
EXPRIENCE W I T H KRL-O
ONE CYCLE OF A KNOWLEDGE REPRESENTATION

LANGUAGE

Daniel G. Bobrow, Terry Winograd,
and the KRL research group'

The projects and implementation described in this paper were done at
Xerox Pah) Alto Research Center. Palo Alto, California by Dan Bobrow,
Ron Kaplan, and Martin Kay from Xerox PARC; Jonathan King. David
levy, Paul Martin. Mitch Model, and Terry Winoj-rad from Stanford;
Wendy I .ehncrl from Yale; Donald A. Norman from V.C. San Diego; Brian
Smith f iom M I T ; and Henry Thompson from U.C Berkeley.

The goal of the KRL research group is to develop a knowledge
representation language with which to bui ld sophisticated
systems and theories of language understanding. This is a
d i f f i cu l t goal to reach, one that wi l l require a number of
years. We are using an iterative strategy with repeated cycles
of design, implementation and testing. An in i t ia l design is
described in an overview of KRI (Bobrow & Winograd,
1977). The system created in the f i rst cycle is called KRL-o,
and this paper describes its implementation, an analysis of
what was learned f rom our experiments in using KRL-o, and a
brief summary of plans for the second iteration of the cycle
(the KRi.-i system). In wr i t ing this paper, we have
emphasized our d i f f icul t ies and disappointments more than
our successes, because the major lessons learned f rom the
iterative cycle were in the form of problems. We mention
only br ief ly in the summary of experiments those features of
Krelo that we found most satisfactory and useful.

In order to put our experiments in some perspective, we
summarize here the major intuit ions we were testing in the
design of KRL-O:

1. Knowledge should be organized around conceptual
entities with associated descriptions and procedures.

2. A description must be able to represent partial
knowledge about an entity and accommodate mult ip le
descriptors which can describe the associated entity
f rom di f ferent viewpoints.

3. An important method of description is comparison
with a known entity, with further specification of the
described instance with respect to the prototype.

4. Reasoning is dominated by a process of recognition in
which new objects and events are compared to stored
sets of expected prototypes, and in which specialized
reasoning strategies are keyed to these prototypes.

5. Intelligent programs wi l l require mult iple active
processes with explicit user-provided scheduling and
resource allocation heuristics.

6. Informat ion should be clustered to reflect use in
processes whose results arc affected by resource
l imi tat ion and differences in in format ion accessibility.

7. A knowledge representation language must provide a
f lexible set of underlying tools, talher than embody
specific commitments about cither processing stiatogies
or the representation of specific areas of knowledge.

Some of these intui t ions were explored in GUS (Bobrow, et al,
1977), a dialog system for making air l ine reservations. GUS
used ideas of procedural attachment (Winograd, 1975), and

context dependent description (Bobrow & Norman, 1975).
Experience with GUS led to some changes to our ideas for
KRL-o, although GUS and KRL-O were basically concurrent
projects; we started programming GUS just prior to intensive
design on KRl-o. The GUS system was pr imar i ly an attempt to
explore the integration of already existing programming
technology for a performance demonstration, while KRL-o was
a f i rst attempt at out l in ing a new basis for representation.

I. Building the KRL-O System

KRI -o was implemented in JNTERI.ISP (Teitelman, 1975), along
the lines described in Bobrow and Winograd (1977). The
design was specified mostly during the summer of 1975. The
ini t ia l KRl-o implementation was programmed pr imar i ly by
Bobrow, Levy, Thompson, and Winograd dur ing December
and January, with parts of the development being done by the
rest of the KRL group. It included basic structure
manipulating facil it ies, a reader and printer for KRL
structures, a simple agenda manager and scheduler, a
procedure directory mechanism, and a matcher which handled
only the most elementary cases. Many more pieces were bui l t
into this system by people working on the test projects over
the fo l lowing (» months. The system was first implemented
on the M A X C computer at Xerox PARC and later transferred
to the SUMI.-X PDP-10, (where one of the projects was done
as an A I M Pilot project), and to the IMSSS PDP-10 at
Stanford. When the test projects were complete, the system
was retired f rom active duly.

As an experimental system, there was no commitment to
continue support after the ini t ia l purposes were satisfied.
Despite its avowed experimental natuie, however, bui ld ing
KRL-o was a major system programming effort ; programming
any "new Al language" for users is larger task than just try ing
out the new ideas. Having the many facil i t ies of INILRITSP to
build on eased our programming burden, but a number of
new facil it ies were built for the project:

► Ron Kaplan developed a set of uti l i t ies, including special
data structure manipulation and formatted pr int ing
routines, as a base for much of the implementation.
The entire ut i l i ty package (called USYS) was interfaced
so smoothly that the user could think of it as simply an
extended lNTLERSP This package wi l l be used in the
development of KRL-1.

► An on- l ine cross-reference and documentation system
(called the N.Utls system) was used to coordinate the
efforts of the people doing interactive debugging of a
shaicd set of programs. The faci l i ty was designed and
built by Ron Kaplan and Mart in Kay. It
communicated with the editor and f i le package

Knowledge R e p r . - 2 : Bobrow
213

facilities' in INTERLSEP so that the. r rogiammcr was
prompted for a comment whenever programs or n r o i J
declarations were created or edited. The in format ion
available to the system (e.g. procedure name, variable
names, etc.) was combined with user supplied comments
in a standardized data base which could be interrogated
on line. The programmer was automatically warned of
potential naming confl icts with anything anywhere else
in the system. It also provided facil i t ies for entering
comments associated wi th global variable names and
f i le names. The f i le of names grew to contain over
1000 entries during the course of implementing KRL-o.
l o r the K R L - 1 implementation we are extending the
interface to work with Masterscope. the INTLRITSP
cross-reference and program analysis package writ ten
by Larry Masinter.

► A simulated match interface was built by Paul Mar t in ,
which enabled the programmer to intercept calls to the
matcher and gather data on what kinds of problems
came up before programming the necessary extensions.
The user returned an answer for the match, and on
future identical matches the same answer was used.

► A tracing faci l i ty for the matcher was implemented by
Jonathan King, to facil i tate debugging of programs
which were organized around matching

As problems came up in using KRL-o, they were handled in
several ways. Those which seemed general and could be
handled wi th in the existing framework were set up as tasks
tor the KRL-o programming effort . Usually design discussions
were shared by everyone, and the implementation clone by the
person whose program faced the problem. 'Those problems
which were either too specialized or obviously beyond the
scope of our current design were programmed around by the
problem-f inder. Most of these cases led to changes in the
KKI-1 design to accomodate solutions more naturally.
Because ;<RL-() was embedded in INTERSP, "patching" was
usually straightforward in that it was the same as what would
have been involved in trying to write the program in a bare
INTERIEP in the first place. Of course, sometimes these
"patches" interacted with other parts of the Kin. code in
unpredieted and confusing ways. "I hose problems for which
there was no acceptable way to escape were chalked up It)
experience, and the goals of the program reduced accordingly.
Usually this was in cases where there had been an unresolved
question as to how much.Ii the program should be expected to
handle. Issues raised by these problems were a major dr iv ing
force in t he KRL-1 design.

A very re ugh draft of a manual was distr ibuted, but became
rapidly obsolete as the system evolved. It was highly
incomplete (for example, the section on the matcher consisted
of a single paragraph describing why the section was going to
be d i f f i cu l t to write). It was never completed or re-edited,
and those doing the programming had to rely on discussion
with the implemented and on the source code of the
interpreter for up to date in format ion. It worked reasonably
well, wi th some frustrat ion, but not enough so that anyone
ever felt moved to volunteer the time to do the wr i t ing
needed to produce a real manual and keep it current. We
were somewhere around the upper bound of the size of
project (number of people, amount of programming) where so
informal an approach was feasible.

2. Experiments using KRL-o

KRL-O notation and programs were tested in nine di f ferent
small projects. Each of these projects was intended to test

some aspect of the KKL-0 language or system. They took f rom
3 to 15 person-weeks of ef for t each. In most cases, the goal
was to produce an actual running program which could
handle enough examples to convince us that it d id what the
original program was intended to. In no case was an ef for t
made to do the kind of f inal debugging and polishing which
would make the program robust or usable by anyone but the
original author. We wi l l describe three of these in detail: a
cryptarithemetic problem solver; a story analysis program; and
a medical diagnosis system. We list below the other projects
that were done to give a flavor of the range of projects tried:

► L L G A L -- done by Jonathan King -- an
implementation of a port ion of a legal reasoning
system sketched by Jeffery Meldman (1975) in his
doctoral dissertation. This program forced
consideration of matching in which both patterns and
data could specify bindings that were needed.

► ARCH IS -- done by Paul Mart in -- a concept learning
progam based on Patrick Winston's (1975) program for
recognizing visual scenes. Matching sets of
descriptions, and the use of instances as patterns were
the interesting parts of this project

► COIL -- done by Wendy l.ehnert -•- a new program for
drawing inferences about objects, based on methods
related to those of conceptual dependency. This
program used the contingent description mechanism to
select knowledge to be used in a particular context, and
the agenda lo interweave syntactic and semantic
processing, of input English.

► FLOW -- done by Dan E'obrow and Don Norman -- a
program sketch whieh .simulated a person's access to
long term memory while using, a recently learned
simple computer language. The indexing mechanism of
K K L was used lo simulate propel lies of human
associative retrieval (including, errois of various kinds).

► PIIYSIOI.OCJY — done by Buan Smith — a program
sketch which explored the problems of using KRl o for
a system which could reason about physiological
processes. This project forced consideration of the gaps
in KRL-O wi th respect to specifying temporal and
causal structures, and the need for stronger structuring
to factor in format ion in units by viewpoints, e.g.,
in format ion about the heart as viewed as a mechanism,
versus in format ion when viewing it f rom an anatomical
perspective.

► KINSHIP -- done by Henry Thompson — a theoretical
paper, using the KRL-O notation as a basis for
comparing kinship terms in English and Sherpa. The
attempt to communicate results of encoding to
non-computer scientists led to a s impl i f ied notation
which has contributed to the syntax for KRL-l.

Cryptarithmctic

The in i t ia l test program was a simple cryptari thmctic problem
solver (see Newell and Simon, 1972 for a description of the
domain) written by Terry Winograd and debugged and
extended by Paul Mart in . It exercised the basic data
structures, agenda, and triggering facil i t ies, and was
successfully tested on several problems (including D O N A L D
♦ G E R A L D = ROBERT with D=5). No attempt was made to
provide complete coverage of the class of problems handled
by humans. Interesting aspects of the design included:

► Use of triggers to combine goal directed and data
directed processing

Knowledge R e p r , - 2 : Bohrow
214

► Use of "patterns" to suggest strategics

► Use of levels on the agenda to control ordering of
strategics

► Use of mult iple descriptors to accumulate in format ion
about the value of a letter

► Use of contingencies to handle hypothetical assignments

► Use of the signal table to control work wi th in
hypothetical worlds

Much of the processing was associated with procedures
attached to the units for Column (a vertical column in the
addit ion problem) and Letter. The Unit for Column is given
below. It gives some idea of the use* of procedural attachment
to propagate in format ion, search for patterns sm h as a
column with Two Blanks and trigger arithmetic p iocss ing
(using the i.isi* funct ion ProeessColuajn).

(DoWhenknown (topLetter) Column
(ClryToFuthers Specify UNIT

'(TwoBlanks OneBlank TwinAddend)
'Addcnd'l'ype]>

<suml,cttcr (:i Letter)
(triggers (When Known

(DoWhenKown (topl.ettcr hotomLettcr) Column
((.Check SumEqual Addend UNIT]>

<lopnicif (;t Digit)
(triggers (VVhenknown (Assign 'topletter (Process Column)))>

OmtinmDigit (;i Digit)
triggers (Whenknown (Assign ,ho!toml.etter)(Process('aluiiin)))>

<sumldigit (a Digit)
(triggers (Whenknown (Assign ,suml,etter)(l>roeessColunin)))>

<sum { (can Integer)
(which IsStiinOf

(Alllteitis (Ilie Ciirryln) (the |npDigil)(llie holtoniDigit)))}
(triggers (Whenknown (Process Column)))>

<c;iiryln { (an Integer)
(XOR 0 I)
(the carry Out from Coluuman(the righlNeigh)mr))(; CARRYOUT)}

(triggers (Whenknown ((GoFill '(ARRN <-)UI)(l»rocess(Coluum)))>
<carryout it { (;in Integer)

(XOR 0 I)
(The carryin from Column (the IrftNclghhor)) (; CARRYIN)}

(triggers (WhenKnown (GoFill (ARRYIN) (I'nnessi oliimn)))> |

There was a set of recognized patterns for columns (for
example, a column with the sum letter identical to one of the
addends) and a set of pattern driven strategies was associated
with each. Each strategy was a I I'.c procedure which used the
KRl-o structures only as a data base. Some of the strategies
caused values to he computed. Whenever a new value was
f i l led into a column, triggers caused data driven strategies to
be suggested, such as trying to bound the possible value of
other letters based on this informat ion. Constraints on values
were added in the form of new descriptions for the value of
the letter, for example specifying that the value must be an
even or odd integer, Laeh such description was added to the
existing description of the value of that letter, so that at any
point in the compulat ion, some letters had a value described
as a specific digit , while others had complex desciptions, such
as "Greater than 3 and odd". Each time a new description
was added, a trigger in the unit for Letter caused a procedure
to be run which matched each still-unassigned digi t against

the accumulated description, and if only one matched, it was
assigned.

When new strategies were suggested by a new value being
t i l led in, or by the match of one of the patterns describing
columns, all of the triggered strategies were put onlo the
agenda. They were assigned pr ior i ty levels on the basis of a
f ixed scheme: Level I was immediate propagation of
in format ion (e.g. if the value of a letter is determined, then
that value gets entered into all of the places where the letter
appears). Level 2 was for straightforward arithmetic
computations. Level 3 for the strategy being worked on
currently, Level 4 for other simple strategies, Level 5 for
more complex and less likely strategies. Level 6 for last-ditch
strategies (brute force trial and error) and Level 7 contained a
single entry which caused the problem to be abandoned.

This rather ad hoc use of agenda levels achieved a number of
goals. The use of Level 1 fo i simple propagation served as a
kind of data locking scheme to maintain consistency. As long
as there were more results to be propagated, no other part of
the program would run. This meant, for example, that if
some letter were assigned to a digit, no other letter could be
assigned to the same digit before the result had been properly
recorded. The use of a separate level for the current strategy
allowed it to trigger sub-strategies without getting put aside
for work on a different strategy. Ibis meant that each
strategy could run to completion. The use of levels to
distinguish how promising di f ferent strategies were allowed
the system to focus its effort on whatever were the most
l ikely things at the moment. Placing last-ditch strategies on
lower levels when they were thought of made it easy for the
program to fal l back on them -- they automatically ran if
nothing at any higher pr ior i ty was scheduled. This provided a
weak global structuring in what was inherently a data-driven
process.

The mechanisms for mult iple worlds and contingent
descriptors made it possible to deal with hypothesized values
while using the normal mechanisms. When all but two
possible values had been eliminated for some letter, and no
other strategies were pending, the program chose one of them,
and created a hypothetical world, in which the letter had that
value. Describing the letter as having that value
hypothetically caused all of the same triggering as would
nonconling.enl assignment of the value, leading to propagation
of new informat ion, computations, strategies, etc. However,
by modify ing the signal table, all derived in format ion was
asserted as contingent on that hypothetical world. This
special signal table also affected the processing in two other
ways: hirst, only simple strategies were allowed to be placed
on the agenda. Second, it a contradiction occurred, the
hypothesis was rejected instead of the problem being declared
impossible. If a hypothec;, was rejected, the contingent
descriptors were not removed, but would not be accessed by
programs looking for descriptions in other hypothetical
worlds, or in the world of actually inferred facts.

Sam

David levy implemented and tested a program which
reproduced the simple text analysis and questioning aspects of
the SAM program (Schank ct. al, 1975) which uses scripts in
analyzing short "stories" containing stylized sequences of
events. It used Ron Kaplan's GSP parser(Kaplan. 1973), and a
grammar written by Henry Thompson for the in i t ia l input of
the stories. It processed two stories (Schank, p. 12),
summarized them and answered a number of simple
questions. It was a fu l l fledged language-processor in that it

KnowleHjre R e p r . - 2 :
215

Bobrow

took its input in English and generated English output.
Questions were entered in an internal representation. Its
main features were:

► Interfacing an existing parser (Kaplan's GSP) wi th a
KRt,-o program which used the results of the parsing for
further analysis

► Using slots to represent the basic elements (both events
and participants) of scripts, and perspectives to
represent instances of the scripts.

► Using the notion of "focus lists" as the basis for
determining def ini te reference, including reference to
objects not explicit ly mentioned in the input text. It
used the index mechanism to speed up search through
the focus lists.

► Using the matcher in a complex way to compare story
events to prototypical script events, with side effects
such as i den t i f y i ng objects for future reference

► Using units describing lexical items and English
grammatical structures as the basis for analysis and
generation, using signals and procedural attachment

SAM's basic processing loop consisted of parsing, construction
of conceptual entities followed by script lookup:

Parsing A sentence f rom the story was fed to GSP, which
produced as output a surface syntactic parse ident i fy ing
clauses, noun phrases, etc. as a KRt declarative structure. For
example, for the sentence "John went to a restaurant" GSP
produced the fo l lowing rather shallow syntactic structure:

(;» Declare with clause *
(a Clause with

surfaccl'orm = ".lohn went to a restaurant"
verb = (A)
subject = (a NounPhrase with

' heed - JO/ IN)
prcpPI = (a PrcpositionalPhr ase with

preposition - TO
object = (a NoiinlMirasc with

head - RESTAUANTiK terminer - A))))

Construction of conceptual entities. The next step was to map
this syntactic object into a set of conceptual objects wi th the
help of declarative and procedural in format ion stored in the
prototypical syntactic units (Clause, NounPhrase, etc.) and in
the lexical units. For example, the Clause unit specified that
the f i l ler of the verb slot would guide the mapping process
for the entire clause, and the lexical representation of each
verb included a case frame mapping f rom syntactic to
conceptual structures. Fol lowing is a partial description of
SAM's representation of the verb "go":

[(GO UNIT Individual
<self {(a Verb with

root = "Go"
past * "went")

(which IsAConslitucntOf
(a Clause with

referent =
(a Go with

goer = (the referent from Nounlphrase
(T(he subject from (lause (a Clause)))

source = (the referent from NounPhrase
(the object fror.i PreppositionalPhrrtse

(a PrcposilionalPhrase with
prepositioa = I ROM)))

destination = (the referent from NounPhrase
(the object from PrcposilionalPhrase

(a PrepositionalPbrase wits
preposition - TO)))))) }>]

As a description was created for each conceptual object (e.g.
as it was determined that the appropriate Idler fo r the goer
slot in the above example was (a Person with name = "Jolm")) ,
this description was matched against a list of units in a focus
list which contained the conceptual objects thus far created.
It the description matched one of these objects, the slot was
f i l led with a pointer to this object, and this object was moved
to the front of the focus list. In order Lo make the search
through the focus list faster, I he index facl i l ty was ased to
f ind good potential matches f rom the list. If the description
matched no object, a new object (a KRI unit) was created, the
description was attached to it, and this objt.et was pushed onto
the front of the focus list. In this way referents were
established and maintained.

This scheme handled pronominal as well as def ini te
reference, f r o m the word "she", for example, the conceptual
description (a l-eiualei't'isoa) was constructed, a description
which would match the last mentioned reference (i f any) to a
female person (e.g. "the waitress").

Script lookup. Next the program tried to identify the
conceptual event just created as a step in an active script. It
d id this by stepping through the script f rom the last event
ident i f ied, and matching the description of this prototypical
event to the event just created f rom the input sentence. This
process exercised the KRt matcher rather heavily. Once the
step in the script (represented as a slot) was ident i f ied, this
slot was f i l led with the new conceptual event. In addi t ion,
any previous steps not explicit ly f i l led by story inputs were
then f i l led by creating conceptual events f rom the
prototypical descriptions contained in the script. These
events too were added to the focus list. The program also
dealt wi th what-ifs or predictable error condit ions, but these
wi l l not be discussed here.

The result of this iterative process was therefore the
construction of a representation for the story consisting of :

► a set of syntactic units representing the surface syntactic
form of the input sentences

► a set of conceptual units representing story objects:
people, events (including inferred events), physical
objects

Knowledge R e p r ,
216

► a focus list containing these objects

► a (part ia l ly) instantiated script, whose event slots were
f i l led wi th the conceptual events in the focus list

- 2 : R o b r o w

Having analyzed a story, SAM could then summarize,
paraphrase, and answer questions.

The di f ferent stages of processing in the analysis of inputs
were controlled through the use of special signal tables,
these tables provided special responses to the addit ion of
descriplions to units. For example, the search for a referent
was keyed by a signal set o f f by the addit ion of a perspective
of type Noun Phrase. The generation process used a di f ferent
set of signal tables to direct the inverse process of bui lding a
surface syntactic construction f rom a conceptual object. SAM
was an interesting exercise in system construe!ion, useful
mainly as a tool for understanding problems in representation
and debugging KRI-o. When f inished, it d id not, and was not
intended to, rival the power of the Yale group's original
program.

Medical

Mi tch Model implemented and tested a progiam for medical
diagnosis based on a model for diagnosis which had not been
dnectly implemented before (Rubin, 197.')). In wri t ing the
program, it was necessary to f i l l in a number of details, and
correct some minor inconsistencies in the or iginal . The
program successfully duplicated, wi th some minor exceptions,
the performance described for Rubin's hypothesized system.
Part of the reason for the exceptions was incomplete
specifications in Rubin's thesis, but there was also a major
problem in that the implementation LISP code and data base
completely f i l led the storage available in the KRL system.
(This program, S A M , and con were the most extensive tests,
and all ran into space problems discussed below). Some of
the major features of the implementation were:

► The use of the abstraction hierarchy to represent the set
of disease types and f ind ing types, with in format ion
and procedures attached at dif ferent levels of
generality.

► The use of KRL-o triggers to implement the conceptual
" tr iggering" of potential diagnoses on the basis of
having relevant symptoms described

► The use of signals to provide run- t ime moni tor ing of
what the system was doing as it generated new
hypotheses and evaluated them

► A direct encoding of the declarative "slices" of Rubin's
version in to the declarative forms of KRL-O. This
included extensive use of the "Using" descriptor (a
declarative condit ional) to expl ici t ly represent the
decision trees in the units fo r diagnosing di f ferent
condit ions

There were four major kinds of representational objects in the
system.

► "Elementary hypotheses" which corresponded to the
"slices" of Rubin's thesis; these were named after the
disease [c.g Glomerulitis or Renal Infarction] the data
structure was intended to represent. Elementary
hypotheses had descriptions in slots to indicate such
things as l ikely symptoms, l inks to other elementary
hypotheses that might be related, and how to evaluate
how well the patients symptoms would be accounted for
by a diagnosis of this disease.

► "Elementary hypothesis instances" were data structures
created fo r each diagnosis the system decided might
account fo r the presented symptoms; these contained
pointers to the findings that suggested the diagnosis,
and a pointer to the elementary hypothesis representing

the disease of the diagnosis. It also contained values
for how well the diagnosis accounted for the s>mploms f

obtained by applying the evaluation in format ion
represented in the elemental') hypothesis to the specific
details of the elementary hypothesis instance.

► "Findings" were units for specific symptoms, facts,
hisloiical i nhumat ion , phvstcal examination data, or
lab data (e.g.. /■'ever, Hcnutinriii, or liinpsy)\ a f ind ing
was mostly a hook on which to hang pioccdura)
in format ion about what to do when the patient
exhibited soinel.hin» abnormal with respect to the
particular kind of f i nd ing .

► Finding instances were the input to the system, having
a structure similar to that Rubin suggested in her thesis,
having slots for such things as f ind ing , durat ion,
severity, and normali ty. There were also fur ther
specified f ind ing instances such as symptom instance.

The system worked essentially as fol lows. A unit might be
described by:

(a Symplomlnstance with
main(Concept = Hematuria
presence = "present"
severity = "yross"
time - (a TitmToint with

direction z "past"
magnitude = (a Quantity with

unit - "days"
number = 3)))

A WhenKnown trigger on the presence slot of the
Symptom Instance prototype would be set o f f ; examination of
the specific description caused this entity to be described also
as: (ii Symptoinhistancc with normality = "abnormal") Further
triggers and traps might result in the creation of new
elementary hypothesis instances, according to the in format ion
found in the description. After all the in format ion
propagation activity, each of the currently active elementary
hypothesis instances would be evaluated based on in format ion
found in the corresponding elementary hypotheses. Based on
the evaluation, the status of the elementary hypothesis
instances might be changed to reflect possible dispositions of
the hypothesis such as acceptance, rejection, or alteration.

The indexing faci l i ty was used to facil itate operations such as
obtaining a list of all the hypotheses activated by a f i nd ing .
Funclionals and ToMatch triggers on prototypes were defined
to handle special t ime-related matches to enable the system to
tell, for example, that "3 days ago" is more recent than "1
year ago" or that "48 hours" is the same as "2 days". Signal
tables were used locally to govern the handling of error- l ike
occurrences and globally to effect trace and pr intout;
di f ferent degrees of detail were specified by use of several
signal tables, and it was thus quite simple to change modes by
pushing or popping a table. The agenda was used for
organizing the f low of control in a manner similar to that
described for the Cryptar i lhmal ic program. The bu i l t - i n
triggering mechanisms provided the means for a very natuial
modeling of the kind of medical reasoning discussed in
Rubin's thesis.

3. The problems

As we had hoped, these projects pointed out many ways in
which KRL-o was deficient or awkward. People were able to
complete the programs, but at times they were forced into ad
hoc solutions to problems which the language should have
dealt w i th . The problems can be grouped as:

Knowledge R e p r . - 2 : Robrow
217

► Basic representation problems -- ways in which it was
d i f f i cu l t to express intui t ions about the semantic and
logical structure of the domain

► Di f f icu l t ies in manipulat ing descriptions explicit ly

► Shortcomings in the matcher

► The awkwardness of the t. isr-KRl. interface

► Facilities which should have been available as

standardised packages

► Infel icitous syntax

► Cramped address space

Due to the embedding of KRl.-o in iN'M-.Rl.isi', none of these
problems were fatal, E'ven with the di f f icul t ies, we found it
possible to write complex programs rapidly, and to
experiment with interesting representation and processing
strategies. This list also does not include the social and
organizational problems which are bound to infect any ef for t
of this nature. Everyone on the project exhibited heroism
and stoicism, persisting in their programming without a
manual and in a rapidly evolving language which kept
sl ipping out f rom under the programs almost as fast as they
could be modi f ied.

Basic representation problems

KRI.-o embodied a number of commitments as to how the
world should be represented. Some of these seemed
intui t ively justif iable, but did not work out in practice.
Others weie too vague to implement in a way which seemed
satisfactory.

The categorization of units: Lach unit had a category lype
(as described in Bohrow and Winograd (l(>77, pp 10-J2)) of
Individual, Manifestation, Basic, Specialization, or Abstract
Category. This was based on a number of intuit ions and
experiments about human reasoning, and on the belief that it
would facil itate mechanisms such as the quick rejection of a
match if there was a basic category disagreement. In practice,
these distinctions turned out to be too l imi t ing. In many of
the hierarchies for speciali/ed domains (such as medicine)
there was no obvious way to assign Basic. Specialization, and
Abstract. In dealing with units describing events, the notion
of Manifestation \va> not precise enough lo be useful. It was
generally felt that although the concepts involved were useful,
they had been embedded at too low a level in the language.

Viewpoints: One of the major issues in developing K K L was
the desire to have facil i t ies for "chunking" knowledge into
relevant units. This proved to work out well in most cases, but
there was an additional dimension of organization which was
lacking. For many purposes, it is useful to combine in a
single unit in format ion which wi l l be used in several contexts,
and to associate wi th each piece of the description some
identi f ier of the context (or viewpoint) in which it w i l l be
used. In the natural language programs, it seemed natural to
classify descriptions associated with words and phrases
according to whether they related to the structure of syntactic
phrases, or to meaning. In the physiology sketch, there were
clear places where di f ferent viewpoints (e.g. looking at the
fo rm of an organ or looking at its funct ion) called for using
dif ferent in format ion. There were two pr imi t ive mechanisms
for doing this factoring in KRI.-O -- attaching features to
descriptors, and embedding in format ion in contingencies.
Both were used, but proved clumsy and felt ad hoc.

The relation between prototype and concept: KRL is bui l t on
the assumption that most of the in format ion a system has
about classes of objects is stored in the form of "prototypes"
rather than in quantif ied formulas. In general, this proved to
be a useful organizational principle. However, there were
cases of complex interactions between instance and
prototype. In the medical domain, for example, a disease
such as AcuteRenallai lure could be thought of as an instance
of the prototype for Disease but could also be thought of as a
prototype for specific cases of this disease. There are a
number of issues which arise in t ry ing to represent these
connections, and although Kkl.-O did not make obviously
wrong choices, it also did not make obviously right ones. In
general, we seem to have been hoping that too many
consequences would just naturally fa l l out of the notation,
when in fact they take more explicit mechanisms.

Further specification hierarchies: In simple network or
frame systems (see, for example Goldstein and Roberts, 1977)
there is a natural notion of hierarchy, in which each
descendant inherits all of the slots (or cases) f rom its parent.
Thus, if a (Give is a fui ther specified Act then it has a slot for
actor as well as its own slots for object and recipient. In a
system based on mult iple description, the inheritance of slots
is not as suaighl fo iward. Tins is especially tine when there is
an attempt to do Mer l in - l i ke reasoning and use perspectives
to "view an x as a y". The basic inheritance mechanism in
KKI.-o does not include automatic inheritance of slots. This is
vital for cases in which there are mult iple descriptions using
the same prototype units. However, it makes it awkward
(though possible) to prog.ram the cases where the slots are to
be inherited simply. Therefore, we included a mechanism for
" fur ther specif ication" which allowed a unit to inher i t slots
(along with their attached procedures) f rom a single parent.
This was not fu l l y implemented in to the system, and was a
dangling end in the implementation.

The factoring of context-dependent descriptions: One major
design decision in KRl was the use of an object-factored data
base, rather than a context-factored one. The uni t for a
particular object contained all of the dif ferent contingencies
representing the facts about it in di f ferent worlds. This
proved quite successful; however, when combined with the
k ind of descriptions provided by mappings, another issue
arises. Using the example of the cryptarithmetic units given
earlier, consider the problem of representing what is known
about a column in the addit ion problem if worlds are used to
represent hypothetical assignments. Imagine that we know
that in the unmarked global world, Column I is an instance of
Column, with values for topLettcr, bottoniLcttcr, etc. If in a
hypothetical World 1 (in which some value is assumed for a
letter) we infer that its sum is 17, we want to add a contingent
descriptor. This could be done in two ways:

[ColumnI UNI I Individual
<sclf | (a Column with

topleter= A
..)

(during World I then (a Column w i t h sum = 17))} > j

[Column I UNIT Individual
<sclf { (a Column with

topL.cllor s A
sum = (during World I then 17)

...)}>!

These are equivalent at the semantic level, and the f i rs t was
chosen in the ini t ia l implementation -- all factoring into
contexts was done at the top level of slots. However this
proved to be tremendously clumsy in practice, since it meant

Knowledge Rfepr.-2: Robrow
218

that much of the informat ion was duplicated, especially in
cases of recursive embedding. This was exacerbated by the
fact that features (See Bobrow and Winograd, p. 14)
demanded factoring as well, and were used for a variety of
purposes, such as the viewpoints mentioned above. There was
a reimplementation midway in the l i fe of kRl -•(> in which the
basic data structures were changed to make it possible to
merge as much of the shared in formal ion as possible. There
are a number of d i f f icu l t tradeoffs between storage
redundancy, running eff iciency, and readability when
debugging, and we never found a fu l l y satisfactory solution
wi th in KKI.-O.

Data structure manipulation

KKL-o was not a ful ly declaralively recursive language in the
sense that machine language and pure I isi» are. It was not
possible to write KRL-o descriptions of the KRL-O structures
(e.g. units, slots, descriptions) themselves, and use the
descriptive mechanisms to operate on them. Instead, there
were a number of LISP primit ives which accessed the data
structures directly. People ran into a number of problems
which could be solved by explicit surgery (i.e. using the LISP
functions for accessing K K L data structures, and RPLACA and
R P L A C D) but which gave the programs a laint of ad hoccry
and overeomplexity. As an exercise in using KRL
representational structures, Brian Smith tried to describe the
K R L data structures themselves in KRL-O. A brief sketch was
completed, and in doing it we were made much more aware of
the ways in which the language was inconsistent and
irregular. This in i t ia l sketch was the basis for much of the
development in KRL-1.

Deletion of information: One of the consequences of seeing
KKI-st ructures as descriptions, rather than uninterpreted
relational structures was a bias against removing or replacing
structures. Descriptions are by nature partial, and can be
expanded, but the most natural style is to think of them as
always applicable. Thus, for example, if" a slot was to contain
a list (say, the list of digits known to have been assigned in a
cryptarithmetic problem), the descriptor used in an instance
was the Items descriptor, which is interpreted as enumerating
some (but not necessarily all) items in a set. If the
description of some object changed over time, then it was
most naturally expressed explicit ly as being a time-dependent
value, using the Contingency descriptor. There are some deep
representational issues at stake, and the in tu i t ion of th ink ing
of descriptions as additive was (and sti l l is) important.
However, it led to an implementation which made it
impossible to delete descriptions (or remove items f rom lists)
without dropping to the level of LISP manipulations on the
descriptor forms. This caused problems both in cases where
values changed over time, and in cases where the programmer
wanted the program to delete unnecessary or redundant
descriptors in order to gain efficiency. Although deletion and
replacement were doable (and often done), they went outside
of the K R L semantics in a rather unstructured way.

Explicit manipulation of descriptions: For some of the
programs, it was useful to have parts of the code which dealt
wi th the descriptions themselves as objects. For example, in
the cryptarithmetic program, the set of descriptions being
added to the value slot of an individual Digit could be
thought of as a set of "constraints", and used in reasoning.
One might ask "What unused digits match all of the
descriptors accumulated for the value of the letter A". This is
quite di f ferent f rom asking "Which unused digits match the
description 'the value of letter A'". Similarly, in the
implementation of Winston's program, the descriptions

K n w l e d g e Repr ,
219

themselves needed to be thought of and manipulated as
relational networks. The abi l i ty to use descriptions in this
style gave power in wr i t ing the programs, but it had to be
done through LISP access of the descriptor forms, rather than
through the standard match and seek mechanisms.

Problems with the matcher

Specifying the match strategies: The matcher in KRL-0 took
a KRL-O description as a pattern, and matched it against
another description viewed as a datum. For each potential
descriptor fo rm in the pattern, there were a set of strategies
for f ind ing potentially matching descriptions in the datum.
The ordering of these named strategies, and the interposit ion
of special user-defined strategies was controlled by use of the
signal mechanism. This was designed to give complete
f lex ib i l i ty in how the match was carried out, and succeeded in
doing so. Many specialized match proceses were designed for
the di f ferent projects. However, the level at which they had
to be constructed was too detailed, and made it d i f f i cu l t to
write strategies which handled wide ranges of cases. The
strategies were mostly reflections of the possible structures in
the datum, and did not deal directly with the meaning of the
descriptors. This led to having to consider all of' the possible
combinations of forms, and to programs which did not
funct ion as expected when the descriptions contained
dif ferent (even though semantically equivalent) forms f rom
those anticipated.

Control of circularities: In using matching as a control
structure for reasoning, it is often useful to expand the match
by looking at the descriptions contained in the units being
compared. Consider the units:

[Give UNIT Basic
<self (A Receive with

received* (ihe given)
receiver = (the receiver)
River « (the giver))>

<giver (A Person)>
<receiver (A l*erson)>
<given (A PhysicalObject)>]

[Receive UNIT Basic
<sclf (A Give with

given* (the received)
receiver = (the receiver)
giver * (the giver))>

<giver (A Person)>
<rcccivcr (A Person)>
<received (A Physic»IOI>jcct)>]

[Event 17 UNIT Individual
<seir (A Give with

giver = Jane
receiver = Joan

given = (A Hummer))>

If asked whether the pattern (A Receive with received = (A
Hammer)) matches Lvent17, the rnatchcr needs to look in the
unit for Give in order to see that every (Give is indeed a
Receive, and to match up the slots appropriately. However,
this can lead to problems since descriptions in units could

• 2 : B o h r o w

easily be self-referential, and mutually cross-referential. In a
slightly more complex case, the matcher could try to match a
(;ive by looking at its def in i t ion as a Receive, and then
transform that to a Give, and so on. Some of the early match
strategies we developed fell into this trap and looped. The
simple solution that was adopted to l im i t such circular
expansion was to adopt a depth f i rst expansion policy, and to
l im i t the total depth of expansion (recursion through
def in i t ion) . This obviously works both in this case, and to
l im i t arbi trar i ly large non-circular searches. In the l imi ted
data bases we used, it never caused a match to be missed when
the programmer expected it to be found. But it is a crude
device which docs not provide adequate control over search.

Inefficiencies due to generality: Since the matcher was
designed to allow a wide range of s t i a l l i e s , a fa i r ly large
amount of processing was invoked Tor each call. Often, the
programmer wanted to check for the direct presence of a
certain descriptor, and to avoid the overhead, dived into
LISP. Thus, instead of wri t ing:

(Match .'I vent 17
'(A dive with giver - Junr)
Simple strusture Match Table

it was possible to write:

(F.Q Jane
(Gctlfem ((.e l f i l lcr 'giver

(Get Perspective 'Give
(GetSlot 'self Event 17)))))

Given that the SimpleStructureMatchTable caused the matcher
to look only at direct structural matches, the two forms were
equivalent, and the second avoided much of the overhead.
Many problems arose, however, in cases where later decisions
caused the description form to be di f ferent (for example,
embedded in a contingency) but to reflect equivalent
in format ion.

Problems in the interface between KKL and I.ISP

One of the major design decisions in KRL-0 was the use of
! ISP for wr i t ing procedures, rather than having a KRL
programming language. This was viewed as a temporary
measure, allowing us to quickly bui ld the f i rst version, and
work out more of the declarative aspects before try ing to
formulate a complete procedural language in the fo l lowing
versions. A number of awkward constructs resulted f rom the
need to interface LISP procedures and variables to the K R L
environment.

Limited procedural attachment modes: Only the simplest
forms of procedural attachment were implemented. Thus, for
example, there was no direct way to state that a procedure
should be invoked when some combination of slots was f i l led
into an instance. Procedures had to be associated wi th a
single condit ion on a single slot. It was possible to build
more complex forms out of this by having a trigger establish
further triggers and traps (there are examples of this in the
unit for Column given above), but this led to some rather
baroque programming.

Communication of context: When a trap or trigger was
invoked, the code associated with it needed to make use of
contextual informat ion about what units were involved in the
invocation and what state the interpreter was in (for example
in the use of hypothetical worlds). This was done simply by
adopting a set of I ISP free variables which were accessible by
any piece of code, and were set to appropriate values by the

interpreter when procedures were invoked. This approach was
adequate in power, but v/eak in slrucluie, and a number of the
detailed problems which arose in the projects grew out of
insuff icient documentation and stabil ity of what the variables
were, and what they were expected to contain when.

Unstructuredness of procedure directories: The notion of
having a "signal table" containing procedural variables was a
f i rst step towards breaking out of the normal hierarchical
def in i t ion scheme of LISP. The intention in developing a KRI.
procedural language is to develop a set of structured control
notions which make it unnecessary for the programmer to f i l l
in the detailed responses to each possible invocation. In the
absence of this, KRL-o signal tables had much the f lavor of
machine code. A clever programmer could do some str ik ing
things with them (as in their use in SAM for contro l l ing
language analysis and generation), but in general they were
hard to manage and understand.

Underdeveloped Facilities

The KRL overall design (see Bobrow and Winograd, p. 3)
involved a series of "layers" beginning with the pr imi l i ve
underlying system and working out towards more
knowledge-specific domains. Part of the abi l i ty to implement
and lest the language so quickly came f rom deferr ing a
number of problems to higher layers, and letting users bui ld
their own specialized versions of pieces of these layers as they
needed them. In most cases this worked well, but there were
some areas in which a certain amount of ef for t was wasted,
and people fe l t hampered by not having more general
facil it ies.

Sets and sequences: KRL-o provided only three pr imi t ive
descriptors (Items, Al l l tems, and Sequence) for representing
sets and sequences. Notions such as subset, position in
sequence, member of set, etc. all had to be bui l t by the user
out of the primit ives, Everyone needed some of them, and it
became clear that a well thought out layer of standard units
and procedures would have greatly s impl i f ied the use of the
language.

Indexing schemes: The index mechanism bui l t into KRL-o was
based on simple collections of key words. It was assumed
f rom the beginning that this was to be viewed not as a theory
of memory access, but as a minimal pr imi l ive for bui ld ing
realistic access schemes. One of the projects (I - low) attacked
this directly, but the rest stuck to simple uses of indexing, and
did not explore its potential in the way they might have if a
more developed set of facil i t ies had been provided in i t ia l ly .

Scheduler regimes: As with indexing, the scheduler
mechanism of KRL-o was intended pr imari ly as a pr imi t ive
with which to build interesting control structures which
explored uses of parallelism, asynchronous multi-processing,
etc. The only structuring was provided by the use of a
mult i - layer queue Like the category types discussed above, it
was an attempt to embed some much more specific
representation decisions into a system which in most places
tried for generality. It was not restrictive, since the system
made it possible to ignore it totally, al lowing for arbitrary
manipulation of agenda items. However, because it (and no
other scheme) was built in , it tended to be used for problems
where other regimes would have been interesting to explore.

Notation

The KRL-o notation was strongly LiSP-based, using
parenthesization as the primary means of marking structure.

Knowledge R e p r . - 2 : Bobrow
220

This made it easy to parse and manipulate, but led to forms
which were at times cumbersome. This was especially true
because of the use of di f ferent bracketing characters ("()",
" { } " , "<>") for descriptors, descriptions and slots. At times a
unit would end with a sequence such as " }) }) } >) " . There was
one s impl i f icat ion made during the course of the
implementation, al lowing the description brackets " { } " to be
omitted around a description containing a single descriptor.
The examples in this paper use this convention. In addit ion,
better notations were needed for expressing sets and
sequences, and were explored in the K I N S H I P project.

Limited address space

One of the shortcomings which most strongly l imi ted the
projects was in the implementation, not the basic design.
INTP.RI ISP is a paged system, based on a virtual memory which
uses the fu l l 18 bits of the PDP-10 address space. The
philosophy has always been that, with some care to separate
working sets, system facilit ies could grow to large sizes
without placing extra overhead on the running of the program
when they were not being used. This has led to the wealth of
user aids and facil it ies which dif ferentiate INIIRUSP f rom
other t ISP systems.

As a result, more than hall of the address space is used by the
IN II Rl isp system itself. The KPL o system added another
quarter to this, so only a quarter of the space was available
for user programs (including program storage, data structure
storage, and working space). Both of the extended systems
(SAM and Medical) quickly reached this l imi t . This resulted
in cutting back the goals (in terms of the number of stories
and questions handled by NAM, and the amount of the sample
diagnosis protocol handled by Medical), and also led the
programmes to put a good deal of ef fort into squeezing out
maximal use of their dwindl ing space. Some designs were
sketched for providing a separate virtual memory space for
KRL data structures, but their implementation was put off for
later versions, since the lessons learned in using KP.l -o wi th in
I he space l imi tat ion were quite suff icient to give us direction
for KRI.-i.

4. Current Directions

The projects described above were completed by the end of
summer 1976. Since that t ime, we have been pr imari ly
engaged in the design of K k l - I , and as of this wr i t ing (June
1(>77) are in the midst of implementing it. The development
has involved a substantial shift of emphasis towards semantic
regularity in the language, and a formal understanding of the
kinds of reasoning processes which were described at an
intui t ive level in the earlier paper. Much of this has been the
result of collaboration with Brian Smith at M.I.T, who is
developing a semantic theory (called KRS for Knowledge
Representation Semantics) which grew out of attempts to
systematize and understand the principles underlying systems
like KRL

The new aspects of KRL-l include:

► A un i fo rm notion of meta-description which uses the
descriptive forms of KRL-l to represent a number of
things which were in di f ferent ad hoc forms in KRL-O.
The old notions which are covered include features,
traps and triggers, index terms, and a variety of other
detailed mechanisms. The emphasis has been on
providing a clear and systematic notion of how one
description can describe another, and how its meaning
can be used by the interpreter. A number of the

problems related to the manipulat ion of description
forms are solved by this approach.

► A more structured notion of the access and inference
steps done by the interpreter. The interpreter is writ ten
in a style which involves operating on the meaning of
the forms, rather than the details of the forms
themselves. This makes possible a more un i fo rm
framework for describing matching and searching
procedures, and the results they produce. It allows the
language to be described in terms of a clear semantics
(see Hayes, 1977 for a discussion of why this is
important). We expect it to make the development of
complex Match and Seek processes much easier.

► A notion of data compaction which makes it possible to
use simple data record structures to stand for complex
descriptor structures, according to a set of declarations
about how they are to be interpreted. This enables the
system to encode all of the internal structures (e.g. the
structure which represents a unit) in a fo rm which can
be manipulated as though it were a ful l - f ledged
description.

► A compiler which converts simple Match, Seek, and
Describe expressions into corresponding INTLRIISP
record structure manipulations, reducing the overhead
on those instances of these processes in which only
simple operations are to be done, Tins should make it
possible to preserve efficiency while wr i t ing much more
uni form code, with no need to use explicit I.ISP
manipulations of the structures Use of the notions of
compi l ing and compaction allows the conceptually
correct but notaiionally expensive use of un i form
metadescription to be supported without excessive
running cost in the common cases.

► A un i fo rm notion of system events which allows more
general kinds of procedural attachment, and includes
traps, triggers, and signals. Also, by including much of
the lNTFRLISP interface in description fo rm, it has
become more un i fo rm and understandable as well.

► A s impl i f ied syntax, in which indentation is used to
express bracketing, e l iminat ing the need fo r most
parentheses. It also uses "footnotes" for attaching
meta-descriptions, and has simple set and sequence
notations.

► Simpl i f ied notions of categories, inheritance chains,
and agendas, which avoid some of the specific
commitments made in KRI. -O.

► Expanded facil i t ies for sets, sequences, scheduling,
time-dependent values, category hierarchies, matching
in format ion and mult iple-worlds. These are all bui l t
up out of the simpler, un i fo rm facil i t ies provided in
the kernel, but they represent a substantial body of
standardized facil i t ies available to the user.

We are currently exploring a number of d i f ferent solutions to
the address space problem. Unt i l LISP systems with a larger
address space are available, some sort of swapping mechanism
wi l l be necessary, but we see this as a temporary rather than
long-term problem.

The cycle of testing on KRL-l w i l l be similar to the one
described in this paper, but with an emphasis on a smaller
number of larger systems, instead of the mult ip le
mini-projects described above. We feel that with KRL-t) we
explored a number of important representation issues, but
were unable to deal with the emergent problems of large

KnowlpH^e Repr,
221

Ro.brow

systems. Issues such as associative indexing, viewpoints,
concurrent processing, and large-scale factoring of knowledge
can only be explored in systems large enough to frustrate
simplistic solutions. Several programs wi l l be whi ten in
KRl.-i , on the order of magnitude of a doctoral dissertation
project. Current possibilities include: a system for
comprehension of narratives; a system which reasons about
the dynamic slate of a complex nuilt i-process program, and
interacts wi th the user about that slate; and a travel
arrangement system related to (i t 's (bobrow et. al., 1977).
Current plans include much more extensive description and
documentation of the system than was the case with KRI.-O.

We do not view KRl.-i as the f inal step, or even the
next-to-last step in our project. In Bobrow and Winograd,
1977 (pp. 34-3(>) we discussed the importance of being able to
describe procedures in K K I . structures. ouri plan at that time
was to design a comprehensive programming formalism as
part of KRl.- l . In light of the shif t of emphasis towards
better understanding the aspects which we had already
implemented, we have postponed this ef for t for later versions,
st i l l considering it one of the major foundations needed fo r a
fu l l KKL system. There remains the large and only vaguely
understood task of dealing in a coherent descriptive way wi th
programs and processes. It is l ikely that to develop this aspect
w i l l take at least two more cycles of experience, and as we
learned so well with KRI-O, there is always much much more
to be done.

References

Bobrow, D.G., Kaplan. R.M., Kay, M., Norman, D.A.,
Thompson, H., and Winograd, T., GUS, a frame driven
dialog system. Artificial Intelligence, 1977 V 8. No. 2.

Bobrow, D.G. and Norman D.A., Some principles of memory
schemata, in D.G. Bobrow and A.M. Coll ins (fids.),
Representation and Understanding, New York: Academic
Press, 1975, 131-150.

Bobrow, D.G. and Winograd, ' I ' . , An overview of K K L - 0 , a
knowledge representation language. Cognitive Science, V. I,
No. 1, 1977

Hayes, f\. In defense of logic, (Draf t paper) 1977

Kaplan, R. A general syntactic processor. In R. Rustin (Ed.),
Natural language processing. New York: Algor i thmic^
Press, 1973.

Lehnert. W„ Question Answering in a story understanding
system, Yale University Computer Science Research Report
#57 , 1975.

Meldman, J.A.. A prel iminary study in computer-aided legal
analysis, M IT project M A C TK 157, 1975.

Minsky, M., A framework for representing knowledge, In
Winston, P. (Ed.), The psychology of computer vision,
McGraw-H i l l , 1975.

Newell, A., and Simon, H.A., Human Problem Solving,
Prentice Hal l , 1972.

Norman, D.A., & Bobrow, D.G. On data- l imi ted and
resource-limited processes. Cognitive Psychology, 1975, 7,
44-64.

Rubin. A.D., Hypothesis format ion and evaluation in medical
diagnosis (M I T - A I Technical Report 316). Cambridge:
Massachusetts Institute of Technology, 1975. .

Schank, R.C. (Ed.). Conceptual information processing,
Amsterdam: North Hol land, 1975.

Schank. R.. and the Yale AI Project, SAM -- A story
underslander, Yale University Computer Science Research
Report /M3, August, 1975.

Teitelman, W., INTERLISP reference manual. Xerox Palo
A l to Research Center, December, 1975.

Thompson, H., "A Frame Semantics approach to K insh ip" ,
ms. Univ. of Cal i forn ia, Berkeley. 1976

Winograd, T., Frame representations and the declarative
procedural controversy. In Bobrow, D.G. and Col l ins, A.
(Eds.). Representation and Understanding, New York:
Academic Press. 1975.

Winston, P., Learning structural descriptions f rom examples.
In P. Winston (Ed.). The psychology of computer vision.
New York: McGraw-H i l l , 1975.

Knowledge R e p r . - 2 : Bobrow
222

