
time - (a TitmToint with 

direction z "past" 
magnitude = (a Quantity with 

unit - "days" 
number = 3))) 

A WhenKnown trigger on the presence slot of the 
Symptom Instance prototype would be set o f f ; examination of 
the specific description caused this entity to be described also 
as: (ii Symptoinhistancc with normality = "abnormal") Further 
triggers and traps might result in the creation of new 
elementary hypothesis instances, according to the in format ion 
found in the description. After all the in format ion 
propagation activity, each of the currently active elementary 
hypothesis instances would be evaluated based on in format ion 
found in the corresponding elementary hypotheses. Based on 
the evaluation, the status of the elementary hypothesis 
instances might be changed to reflect possible dispositions of 
the hypothesis such as acceptance, rejection, or alteration. 

The indexing faci l i ty was used to facil itate operations such as 
obtaining a list of all the hypotheses activated by a f i nd ing . 
Funclionals and ToMatch triggers on prototypes were defined 
to handle special t ime-related matches to enable the system to 
tell, for example, that "3 days ago" is more recent than "1 
year ago" or that "48 hours" is the same as "2 days". Signal 
tables were used locally to govern the handling of error- l ike 
occurrences and globally to effect trace and pr intout; 
di f ferent degrees of detail were specified by use of several 
signal tables, and it was thus quite simple to change modes by 
pushing or popping a table. The agenda was used for 
organizing the f low of control in a manner similar to that 
described for the Cryptar i lhmal ic program. The bu i l t - i n 
triggering mechanisms provided the means for a very natuial 
modeling of the kind of medical reasoning discussed in 
Rubin's thesis. 

3. The problems 

As we had hoped, these projects pointed out many ways in 
which KRL-o was deficient or awkward. People were able to 
complete the programs, but at times they were forced into ad 
hoc solutions to problems which the language should have 
dealt w i th . The problems can be grouped as: 
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► Basic representation problems -- ways in which it was 
d i f f i cu l t to express intui t ions about the semantic and 
logical structure of the domain 

► Di f f icu l t ies in manipulat ing descriptions explicit ly 

► Shortcomings in the matcher 

► The awkwardness of the t. isr-KRl. interface 

► Facilities which should have been available as 

standardised packages 

► Infel icitous syntax 

► Cramped address space 

Due to the embedding of KRl.-o in iN'M-.Rl.isi', none of these 
problems were fatal, E'ven with the di f f icul t ies, we found it 
possible to write complex programs rapidly, and to 
experiment with interesting representation and processing 
strategies. This list also does not include the social and 
organizational problems which are bound to infect any ef for t 
of this nature. Everyone on the project exhibited heroism 
and stoicism, persisting in their programming without a 
manual and in a rapidly evolving language which kept 
sl ipping out f rom under the programs almost as fast as they 
could be modi f ied. 

Basic representation problems 

KRI.-o embodied a number of commitments as to how the 
world should be represented. Some of these seemed 
intui t ively justif iable, but did not work out in practice. 
Others weie too vague to implement in a way which seemed 
satisfactory. 

The categorization of units: Lach unit had a category lype 
(as described in Bohrow and Winograd (l(>77, pp 10-J2)) of 
Individual, Manifestation, Basic, Specialization, or Abstract 
Category. This was based on a number of intuit ions and 
experiments about human reasoning, and on the belief that it 
would facil itate mechanisms such as the quick rejection of a 
match if there was a basic category disagreement. In practice, 
these distinctions turned out to be too l imi t ing. In many of 
the hierarchies for speciali/ed domains (such as medicine) 
there was no obvious way to assign Basic. Specialization, and 
Abstract. In dealing with units describing events, the notion 
of Manifestation \va> not precise enough lo be useful. It was 
generally felt that although the concepts involved were useful, 
they had been embedded at too low a level in the language. 

Viewpoints: One of the major issues in developing K K L was 
the desire to have facil i t ies for "chunking" knowledge into 
relevant units. This proved to work out well in most cases, but 
there was an additional dimension of organization which was 
lacking. For many purposes, it is useful to combine in a 
single unit in format ion which wi l l be used in several contexts, 
and to associate wi th each piece of the description some 
identi f ier of the context (or viewpoint) in which it w i l l be 
used. In the natural language programs, it seemed natural to 
classify descriptions associated with words and phrases 
according to whether they related to the structure of syntactic 
phrases, or to meaning. In the physiology sketch, there were 
clear places where di f ferent viewpoints (e.g. looking at the 
fo rm of an organ or looking at its funct ion) called for using 
dif ferent in format ion. There were two pr imi t ive mechanisms 
for doing this factoring in KRI.-O -- attaching features to 
descriptors, and embedding in format ion in contingencies. 
Both were used, but proved clumsy and felt ad hoc. 

The relation between prototype and concept: KRL is bui l t on 
the assumption that most of the in format ion a system has 
about classes of objects is stored in the form of "prototypes" 
rather than in quantif ied formulas. In general, this proved to 
be a useful organizational principle. However, there were 
cases of complex interactions between instance and 
prototype. In the medical domain, for example, a disease 
such as AcuteRenallai lure could be thought of as an instance 
of the prototype for Disease but could also be thought of as a 
prototype for specific cases of this disease. There are a 
number of issues which arise in t ry ing to represent these 
connections, and although Kkl.-O did not make obviously 
wrong choices, it also did not make obviously right ones. In 
general, we seem to have been hoping that too many 
consequences would just naturally fa l l out of the notation, 
when in fact they take more explicit mechanisms. 

Further specification hierarchies: In simple network or 
frame systems (see, for example Goldstein and Roberts, 1977) 
there is a natural notion of hierarchy, in which each 
descendant inherits all of the slots (or cases) f rom its parent. 
Thus, if a (Give is a fui ther specified Act then it has a slot for 
actor as well as its own slots for object and recipient. In a 
system based on mult iple description, the inheritance of slots 
is not as suaighl fo iward. Tins is especially tine when there is 
an attempt to do Mer l in - l i ke reasoning and use perspectives 
to "view an x as a y". The basic inheritance mechanism in 
KKI.-o does not include automatic inheritance of slots. This is 
vital for cases in which there are mult iple descriptions using 
the same prototype units. However, it makes it awkward 
(though possible) to prog.ram the cases where the slots are to 
be inherited simply. Therefore, we included a mechanism for 
" fur ther specif ication" which allowed a unit to inher i t slots 
(along with their attached procedures) f rom a single parent. 
This was not fu l l y implemented in to the system, and was a 
dangling end in the implementation. 

The factoring of context-dependent descriptions: One major 
design decision in KRl was the use of an object-factored data 
base, rather than a context-factored one. The uni t for a 
particular object contained all of the dif ferent contingencies 
representing the facts about it in di f ferent worlds. This 
proved quite successful; however, when combined with the 
k ind of descriptions provided by mappings, another issue 
arises. Using the example of the cryptarithmetic units given 
earlier, consider the problem of representing what is known 
about a column in the addit ion problem if worlds are used to 
represent hypothetical assignments. Imagine that we know 
that in the unmarked global world, Column I is an instance of 
Column, with values for topLettcr, bottoniLcttcr, etc. If in a 
hypothetical World 1 ( in which some value is assumed for a 
letter) we infer that its sum is 17, we want to add a contingent 
descriptor. This could be done in two ways: 

[ColumnI UNI I Individual 
<sclf | (a Column with 

topleter= A 
..) 

(during World I then (a Column w i t h sum = 17))} > j 

[ Column I UNIT Individual 
<sclf { (a Column with 

topL.cllor s A 
sum = (during World I then 17) 

...)}>! 

These are equivalent at the semantic level, and the f i rs t was 
chosen in the ini t ia l implementation -- all factoring into 
contexts was done at the top level of slots. However this 
proved to be tremendously clumsy in practice, since it meant 

Knowledge Rfepr.-2: Robrow 
218 



that much of the informat ion was duplicated, especially in 
cases of recursive embedding. This was exacerbated by the 
fact that features (See Bobrow and Winograd, p. 14) 
demanded factoring as well, and were used for a variety of 
purposes, such as the viewpoints mentioned above. There was 
a reimplementation midway in the l i fe of kRl -•(> in which the 
basic data structures were changed to make it possible to 
merge as much of the shared in formal ion as possible. There 
are a number of d i f f icu l t tradeoffs between storage 
redundancy, running eff iciency, and readability when 
debugging, and we never found a fu l l y satisfactory solution 
wi th in KKI.-O. 

Data structure manipulation 

KKL-o was not a ful ly declaralively recursive language in the 
sense that machine language and pure I isi» are. It was not 
possible to write KRL-o descriptions of the KRL-O structures 
(e.g. units, slots, descriptions) themselves, and use the 
descriptive mechanisms to operate on them. Instead, there 
were a number of LISP primit ives which accessed the data 
structures directly. People ran into a number of problems 
which could be solved by explicit surgery (i.e. using the LISP 
functions for accessing K K L data structures, and RPLACA and 
R P L A C D ) but which gave the programs a laint of ad hoccry 
and overeomplexity. As an exercise in using KRL 
representational structures, Brian Smith tried to describe the 
K R L data structures themselves in KRL-O. A brief sketch was 
completed, and in doing it we were made much more aware of 
the ways in which the language was inconsistent and 
irregular. This in i t ia l sketch was the basis for much of the 
development in KRL-1. 

Deletion of information: One of the consequences of seeing 
KKI-st ructures as descriptions, rather than uninterpreted 
relational structures was a bias against removing or replacing 
structures. Descriptions are by nature partial, and can be 
expanded, but the most natural style is to think of them as 
always applicable. Thus, for example, if" a slot was to contain 
a list (say, the list of digits known to have been assigned in a 
cryptarithmetic problem), the descriptor used in an instance 
was the Items descriptor, which is interpreted as enumerating 
some (but not necessarily all) items in a set. If the 
description of some object changed over time, then it was 
most naturally expressed explicit ly as being a time-dependent 
value, using the Contingency descriptor. There are some deep 
representational issues at stake, and the in tu i t ion of th ink ing 
of descriptions as additive was (and sti l l is) important. 
However, it led to an implementation which made it 
impossible to delete descriptions (or remove items f rom lists) 
without dropping to the level of LISP manipulations on the 
descriptor forms. This caused problems both in cases where 
values changed over time, and in cases where the programmer 
wanted the program to delete unnecessary or redundant 
descriptors in order to gain efficiency. Although deletion and 
replacement were doable (and often done), they went outside 
of the K R L semantics in a rather unstructured way. 

Explicit manipulation of descriptions: For some of the 
programs, it was useful to have parts of the code which dealt 
wi th the descriptions themselves as objects. For example, in 
the cryptarithmetic program, the set of descriptions being 
added to the value slot of an individual Digit could be 
thought of as a set of "constraints", and used in reasoning. 
One might ask "What unused digits match all of the 
descriptors accumulated for the value of the letter A". This is 
quite di f ferent f rom asking "Which unused digits match the 
description 'the value of letter A'". Similarly, in the 
implementation of Winston's program, the descriptions 
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themselves needed to be thought of and manipulated as 
relational networks. The abi l i ty to use descriptions in this 
style gave power in wr i t ing the programs, but it had to be 
done through LISP access of the descriptor forms, rather than 
through the standard match and seek mechanisms. 

Problems with the matcher 

Specifying the match strategies: The matcher in KRL-0 took 
a KRL-O description as a pattern, and matched it against 
another description viewed as a datum. For each potential 
descriptor fo rm in the pattern, there were a set of strategies 
for f ind ing potentially matching descriptions in the datum. 
The ordering of these named strategies, and the interposit ion 
of special user-defined strategies was controlled by use of the 
signal mechanism. This was designed to give complete 
f lex ib i l i ty in how the match was carried out, and succeeded in 
doing so. Many specialized match proceses were designed for 
the di f ferent projects. However, the level at which they had 
to be constructed was too detailed, and made it d i f f i cu l t to 
write strategies which handled wide ranges of cases. The 
strategies were mostly reflections of the possible structures in 
the datum, and did not deal directly with the meaning of the 
descriptors. This led to having to consider all of' the possible 
combinations of forms, and to programs which did not 
funct ion as expected when the descriptions contained 
dif ferent (even though semantically equivalent) forms f rom 
those anticipated. 

Control of circularities: In using matching as a control 
structure for reasoning, it is often useful to expand the match 
by looking at the descriptions contained in the units being 
compared. Consider the units: 

[Give UNIT Basic 
<self (A Receive with 

received* (ihe given) 
receiver = (the receiver) 
River « (the giver))> 

<giver (A Person)> 
<receiver (A l*erson)> 
<given (A PhysicalObject)>] 

[Receive UNIT Basic 
<sclf (A Give with 

given* (the received) 
receiver = (the receiver) 
giver * (the giver))> 

<giver (A Person)> 
<rcccivcr (A Person)> 
<received (A Physic»IOI>jcct)>] 

[Event 17 UNIT Individual 
<seir (A Give with 

giver = Jane 
receiver = Joan 

given = (A Hummer))> 

If asked whether the pattern (A Receive with received = (A 
Hammer)) matches Lvent17, the rnatchcr needs to look in the 
unit for Give in order to see that every (Give is indeed a 
Receive, and to match up the slots appropriately. However, 
this can lead to problems since descriptions in units could 
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easily be self-referential, and mutually cross-referential. In a 
slightly more complex case, the matcher could try to match a 
(;ive by looking at its def in i t ion as a Receive, and then 
transform that to a Give, and so on. Some of the early match 
strategies we developed fell into this trap and looped. The 
simple solution that was adopted to l im i t such circular 
expansion was to adopt a depth f i rst expansion policy, and to 
l im i t the total depth of expansion (recursion through 
def in i t ion) . This obviously works both in this case, and to 
l im i t arbi trar i ly large non-circular searches. In the l imi ted 
data bases we used, it never caused a match to be missed when 
the programmer expected it to be found. But it is a crude 
device which docs not provide adequate control over search. 

Inefficiencies due to generality: Since the matcher was 
designed to allow a wide range of s t i a l l i e s , a fa i r ly large 
amount of processing was invoked Tor each call. Often, the 
programmer wanted to check for the direct presence of a 
certain descriptor, and to avoid the overhead, dived into 
LISP. Thus, instead of wri t ing: 

(Match .'I vent 17 
'(A dive with giver - Junr) 
Simple strusture Match Table 

it was possible to write: 

(F.Q Jane 
(Gctlfem (( .e l f i l lcr 'giver 

(Get Perspective 'Give 
(GetSlot 'self Event 17))))) 

Given that the SimpleStructureMatchTable caused the matcher 
to look only at direct structural matches, the two forms were 
equivalent, and the second avoided much of the overhead. 
Many problems arose, however, in cases where later decisions 
caused the description form to be di f ferent ( for example, 
embedded in a contingency) but to reflect equivalent 
in format ion. 

Problems in the interface between KKL and I.ISP 

One of the major design decisions in KRL-0 was the use of 
! ISP for wr i t ing procedures, rather than having a KRL 
programming language. This was viewed as a temporary 
measure, allowing us to quickly bui ld the f i rst version, and 
work out more of the declarative aspects before try ing to 
formulate a complete procedural language in the fo l lowing 
versions. A number of awkward constructs resulted f rom the 
need to interface LISP procedures and variables to the K R L 
environment. 

Limited procedural attachment modes: Only the simplest 
forms of procedural attachment were implemented. Thus, for 
example, there was no direct way to state that a procedure 
should be invoked when some combination of slots was f i l led 
into an instance. Procedures had to be associated wi th a 
single condit ion on a single slot. It was possible to build 
more complex forms out of this by having a trigger establish 
further triggers and traps (there are examples of this in the 
unit for Column given above), but this led to some rather 
baroque programming. 

Communication of context: When a trap or trigger was 
invoked, the code associated with it needed to make use of 
contextual informat ion about what units were involved in the 
invocation and what state the interpreter was in ( for example 
in the use of hypothetical worlds). This was done simply by 
adopting a set of I ISP free variables which were accessible by 
any piece of code, and were set to appropriate values by the 

interpreter when procedures were invoked. This approach was 
adequate in power, but v/eak in slrucluie, and a number of the 
detailed problems which arose in the projects grew out of 
insuff icient documentation and stabil ity of what the variables 
were, and what they were expected to contain when. 

Unstructuredness of procedure directories: The notion of 
having a "signal table" containing procedural variables was a 
f i rst step towards breaking out of the normal hierarchical 
def in i t ion scheme of LISP. The intention in developing a KRI. 
procedural language is to develop a set of structured control 
notions which make it unnecessary for the programmer to f i l l 
in the detailed responses to each possible invocation. In the 
absence of this, KRL-o signal tables had much the f lavor of 
machine code. A clever programmer could do some str ik ing 
things with them (as in their use in SAM for contro l l ing 
language analysis and generation), but in general they were 
hard to manage and understand. 

Underdeveloped Facilities 

The KRL overall design (see Bobrow and Winograd, p. 3) 
involved a series of "layers" beginning with the pr imi l i ve 
underlying system and working out towards more 
knowledge-specific domains. Part of the abi l i ty to implement 
and lest the language so quickly came f rom deferr ing a 
number of problems to higher layers, and letting users bui ld 
their own specialized versions of pieces of these layers as they 
needed them. In most cases this worked well, but there were 
some areas in which a certain amount of ef for t was wasted, 
and people fe l t hampered by not having more general 
facil it ies. 

Sets and sequences: KRL-o provided only three pr imi t ive 
descriptors (Items, Al l l tems, and Sequence) for representing 
sets and sequences. Notions such as subset, position in 
sequence, member of set, etc. all had to be bui l t by the user 
out of the primit ives, Everyone needed some of them, and it 
became clear that a well thought out layer of standard units 
and procedures would have greatly s impl i f ied the use of the 
language. 

Indexing schemes: The index mechanism bui l t into KRL-o was 
based on simple collections of key words. It was assumed 
f rom the beginning that this was to be viewed not as a theory 
of memory access, but as a minimal pr imi l ive for bui ld ing 
realistic access schemes. One of the projects ( I - low) attacked 
this directly, but the rest stuck to simple uses of indexing, and 
did not explore its potential in the way they might have if a 
more developed set of facil i t ies had been provided in i t ia l ly . 

Scheduler regimes: As with indexing, the scheduler 
mechanism of KRL-o was intended pr imari ly as a pr imi t ive 
with which to build interesting control structures which 
explored uses of parallelism, asynchronous multi-processing, 
etc. The only structuring was provided by the use of a 
mult i - layer queue Like the category types discussed above, it 
was an attempt to embed some much more specific 
representation decisions into a system which in most places 
tried for generality. It was not restrictive, since the system 
made it possible to ignore it totally, al lowing for arbitrary 
manipulation of agenda items. However, because it (and no 
other scheme) was built in , it tended to be used for problems 
where other regimes would have been interesting to explore. 

Notation 

The KRL-o notation was strongly LiSP-based, using 
parenthesization as the primary means of marking structure. 
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This made it easy to parse and manipulate, but led to forms 
which were at times cumbersome. This was especially true 
because of the use of di f ferent bracketing characters ("()", 
" { } " , "<>" ) for descriptors, descriptions and slots. At times a 
unit would end with a sequence such as " } ) } ) } > ) " . There was 
one s impl i f icat ion made during the course of the 
implementation, al lowing the description brackets " { } " to be 
omitted around a description containing a single descriptor. 
The examples in this paper use this convention. In addit ion, 
better notations were needed for expressing sets and 
sequences, and were explored in the K I N S H I P project. 

Limited address space 

One of the shortcomings which most strongly l imi ted the 
projects was in the implementation, not the basic design. 
INTP.RI ISP is a paged system, based on a virtual memory which 
uses the fu l l 18 bits of the PDP-10 address space. The 
philosophy has always been that, with some care to separate 
working sets, system facilit ies could grow to large sizes 
without placing extra overhead on the running of the program 
when they were not being used. This has led to the wealth of 
user aids and facil it ies which dif ferentiate INIIRUSP f rom 
other t ISP systems. 

As a result, more than hall of the address space is used by the 
IN II Rl isp system itself. The KPL o system added another 
quarter to this, so only a quarter of the space was available 
for user programs (including program storage, data structure 
storage, and working space). Both of the extended systems 
(SAM and Medical) quickly reached this l imi t . This resulted 
in cutting back the goals ( in terms of the number of stories 
and questions handled by NAM, and the amount of the sample 
diagnosis protocol handled by Medical), and also led the 
programmes to put a good deal of ef fort into squeezing out 
maximal use of their dwindl ing space. Some designs were 
sketched for providing a separate virtual memory space for 
KRL data structures, but their implementation was put off for 
later versions, since the lessons learned in using KP.l -o wi th in 
I he space l imi tat ion were quite suff icient to give us direction 
for KRI.-i. 

4. Current Directions 

The projects described above were completed by the end of 
summer 1976. Since that t ime, we have been pr imari ly 
engaged in the design of K k l - I , and as of this wr i t ing (June 
1(>77) are in the midst of implementing it. The development 
has involved a substantial shift of emphasis towards semantic 
regularity in the language, and a formal understanding of the 
kinds of reasoning processes which were described at an 
intui t ive level in the earlier paper. Much of this has been the 
result of collaboration with Brian Smith at M.I.T, who is 
developing a semantic theory (called KRS for Knowledge 
Representation Semantics) which grew out of attempts to 
systematize and understand the principles underlying systems 
like KRL 

The new aspects of KRL-l include: 

► A un i fo rm notion of meta-description which uses the 
descriptive forms of KRL-l to represent a number of 
things which were in di f ferent ad hoc forms in KRL-O. 
The old notions which are covered include features, 
traps and triggers, index terms, and a variety of other 
detailed mechanisms. The emphasis has been on 
providing a clear and systematic notion of how one 
description can describe another, and how its meaning 
can be used by the interpreter. A number of the 

problems related to the manipulat ion of description 
forms are solved by this approach. 

► A more structured notion of the access and inference 
steps done by the interpreter. The interpreter is writ ten 
in a style which involves operating on the meaning of 
the forms, rather than the details of the forms 
themselves. This makes possible a more un i fo rm 
framework for describing matching and searching 
procedures, and the results they produce. It allows the 
language to be described in terms of a clear semantics 
(see Hayes, 1977 for a discussion of why this is 
important). We expect it to make the development of 
complex Match and Seek processes much easier. 

► A notion of data compaction which makes it possible to 
use simple data record structures to stand for complex 
descriptor structures, according to a set of declarations 
about how they are to be interpreted. This enables the 
system to encode all of the internal structures (e.g. the 
structure which represents a unit) in a fo rm which can 
be manipulated as though it were a ful l - f ledged 
description. 

► A compiler which converts simple Match, Seek, and 
Describe expressions into corresponding INTLRIISP 
record structure manipulations, reducing the overhead 
on those instances of these processes in which only 
simple operations are to be done, Tins should make it 
possible to preserve efficiency while wr i t ing much more 
uni form code, with no need to use explicit I.ISP 
manipulations of the structures Use of the notions of 
compi l ing and compaction allows the conceptually 
correct but notaiionally expensive use of un i form 
metadescription to be supported without excessive 
running cost in the common cases. 

► A un i fo rm notion of system events which allows more 
general kinds of procedural attachment, and includes 
traps, triggers, and signals. Also, by including much of 
the lNTFRLISP interface in description fo rm, it has 
become more un i fo rm and understandable as well. 

► A s impl i f ied syntax, in which indentation is used to 
express bracketing, e l iminat ing the need fo r most 
parentheses. It also uses "footnotes" for attaching 
meta-descriptions, and has simple set and sequence 
notations. 

► Simpl i f ied notions of categories, inheritance chains, 
and agendas, which avoid some of the specific 
commitments made in KRI. -O. 

► Expanded facil i t ies for sets, sequences, scheduling, 
time-dependent values, category hierarchies, matching 
in format ion and mult iple-worlds. These are all bui l t 
up out of the simpler, un i fo rm facil i t ies provided in 
the kernel, but they represent a substantial body of 
standardized facil i t ies available to the user. 

We are currently exploring a number of d i f ferent solutions to 
the address space problem. Unt i l LISP systems with a larger 
address space are available, some sort of swapping mechanism 
wi l l be necessary, but we see this as a temporary rather than 
long-term problem. 

The cycle of testing on KRL-l w i l l be similar to the one 
described in this paper, but with an emphasis on a smaller 
number of larger systems, instead of the mult ip le 
mini-projects described above. We feel that with KRL-t) we 
explored a number of important representation issues, but 
were unable to deal with the emergent problems of large 
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systems. Issues such as associative indexing, viewpoints, 
concurrent processing, and large-scale factoring of knowledge 
can only be explored in systems large enough to frustrate 
simplistic solutions. Several programs wi l l be whi ten in 
KRl.-i , on the order of magnitude of a doctoral dissertation 
project. Current possibilities include: a system for 
comprehension of narratives; a system which reasons about 
the dynamic slate of a complex nuilt i-process program, and 
interacts wi th the user about that slate; and a travel 
arrangement system related to ( i t 's (bobrow et. al., 1977). 
Current plans include much more extensive description and 
documentation of the system than was the case with KRI.-O. 

We do not view KRl.-i as the f inal step, or even the 
next-to-last step in our project. In Bobrow and Winograd, 
1977 (pp. 34-3(>) we discussed the importance of being able to 
describe procedures in K K I . structures. ouri plan at that time 
was to design a comprehensive programming formalism as 
part of KRl.- l . In light of the shif t of emphasis towards 
better understanding the aspects which we had already 
implemented, we have postponed this ef for t for later versions, 
st i l l considering it one of the major foundations needed fo r a 
fu l l KKL system. There remains the large and only vaguely 
understood task of dealing in a coherent descriptive way wi th 
programs and processes. It is l ikely that to develop this aspect 
w i l l take at least two more cycles of experience, and as we 
learned so well with KRI-O, there is always much much more 
to be done. 
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