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Abstract 

This paper discusses the problems of representing and 
reasoning with information about knowledge and action. The 
first section discusses the importance of having systems that 
understand the concept of knowledge, and how knowledge is 
related to action. Section 2 points out some of the special problems 
that are involved in reasoning about knowledge, and section S 
presents a logic of knowledge based on the idea of possible worlds. 
Section 4 integrates this with a logic of actions and gives an 
example of reasoning in the combined system. Section 5 makes 
some concluding comments. 

1. Introduction 

One of the most important concepts an intelligent system needs 
to understand is the concept of knowledge. AI systems need to 
understand what knowledge they and the systems or people they 
interact with have, what knowledge is needed to achieve 
particular goals, and how that knowledge can be obtained. This 
paper develops a formalism that provides a framework for stating 
and solving problems like these. For example, suppose that there 
is a safe that John wants to open. The common sense inferences 
that we would like to make might include: 

If John knows the combination, he can immediately open 
the safe. 

If John does not know the combination, he cannot 
immediately open the safe. 

If John knows where the combination is written, he can 
read the combination and then open the safe. 

In thinking about this example, consider how intimately the 
concept of knowledge is tied up with action. Reasoning about 
knowledge alone is of limited value. We may want to conclude 
from the fact that John knows A and B that he must also know C 
and D, but the real importance of such information is usually that 
it tells us something about what John can do or is likely to do. A 
major goal of my research has been to work out some of the 
interactions of knowing and doing. 

That this area has received little attention in AI is somewhat 
surprising. It is frequently stated that good interactive AI 
programs will require good models of the people they are 
communicating with. Surely, one of the most important aspects of 
a model of another person Is a model of what he knows. The 
only serious work on these problems in AI which I am aware of is 
a brief disscussion in McCarthy and Hayes (1969), and some more 
recent unpublished writings of McCarthy. In philosophy there is 
a substantial literature on the logic of knowledge and belief. A 
good introduction to this is Hintikka (1962) and papers by Quine, 
Kaplan, and Hintikka in Linsky (1971). Many of the ideas I will 
use come from these papers. 

In representing facts about knowledge and actions, I will use 
first-order predicate calculus, a practice which is currently 
unfashionable. It seems to be widely believed that use of 

predicate calculus necessarily leads to inefficient reasoning and 
information retrieval programs. I believe that this is an over-
reaction to earlier attempts to build domain-independent theorem 
provers based on resolution. More recent research, including my 
own M.S. thesis (Moore, 1975), suggests that predicate calculus can 
be treated in a more natural manner than resolution and 
combined with domain-dependent control information for greater 
efficiency. Furthermore, the problems of reasoning about 
knowledge seem to require the full ability to handle quantifiers 
and logical connectives which only predicate calculus posseses. 

Section 2 of this paper attempts to bring out some of the 
special problems involved in reasoning about knowledge. Section 
3 presents a formalism which I believe solves these problems, and 
Section 4 integrates this with a formalism for actions. Section 5 
makes some concluding comments. 

2. Problems in Reasoning about Knowledge 

Reasoning about knowledge presents special difficulties. It 
turns out that we cannot treat know" as just another relation. If 
we can represent "Block 1 is on Block2" by 0n(Blockl,Block2), we 
might be tempted to represent "John knows that P" simply by 
Know(John,P). This approach glosses over a number of problems. 
We might be suspicious from the first, since P is not the name of 
an object but is rather a sentence (or proposition). The semantics 
of predicate calculus forbid the arbitrary intermingling of 
sentences and terms for good reason. For one thing, the second 
argument position of Know is a referentially opaque context. 
Ordinarily in logic we can freely substitute an expression for one 
that is extensionally equivalent (i.e., one that has the same referent 
or truth value), without affecting the truth of the formula that 
contains the expression. This is called referential transparency. 
For example, if X ♦ Y = 7 and X = 3, then 3 ♦ Y = 7. This pattern 
of reasoning is not valid with Know. We cannot infer from 
Know(John,(X ♦ Y ■ 7)) and X • 3 that Know(John,(3 ♦ Y ■ 7)) is true, 
since John might not know the value of X. 

One possible solution to this problem is to make the second 
argument of Know the name of a formula rather than the formula 
itself. This is essentially the same idea as Goedel numbering, 
although it is not necessary to use such an obscure encoding as 
the natural numbers. We won't specify exactly how the encoding 
is done, but simply use "P" to represent a term denoting the 
formula P. The representation of "John knows that P" now 
becomes Know(John."P°). We are no longer in any danger of 
infering Know(John,MP(A)") from Know(John,"P(BD and A - B, 
because A is not contained in MP(A)" Only the name of A, i.e. 
"A", is contained, and since "A" does not equal "B", there is no 
problem. 

There is, however, a more serious problem, the fact that 
people can reason with their knowledge. We would expect a 
reasoning system to have built into it the ability to conclude B 
from A and A => B But if we treat Know as just an ordinary 
predicate, we will have no reason to suppose that Know(John,"A") 
and Know(John,"A B") might suggest KnowUohn.-B"). This 
problem is emphasised by the fact that there is no formal 
connection between a formula and its name. The fact that we 
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regard "P" as the name of P is entirely outside the system. To get 
around this, it is necessary to re-axiomatize the rules of logic 
w i th in the system, e.g. Va,p,q(Know(a/'p * q") A Know(a,"p") D 
Know(a,V)) . But if we hope to do automated reasoning, this 
amounts to re-programming the deductive system in first-order 
logic, and using the top-level inference routines as the interpreter. 
W h e n we consider the complexities of quantification and 
matching, it seems likely that this would be an inefficient process. 

A di f ferent idea which initially seems very appealing is to use 
the mult ip le data-base capabilities of advanced AI languages to 
set up a separate data base for each person whose knowledge we 
have some information about. We then can record what we know 
about his knowledge in that data base, and simulate his reasoning 
by runn ing our standard inference routines in that data base. 
T h i s idea seems to have wide currency in AI circles, and I 
advocated it myself in an earlier paper (Moore, 1973). 

Unfortunately, it doesn't work very well. It can handle simple 
statements of the form "John knows that P," but more complicated 
expressions cause trouble. Consider "John knows that P or John 
knows that Q." We can't represent this by simply adding 'P or 
Q," to the data base representing John's knowledge, because this 
would mean "John knows that P or Q," • something quite 
di f ferent. We could try setting up two data bases, DB1 and DB2, 
add " P " to one and "Q" to the other, and then assert in the main 
data base "DB1 represents John's knowledge, or DB2 represents 
John's knowledge." However, if we also wanted to assert "John 
knows that C, or John knows that D, or John knows that E," we 
would need six data bases to represent all the possibilites for 
John's knowledge - one for each of the combinations "A" and "C", 
B" and " C , A" and "D", etc. As we add more disjunctive 

assertions, we get a combinatorial explosion in the number of data 
bases. 

We also have a problem in representing "John doesn't know 
that P." We can't add "not P" to John's data base, because this 
would be asserting "John knows that not P," and simply omitt ing 
" P " f rom John's data base means that we don't know whether 
John knows that P. So it seems that what John doesn't know has 
to be kept separate from what he does know. But there are 
inferences that require looking at both. For example, if we have 
"John doesn't know that P," and "John knows that Q, implies P," 
we might want to conclude that "John doesn't know that Q," is 
probably true. Th i s is representative of a class of inferences that 
the data base approach doesn't capture. There seems to be a 
fundamental problem in saying things about a person's knowledge 
that go beyond simply enumerating what he knows. 

3. Reasoning about Knowledge via Possible Worlds 

Wh i l e there may be ways to directly attack the difficulties we 
have been discussing, there is a way to avoid them entirety by 
reformulat ing the problem in terms of possible worlds. When we 
want to reason about someone's knowledge, rather than talking 
about what facts he knows, we will talk about which of the 
various possible worlds might be, so far as he knows, the real 
wor ld. A person is never completely sure which possible world (or 
possible state of the world) he is in, because his knowledge is 
incomplete. We wi l l be wi l l ing to conclude that a person knows a 
part icular fact, if the fact is true in all the worlds that are possible 
according to what he knows. Th is idea is due to Hint ikka (1969), 
and is an adaptation of the semantics for modal logic developed 
chiefly by Kr ipke (1963). 

H in t i k ka uses these ideas about possible worlds to provide a 
model theory for a modal logic of knowledge. In order to use this 
theory directly for reasoning, we wil l axiomatize it in first-order 

logic. To do this, we must encode a language that talks about 
knowing facts (which we wi l l call the object language) into term 
expressions of a first-order language that talks about possible 
worlds (which we wi l l call the meta-language). Then we wil l have 
a relation T, such that T(W,P) means the object-language formula 
denoted by P is true in the possible world denoted by W. So that 
we can talk more easily about truth in the actual world, we wi l l 
have a predicate True, such that Trut(P) ■ T(W0,P), where WO Is a 
constant which refers to the actual world. We will also have a 
relation K(A,W1,W2), which means that W2 is a world which is 
possible according to what A knows in W i . The fundamental 
ax iom of knowledge is then Vwl,a,p(T(wl,Know(a,p) ■ 
Vw2(K(a,wl,w2) => T(w2,p)). Th is simply says that a person knows 
the facts that are true in every world that is possible according to 
what he knows. 

One problem with this axiom is that it is not universally true. 
For a perton to know everything that is true in all worlds which 
are possible as far as he knows, he would have to know all the 
logical consequences of his knowledge. Of course, he can know 
only some of them. But in any particular case, if we can see that 
a certain conclusion follows from someone's knowledge, we are 
probably justif ied in assuming that he can see this also. So we 
can regard this axiom as a rule of plausible inference, using it 
when needed, but being prepared to retract our conclusions if they 
generate contradictions. I wil l not attempt here to devlop a 
general theory of plausible reasoning, but I believe that a theory 
can be worked out that wi l l allow us to use this axiom in 
essentially its current form. 

I should clarify what type of possible worlds I have in mind. 
Rather than all logically possible worlds, we will consider only 
those worlds which are possible according to "common 
knowledge". So, I wi l l feel free to say that facts like "Fish live in 
water," are true in all possible worlds. This gives us an easy way 
of saying that not only does everyone know something, but 
everyone knows that everyone knows it, and everyone knows that 
everyone knows that everyone knows, etc. 

We can now give the ful l axiomatization of knowledge in 
terms of possible worlds: 

L l .T ru«(p l )«T(WO,p l ) 
L2. T (w l f (p l And p2)) ■ (T(wl,pl) A T(wl,p2)) 
L3. T(w l , (p l Or p2)) ■ (T(wl,pl) v T(wl,p2)) 
L4. T(wl , (p l -> p2)) ■ (T(wl,pl) = T(wl,p2)) 
L5. T(wl , (p l <•> p2)) ■ (T(wl,pl) ■ T(wl,p2)) 
L6. T (w l ,No t (p l ) )« -T (w l ,p l ) 

K l . T(wl tKnow(al fpl)) • Vw2(K(al,wl,w2) * T(w2,pl)) 
K2. K ( i l , w l , w i ) 
K3. « a l , w l , w 2 ) => (K(al,w2,w3) => K(al,wl,w3)) 
K4. K ( i l ,w l ,w2) => (K(al,wl,w3) => K(al,w2,w3)) 

Ax ioms LI - L6 just translate the logical connectives from the 
object language to the meta-language, using the ordinary Tarski 
def in i t ion of t ruth. For instance, according to L2, (A And B) is 
true in a world if and only if A is true in the world and B is true 
in the world. Kl is the fundamental axiom of knowledge which 
we already looked at. K2 says that each world is possible as far as 
anyone in that world can tell, which is another way of saying that 
if something is known then it is true. Although it may not be 
obvious, K3 and K4 imply that everyone knows whether he 
knows a certain fact. K2 - K4 imply that for fixed A, K(A,wl,w2) 
is an equivalence relation. Th is makes our logic of knowledge 
isomorphic to the modal logic S5. The correspondence between 
various modal logics and and possible-worlds models for them is 
discussed in Kripke(1963). 

T h i s representation gives us what we need. The meta-
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language translations of the object-language statements have a 
structure that reflects their logical properties. To illustrate the use 
of these axioms, we can prove that people can do simple 
inferences: 

Given True(Know(A,P) And Know(A,(P ■> Q))) 

Proofs in this paper use natural deduction. The right hand 
column gives the axioms and preceding lines which justify each 
step. Indented sections are subordinate proofs, and Ass marks the 
assumptions on which these subordinate proofs are based. Dis 
indicates the discharge of an assumption. 

Th i s proof is completely straight-forward. Lines 1 - 7 simply 
expand the given facts into possible-worlds notation. Then we 
pick wl as a typical world which is possible according to what A 
knows. In lines 9 - 12, we do the inference that we want to 
attr ibute to A. Since this inference can be done in an abitrarily 
chosen member of the set of worlds which are possible for A, it 
must be val id in all of them (line 13). From this we conclude that 
A can probably do the inference also (lines 14 - 15). 

So far 1 have avoided dealing with the problem of quantifiers. 
Exactly what do expressions like 3x(Know(A,P(x))). mean? This is 
not a simple assertion that someone knows a certain fact, so its 
in tu i t ive meaning may not be clear. The best paraphrase seems to 
be "There is something that A knows has property P." It is a 
matter of great dispute in philosophy exactly how to handle this. 
I w i l l take a pragmatic approach. To say that a person knows of 
something that it has property P means that he can name 
something that has property P. Furthermore, just any sort of 
name won't do. "The thing that has property P is no good, for 
instance. We wi l l say that A must know the standard name of the 
th ing that has P. Th is is, of course, a simplification. Not all 
things have standard names, and some things have different 
standard names in different contexts, but we will ignore these 
dif f icult ies to preserve the simplicity of the ordinary case. 
Abstract entities usually have unproblematical standard names -
"23" is the standard name of 23, "15 ♦ 8" is not. 

T u r n i n g to the model theory, the interpretation of the formula 
we are considering would be that there is something that is P in 
all worlds compatible with what A knows. That means that 
standard names must refer to the same thing in all possible 
worlds. There is a term for this in philosophy, rigid designator. 
We can greatly simplify our formalism if we require that all 
ord inary terms in the object language be rigid designators. We 
would then have to have a special notation for non-rigid 
designators, but this wi l l not come up in our examples, so I wi l l 
not develop that idea here. We can now give the axioms for 
quant i f iers and equality: 

L7 and L8 are axiom schemas relative to P and x, and vl is a 
met a-language variable that ranges over object-language 
variables. means the result of substituting x for vl in P. 

These three axioms may seem somewhat peculiar in that they 
appear to say that individuals in the world can be part of object-
language expressions. In L7 and L8, we took x, a variable 
ranging over real objects, and inserted it into P, the name of a 
sentence, implying that objects can be contained in sentences. To 
preserve the simplicity of the notation, without this apparent 
absurdity, we wi l l make the interpretation that all functions which 
represent atomic predicates in the object language (e.g. Eq) take 
ind iv iduals as arguments and return expressions containing the 
standard names of those individuals. 

4. In tegrat ing Knowledge and Action 

In order to integrate knowledge with actions, we need to 
formalize a logic of actions in terms comparable to our logic of 
knowledge. Happi ly, the standard Al way of looking at actions 
does Just that. Most AI programs that reason about actions view 
the world as a set of possible situations, and each action 
determines a binary relation on situations, one situation being the 
outcome of performing the action in the other situation. We wil l 
integrate knowledge and action by identifying the possible worlds 
in our logic of knowledge with the possible situations in our logic 
of actions. 

First, we need to define our formalism for actions exactly 
parallel to our formalism for knowledge. We wil l have an object-
language relation Res(E,P) which says that it is possible for event 
E to occur, and P would be true in the resulting situation. In the 
meta-language, we wil l have the corresponding relation 
R(E,W1,W2) which says that W2 is a possible situation/world which 
could result f rom event E happening in Wl . These two concepts 
are related in the following way: 

T h e existential clause on the right side of Rl says that it is 
possible for the event to occur, and the universal clause says that 
in every possible outcome the condition of interest is true. There 
is a direct parallel here with concepts of program correctness, the 
f irst clause expressing termination, and the second, partial 
correctness. 

We can extend the parallel with programming-language 
semantics to the structure of actions. We will have a type of event 
which is an actor performing an action, Do(A,C). (C stands for 
"command".) Actions can be built up from simpler actions using 
loops, conditionals, and sequences: 



R2 defines the step-by step expansion of while-loops: if the 
test is true, execute the body and repeat the loop, else do nothing. 
To prove general results we would need some sort of induction 
axiom. R3 defines the execution of a conditional action. Notice 
that being able to execute a conditional requires knowing whether 
the test condit ion is true. This differs from ordinary program 
conditionals, where the test condition is either assumed to be a 
decidable pr imi t ive, or is itself a piece of code to be executed. R4 
says that the result of carrying out a sequence of actions is the 
result of executing the first action, and then executing the rest. 
NI simply defines the no-op action we need for the definition of 
Loop. 

One of the most important problems we want to look at is 
how knowledge affects the ability to achieve a goal. Part of the 
answer is given in the definition of the notion Can. We wil l say 
that a person can br ing about a condition if and only if there is 
an action which he knows wil l achieve the condition: 

T h e idea is that to achieve something, a person must know of a 
plan for achieving it, and then be able to carry out the plan. 

We have seen a couple of ways that knowledge affects the 
possibility of action in R3 and C I . We now want to describe how 
actions affect knowledge. For actions that are not information-
acquir ing, we can simply say that the actor knows that he has 
performed the action. Since our axiomatization of particular 
actions implies that everyone knows what their effects are, this is 
sufficient. For information-acquiring actions, like looking at 
something, we wil l also add that the information has been 
acquired. Th is is best explained by a concrete example. Below, 
we wi l l work out an example about opening safes, so we wil l now 
look at the facts about dial ing combinations. 

Dl says that an actor can perform a dialing action if the thing 
he is d ia l ing is a combination, the thing he is dialing it on is a 
safe, and he is at the same place as the safe. D2 tells how dialing 
a combination affects whether the safe is open: if the combination 
is the combination of the safe, then the safe will be open; if it is 
not the combination of the safe and the safe was locked, the safe 
stays locked; if the safe was already open, it stays open. 

D3 describes how dial ing affects the knowledge of the dialer. 
Roughly it says that the actor knows he has done the dialing, and 
he now knows whether the safe is open. More precisely, it says 
that the worlds that are now possible as far as he knows are 
exactly those which are the result of doing the action in some 
previously possible world and in which the information acquired 
matches the actual world. Notice that by making the consequent 
of D3 a b icondi t ional , we have said that the actor has not 
acquired any other information by doing the action. Also notice 

that D3 is more subtle than just saying that whatever he knew 
before he knows now. This is not strictly true. He might have 
known before that the safe was locked, and now know that the 
safe is open. According to D3, if the actor knew before the action 
"P is true", after the action he knows "P was true before I did this 
action." 

Hav ing presented the basic formalism, I would now like to 
work out a simple example to illustrate its use. Simply stated, 
what I wi l l show is that if a person knows the combination of a 
safe, and he is where the safe is, he can open the safe. Besides 
the axioms for Dili, we will need two more domain-specific 
axioms: 

A 1 says that if one thing is the combination of another, the first 
th ing is a combination and the second thing is a safe. A2 says 
that a person knows what is around him. The proof is as follows: 

Giv*n: True(At(John,Sf)) 
Tru«(Exi6ts(X 1 ,Know(John,ls-comb-of (X1 ,Sf)))) 

T h e proof is actually simpler than it may look The real work 
is done in the ten steps between 10 and 19; the other steps are the 
overhead involved in translating between the object language and 
the meta language. Notice that we did not have to say explictly 
that someone needs to know the combination in order to open a 
safe. Instead we said something more general, that it is necessary 
to know a procedure in order to do anything. In this case, the 
combination is part of that procedure. It may also be interesting 
to point out what would have happened if we had said only that 
John knew the safe had a combination, but not that he knew 
what it was. If we had done that, the existential quantifier in the 
second assertion would have been inside the scope of Know. Then 
the Skolem constant C would have depended on the variable w l , 
and the step f rom 20 to 21 would have failed. 

5- Conclusions 

In summary, the possible-worlds approach seems to have two 
major advantages as a tool for reasoning about knowledge. First, 

KnowlpHjre Repr , 
226 

■ 2 : Moore 



it allows " l i f t ing" reasoning in knowledge contexts into the basic 
deductive system, eliminating the need for separate axioms or 
rules of inference for these contexts. Second, it permits a very 
elegant integration of the logic of knowledge with the logic of 
actions. 

Th i s approach seems to work very well as far as we have 
taken it, but there are some major issues we have not discussed. I 
have said nothing so far about procedures for reasoning 
automatically about knowledge. I have some results in this area 
which appear very promising, but they are too fragmentary for 
inclusion here. I have also avoided bringing up the frame 
problem, by not looking at any sequences of action. I am also 
work ing in this area, and I consider it one of the largest IOU's 
generated by this paper. However, the possible-worlds approach 
has an important advantage here. Whatever method is used to 
handle the frame problem, whether procedural or axiomatic, 
knowledge contexts wil l be handled automatically, simply by 
applying the method uniformly to all possible worlds. Th is 
should eliminate any difficulties of representing what someone 
knows about the frame problem. 

6. References 

H in t i kka , J. (1963) Knowledge and Belief. Ithica, New York: 
Cornell University Press. 

H in t i kka , J. (1969) Semantics for Propositional Attitudes, in 
Linsky (1971), 145-167. 

Rr ipke , S. (1963) Semantical Considerations on Modal Logic, in 
Linsky (1971), 63-72. 

Linsky, L. (ed.) (1971) Reference and Modality. London: Oxford 
University Press. 

McCarthy, J. and Hayes, P. J. (1969) Some Philosophical 
Problems f rom the Standpoint of Art i f ic ial Intelligence, in B. 
Meltzer and D. Michie (eds.) Machine Intelligence 4, 463-502. 
Ed inburgh: Edinburgh University Press. 

Moore, R. C (1973) D-SCRIPT: A Computational Theory of 
Descriptions. Advance Papers of the Third International Joint 
Conference on Artificial Intelligence, 223-229. 

Moore, R. C. (1975) Reasoning from Incomplete Knowledge in a 
Procedural Deduction System. M I T Art i f ic ial Intelligence 
Laboratory, Al -TR-347. 

KnowlpHp;e R e p r . - 2 : Moorp 
227 



A STATE L O G I C FOR, THE PEPPESENTATION OP 
NATURAL LANGUAGE 12ASED I N T E L L I G E N T SYSTEMS 

C a m i l i a P . S c) i w i n d 
T c c h n i s c h c U n i v o r s i t*~it M ' i n chen 

l u n i c h , FPG 

Summary 

Tho work d e s c r i b e d h e r e i n i n t r o d u c e s a g e ­
n e r a l l o g i c based f o r m a l i s m f o r t h e a c t i ­
ons o f an i n t e l l i g e n t system u n d e r s t a n d i n n 
n a t u r a l language s e n t e n c e s , e x e c u t i n g com-
nands and answer ing q u e s t i o n s . 

n a t u r a l 
language 

t r a n s l a t i o n 

s t a t e l o g i c d e r i v a t i o n s l o g i c a l 
f o rmu lae ^=-====- axioms 

i n t e r p r e t a t i o n 
o f the l o g i c 

c h a r n c t c r i -
K r i p k e - t y p e z a t i o n n n n - l o g i c a l 
mod e 1 :> : ax i om s 

The h e a r t o f t h i s f o r m a l system i s a s t a ­
t e (or tense) I o n i c c o n t a i n i n g s p e c i a l 
o p e r a t o r s f o r i m m e d i a t e l y nex t and p r e c e ­
d i n g s t a t e s (+,--) a s w e l l a s f o r a l l f u ­
t u r e s t a t e s (F) and a l l pas t s t a t e s (P) . 

N a t u r a l language t e x t s a re ana lysed s y n ­
t a c t i c a l l y and t r ansduced i n t o s t a t e l o ­
g i c f o r m u l a e by an a t t r i b u t e d grammar ( i n 
t h e same way as d e s c r i b e d by Sehw ind ) . 

The s t a t e l o g i c i s f o r m a l i z e d by a s e t o f 
l o g i c a l axioms and d e r i v a t i o n r u l e s f o r 
wh ich comp le teness has been p r o v e n . S i m i ­
l a r systems have a l s o been ment ioned by 
Rescher . But i n u s u a l t ense l o g i c sys tems , 
t he s t r u c t u r e o f t ense has been s t u d i e d 
o n l y a s t o i t s " pu re l o g i c a l " p r o p e r t i e s . 
In i n t e l l i g e n t systems however , wo nood 
theorems about t he n o n - l o g i c a l p r o p e r t i e s 
o f s t a t e changes . The tense s t r u c t u r e o f 
a w o r l d i s d e t e r m i n e d by changes w i t h i n 
t he w o r l d wh i ch a f f e c t t h e n o n - l o g i c a l sym­
b o l s o f t he w o r l d , i . e . t he f u n c t i o n s o r 
p r e d i c a t e s : I f a r o b o t t a k e s a b l o c k " a " 
l y i n g on a b l o c k " b " , t hen t h i s causes a 
change o f t h e w o r l d ( i . e . a s t a t e t r a n s i ­
t i o n ) w i t h t he meaning o f t h e p r e d i c a t e 
symbol ON c h a n g i n g . Such n o n - l o g i c a l chan ­
g e d e s c r i p t i o n s a re i n c o r p o r a t e d i n t o our 
f o r m a l sys tem. A model f o r t he s t a t e l o ­
g i c i s g i v e n b y a s e t o f c l a s s i c a l s t r u c ­
t u r e s M and a b i n a r y r e l a t i o n P on M 
where s P s ' means t h a t t h e s t a t e of t h e 
w o r l d s i m m e d i a t e l y p recedes t he s t a t e s 1 . 
T r u t h v a l u e s a re ass igned t o f o r m u l a e d e ­
pend ing o n t h e s t a t e o f t h e v /o r ld i n wh i ch 
the f o r m u l a i s e v a l u a t e d . And the s t a t e 
o p e r a t o r s t a k e i n t o accoun t t he t r u t h v a ­
l u e o f a f o r m u l a in some o t h e r s t a t e s 

wh i ch can be " r e a c h e d " f rom t h e a c t u a l 
s t a t e . T o r e p r e s e n t t h e knowledge i n c o r ­
p o r a t e d i n an i n t e l l i g e n t system by such 
K r i p k c - t y p e models we a s s i g n a n o n - l o g i c a l 
i n t e r p r e t a t i o n t o s t a t e t r a n s i t i o n s . The 
v e r y g e n e r a l model o f K r i p k e - s t r u c t u r e s 
i s used i n such a way t h a t t h e r e l a t i o n 
P bea rs a n o n - l o g i c a l mean ing . For two 
s t r u c t u r e s Ao and A , s P s' h o l d s i f f 
t h e ' ' v / o r l d " ° A , is o b t a i n e d f rom t h e 
w o r l d A „ as t h e ' r e s u l t o f an a c t i o n w h i c h 
can be execu ted w i t h i n A . V7hat a c t i o n s 
can be execu ted w i t h i n a v /o r ld depend on 
t h e e x t e n s i o n s o f t h e n o n - l o g i c a l symbo ls . 
On n a t u r a l language l e v e l a c t i o n s a re 
v e r b s . The e x e c u t i o n o f an a c t i o n has c o n ­
sequences on t h e e x t e n s i o n s o f t h e non-
l o g i c a l symbols o f t h e v / o r l d , i . e . a 
s t r u c t u r e i s s u b j e c t t o some change when­
ever t h e a c t i o n d e s c r i b e d b y t h e v e r b i s 
execu ted i n i t . I f somebody t a k e s a t h i n g 
t he p o s i t i o n o f t h a t t h i n ^ changes , i . e . 
t he e x t e n s i o n o f the p r e d i c a t e symbols ON, 
BEHIND e t c . and t h e e x t e n s i o n o f t h e v e r b 
p r e d i c a t e symbol HOLD changes , because t he 
pe rson h o l d s t h e t h i n g now. There a re a l ­
so p r e c o n d i t i o n s f o r t h e e x e c u t i o n o f an 
a c t i o n ; " a t a k e s b l : i s o n l y p o s s i b l e i f 
" a " does no t ye t h o l d a n y t h i n g and i f " b " 
has a P O s i t i o n such t h at i t can be ta ) :on , 
i . e . t h e r e i s n o t h i n g on " b " . We d e s c r i b e 
b o t h t he P r e c o n d i t i o n s and t he consequen­
ces o f an a c t i o n by n o n - l o g i c a l ax ioms . 
And t h e a p p r o p r i a t e s t r u c t u r e must have 
t h e p r o p e r t y t h a t i n wha tever s t a t e a l l 
t h e c o n d i t i o n s o f a n a c t i o n h o l d t h e r e 
must be some f o l l o w i n g s t a t e i n w h i c h i t s 
consequences a re r e a l i z e d . 

Example: A c t i o n v e r b " t a k e " 
P r e c o n d i t i o n axiom (PA) 
TAKE x y^HANO x ,-mHING y-\ 1H0LU x z -> _1 

ON z y T h i s means: x can t a k e y i f f x is 
a hand and y is a t h i n g and x does n o t 
h o l d any o t h e r o b j e c t and t h e r e i s 
n o t h i n g o n y . 
E x e c u t i o n a x i o m (FA) 
TAKE x y-*g+l[HOT,D x y A ~ lON y z] T h i s means: 
I f x t a k e s y t h e n t h e r e i s a n i m m e d i a t e l y 
f o l l o w i n g s t a t e such t h a t x h o l d s y and y 
i s n o t l y i n g o n a n y t h i n g . 
We c o u l d o n l y d e s c r i b e a s m a l l p a r t o f 
t h e p o s s i b i l i t i e s o f o u r f o r m a l i s m h e r e . 
W o a c t u a l l y d e v e l o p a p p l i c a t i o n examp les 
o f v e r y d i f f e r e n t t y p e s : one f o r t h e a n a ­
l y s i s o f t a l e s and one f o r t r a f f i c . 

P . H a y e s , A l o g i c o f A c t i o n s . M a c h i n e I n -
t e l l . 6 . p p . 4 9 5 - 5 2 o . E d . B . M e l t z c r + 
D . M i c h i e . E d i n b . U n i v e r s . P r e s s (1971) 
M . M i n s k y , A Framework f o r P e p r e s e n t i n g 
K n o w l e d g e . M . I . T . A . I . Memo 3o6 ( 6 . 1 9 7 4 ) 
N . P e s c h c r + A . U r q u h a r t , T e m p o r a l l o g i c . 
S p r i n g e r - V e r l a g , Wien 1971 
C . S e h w i n d , G e n e r a t i n g H i e r a r c h i c a l Seman­
t i c N e t w o r k s f r o m N a t u r a l Language D i s ­
c o u r s e . P r o c e e d , o f t h e I J C A I 4 , ( 9 . 1 9 7 5 ) 
T . W i n o g r a d , U n d e r s t a n d i n g N a t u r a l L a n g u a ­
g e . Academic P r e s s (1972) 
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1 I n t r o d u c t i o n 

T h i s paper i s about the " r e p r e s e n t a t i o n o f 
know ledge" i n p r o b l e m - s o l v i n g s y s t e m s . 1 f o c u s 
o n the r e p r e s e n t a t i o n o f f a c t s abou t the s t a t e o f 
t h e p rob lem s o l v e r i t s e l f , r a t h e r t han o n i t s 
r e p r e s e n t a t i o n s o f the c u r r e n t p rob lem s t a t e . 
The d i s c u s s i o n uses as an example the NASL 
p r o b l e m - s o l v i n g s y s t e m . (McDermot t , 1976) I t i s 
a rgued t h a t the range o f " r e p r e s e n t a t i o n a l v o ­
c a b u l a r i e s " d e t e r m i n e s the power o f a p rob lem 
s o l v e r . 

Every r e p r e s e n t a t i o n a l system has two a s ­
p e c t s : f o r m and c o n t e n t . I t s f o r m d e t e r m i n e s 
what can b e i n f e r r e d f rom w h a t ; i t s c o n t e n t d e ­
t e r m i n e s how what i s i n f e r r e d i s used by the user 
o f the r e p r e s e n t a t i o n a l s y s t e m . I n a b s t r a c t 
f o r m , such a system can be r e p r e s e n t e d by F i g . 
1 . 

F i g u r e 1 G e n e r a l R e p r e s e n t a t i o n System 

The d a t a base is managed by a " g a t e k e e p e r . " A d ­
d i t i o n s to the da ta base and r e q u e s t s to the 
g a t e k e e p e r f rom the u s e r ' s programs a r e i n terms 

o f the u s e r ' s c o n c e r n s . I n s i d e the d a t a b a s e , 
t h e y a r e t r a n s l a t e d i n t o p r o p e r t y - l i s t o p e r a ­
t i o n s , p a t t e r n m a t c h i n g , n e t w o r k m a r k i n g , o r some 
o t h e r i n t e r n a l r e p r e s e n t a t i o n f o r i n f e r e n t i a l 
p r o c e s s i n g . 

I d e a l l y , t he f o r m a l c o n v e n t i o n s used i n s i d e 
the da ta base shou ld be h i d d e n f rom the u s e r . 
There i s a c e r t a i n l e v e l o f r e p r e s e n t a t i o n a l 
power and r e t r i e v a l e f f i c i e n c y t h a t he can take 
f o r g r a n t e d (Moore , 1975) , so t h a t he w i l l be 
f r e e t o t h i n k i n p r o b l e m - o r i e n t e d t e r m s . Ano the r 
way t o pu t t h i s i s t h a t c o n t e n t must be a l l o w e d 
to be more i m p o r t a n t than f o r m . 

I n t h i s m o d e l , c o n t e n t appears a s the v o c a b ­
u l a r y t h e u s e r ' s programs use i n t a l k i n g t o the 
g a t e k e e p e r . S ince r a y f ocus i n t h i s paper i s o n 
the v o c a b u l a r y , l e t me expand F i g . 1 t o i l l u s ­
t r a t e some p o i n t s . 

F i g u r e 2 S t r u c t u r e o f U s e r ' s Programs 

The u s e r ' s programs o f t e n come in " m o d u l e s , " each 
o f wh i ch i s the p r i m a r y h o l d e r o f a s p e c i a l i z e d 
v o c a b u l a r y . For example , in the MYCIN sys tem 
( S h o r t l i f f e , 1976; D a v i s , 1976 ) , t h e r e a re two 
v o c a b u l a r i e s : a system of m e d i c a l terms and a 
" m e t a - v o c a b u l a r y " used i n c o n t r o l l i n g r u l e a p ­
p l i c a t i o n . I n s i d e the d a t a b a s e , most o f the 
r u l e s a re i n med i ca l t e r m s ; t he r u l e - a p p l i c a t i o n 
v o c a b u l a r y I s used by " m e t a - r u l c s . " 

An a l t e r n a t i v e way of a p p r o a c h i n g these 
i s s u e s wou ld be to l e t each module have i t s own 
d a t a base , g a t e k e e p e r , and f o r m a l c o n v e n t i o n s , 
n o t j u s t i t s own v o c a b u l a r y . For examp le , i n 
NOAH ( S a c e r d o t i , 1975 ) , t he p r o c e d u r a l net i s 
s t o r e d s e p a r a t e l y (as s p e c i a l - p u r p o s e l i s t 
s t r u c t u r e s ) f rom the QL1SP d a t a base used to 
r e p r e s e n t the c u r r e n t p rob lem m o d e l . The p rob lem 
w i t h t h i s app roach i s t h a t i t makes the communi­
c a t i o n c h a n n e l between any two modules ad hoc and 
c l umsy . In my m o d e l , the d a t a base i s the c h a n ­
n e l ; any two r u l e s i n the d a t a base can i n t e r ­
a c t , r e g a r d l e s s o f t h e i r o r i g i n o r , p r i n c i p a l v o ­
c a b u l a r y . 

A consequence of my model is t h a t symbols 
used by user programs have two k i n d s of "mean­
i n g " : t h e i r " i n f e r e n t i a l " mean ing , d e t e r m i n e d 
s o l e l y b y the b e h a v i o r o f t h e d a t a - b a s e e x p r e s ­
s i o n s i n w h i c h t hey appea r , and t h e i r " p r a g m a t i c " 
mean ing , w h i c h depends on the way in w h i c h t hey 
a l t e r the b e h a v i o r o f the user programs w h i c h 
employ them. F u r t h e r , a user module can use a 
symbol i n two d i f f e r e n t ways: i n e x p r e s s i o n s 
added to the d a t a base to t r i g g e r i n f e r e n c e s 
( t h u s , a s i t w e r e , t e l l i n g i t s e l f what i t ' s 
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do ing) , and in requests to the gatekeeper (which 
are o f ten asking what to do n e x t ) . C lea r l y , the 
same symbol may be used in both these ways. 

II The NASL Problem Solver 

NASL is a p r o b l e m - r e d u c t i o n p rob lem s o l v e r 
w h i c h has been a p p l i e d m a i n l y t o the p rob lem o f 
d e s i g n i n g s i m p l e e l e c t r o n i c c i r c u i t s . 
(McDermo t t , 1976) A s w i l l b e seen s h o r t l y , i t i s 
imp lemented as i n t e r l e a v e d p l a n n i n g and e x e c u t i o n 
m o d u l e s . The d a t a base is managed by a 
PLANNER-l ike ( H e w i t t , 1972) p r e d i c a t e - c a l c u l u s 
theorem p r o v e r , about wh i ch I w i l l say no more 
h e r e . (See McDermo t t , 1977.) I t s " p r o b l e m v o ­
c a b u l a r y " i n c l u d e s te rms p e r t a i n i n g t o d e v i c e s , 
c i r c u i t s , s i g n a l s , and component v a l u e s . What I 
w i l l d e s c r i b e a r e i t s " c o n t r o l v o c a b u l a r i e s . " 

A p r o b l e m s o l v e r is a system wh ich s o l v e s 
p rob lems by r e d u c i n g them to s i m p l e r subp rob lems , 
and u l t i m a t e l y t o " p r i m i t i v e s " wh i ch can b e 
s o l v e d b y b u i l t - i n p rog rams . A p rob lem s o l v e r 
must m a i n t a i n somewhere a d a t a s t r u c t u r e r e p r e ­
s e n t i n g i m p o r t a n t f e a t u r e s o f i t s c u r r e n t s t a t e . 
U s u a l l y t h i s d a t a s t r u c t u r e i s d i f f e r e n t f rom the 
d a t a s t r u c t u r e r e p r e s e n t i n g the c u r r e n t p rob lem 
s t a t e , o r " w o r l d m o d e l . " NASL, however , f o l l o w s 
t h e s t r u c t u r e o f F i g u r e 2 , and m a i n t a i n s a l l i t s 
d a t a s t r u c t u r e s i n the same p r e d i c a t e - c a l c u l u s 
d a t a b a s e . 

T h i s means t h a t the f o r m a l system used by 
NASL r e s t r i c t s a s l i t t l e a s p o s s i b l e the c o n t e n t 
and i n t e r a c t i o n o f the p r o b l e m - s t a t e and p rob lem 
s o l v e r - s t a t e d e s c r i p t i o n s . I n what f o l l o w s , I 
w i l l f i r s t d e s c r i b e the v o c a b u l a r i e s used b y NASL 
modu les , t h e n show r u l e s wh i ch i l l u s t r a t e the 
i n t e r a c t i o n s o f the concep ts t h e y d e f i n e . 

NASL l o o k s l i k e t h i s : 

These modules do n o t c o r r e s p o n d o n e - t o - o n e w i t h 
p r o g r a m s , b u t a r e o n l y c o n c e p t u a l . I n F i g u r e 3 , 
an a r r o w f r o m module A to module B means t h a t A 
"depends o n , " " p r e c e d e s , " o r " c a l l s " B . The 
c e n t r a l c y c l e i n t he g raph i s i n t e n d e d t o sugges t 
t h a t a p r o b l e m , o r " t a s k , " i s c r e a t e d , t hen 
s c h e d u l e d , t h e n e x e c u t e d , e i t h e r a s a p r i m i t i v e 
a c t i o n o r b y b e i n g reduced t o s u b t a s k s . 

A s w i l l b e seen s h o r t l y , t h e n o t a t i o n s used 
by these modules r e s u l t i n a t a s k n e t w o r k b e i n g 
r e p r e s e n t e d i n the da ta b a s e . 

Two o f t h e modules in F i g u r e 3 a r e w o r t h y o f 
f u r t h e r d e s c r i p t i o n now. The t a s k r e d u c e r t r i e s 
t o r e t r i e v e e x a c t l y one " p l a n " ( s e t o f s u b t a s k s ) 
t o c a r r y o u t i t s t a s k . T h i s a t t e m p t can f a i l i n 
two ways : e i t h e r too many p l a n s (more t h a n one) 
a r e r e t r i e v e d , o r t oo few (none a t a l l ) . I n the 
f i r s t c a s e , t h e c h o l c e module t r i e s t o choose 
among them. In the second , t h e r e p h r a s i n g module 
c r e a t e s a new t a s k wh i ch t r e a t s t he r e c a l c i t r a n t 
t a s k as an o b j e c t t o be t r a n s f o r m e d i n t o sub -
t a s k s ; t h a t i s , i t b r i n g s a l l t he p rob lem 
s o l v e r ' s r e s o u r c e s t o bear o n i t . 

I I . A NASL's Vocabularies and_ their Pragmatic 
Meanings 

Task Creat ion and C l a s s i f i c a t i o n — 

The basic predicate for descr ib ing tasks Is 

(TASK name 

< - i n p u t - d a t a - > ac t ion < -ou tpu t -da ta - >) 

which def ines a task w i th a ce r ta i n name, which 
ca r r i es out a ce r t a i n a c t i o n . Tasks in NASL can 
deduce or create In fo rmat ion , so there must be 
some mechanism fo r passing data from task to 
task. 

describes a task (COUPLER PLAN71) which couples 
two c i r c u i t s and c a l l s the r es u l t (CKT74). The 
ac t i on s l o t must be a func t ion which gives an 
ac t i on given the input data. (Angle brackets 
surround tup les ; " ? " ind ica tes a v a r i a b l e . ) 

I use the neut ra l word " task " to descr ibe a 
problem to be worked on, because the concept is 
intended to be broad. Most problem solvers r e ­
s t r i c t themselves to act ions which cause a ( rea l 
or simulated) change in the s tate of the problem 
model. For example, in the blocks wor ld , ac t ions 
cause the pos i t i ons of blocks to change. There 
are many act ions which do not s a t i s f y t h i s d e f i ­
n i t i o n , f o r example, "Think of someone who would 
be w i l l i n g to lend you $100"; and "While moving 
block A, avoid d i s tu rb ing the blocks on top of 
i t . " The f i r s t example d i f f e r s from the paradigm 
in that i t causes no change in the wor ld , but 
only the r e t r i e v a l of some in fo rma t ion . The 
second is an example of an ac t ion ( " a v o i d . . . " ) 
which is executed so le ly as an in f luence on the 
execut ion of another ac t ion ( " m o v e . . . " ) . Another 
such " p a r a s i t i c " ac t ion is "Wait here f i v e min­
u t e s . " 
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These c l a s s i f i c a t i o n s a re i n d i c a t e d b y u s i n g 
t h e p r e d i c a t e s 

(INFERENTIAL task-name a c t i o n ) 

t o i n d i c a t e a n i n f o r m a t i o n - r e t r i e v a l t a s k , and 

(POLICY task-name a c t i o n ) 

t o i n d i c a t e a t a s k w h i c h i s p a r a s i t i c . 

Task S c h e d u l i n g — 

Tasks a r e n o t execu ted as soon as t hey a r e 
c r e a t e d ( u n l i k e the r i g h t - h a n d s i d e s o f p r o d u c ­
t i o n s ( N e w e l l , 1 9 7 3 ) ) . They may be pos tponed by 
r u l e s u s i n g the " s c h e d u l i n g v o c a b u l a r y . " The 
b a s i c p r e d i c a t e here i s 

(SUCCESSOR t a s k - 1 t a s k - 2 ) 

w h i c h means ( r o u g h l y ) " t a s k - 1 must be execu ted or 
reduced b e f o r e t a s k - 2 . " The s c h e d u l e r examines 
SUCCESSOR f o r m u l a s , t h e n s e t s the. s t a t e of a t a s k 
u s i n g the p r e d i c a t e - c a l c u l u s t e rm 

(TASK-STATUS t a s k ) 

wh ich i s s u c c e s s i v e l y a s s e r t e d EQUAL ( i n the d a t a 
base) to PENDING, ENABLED, ACTIVE, and FINISHED. 
(The a c t u a l scheme is more comp lex . See 
McDermott (1976) f o r d e t a i l s . ) 

Task R e d u c t i o n — 

Even when a t a s k i s ENABLED, i t canno t u s u ­
a l l y b e execu ted i m m e d i a t e l y . I f i t s a c t i o n i s 
n o t a p r i m i t i v e ( i . e . , does n o t have a LISP 
f u n c t i o n t o c a r r y i t o u t ) , i t must b e reduced t o 
s u b t a s k s by t h e t ask r e d u c e r . Such t a s k s are-
c a l l e d " p r o b l e m a t i c . " The reduce r f i r s t c a l l s the 
theorem p r o v e r w i t h a r e q u e s t o f the fo rm 

(TO-DO task a c t i o n o u t p u t - d a t a ?PLAN) 

to r e t r i e v e a p l a n . A p l a n i s e i t h e r a s i n g l e 
a c t i o n , o r a p l a n schema ("macro a c t i o n " ) wh i ch 
expands i n t o a se t o f s u b t a s k s . (Fo r the d e ­
t a i l s , see. McDermot t , 1976.) E i t h e r way, new 
t a s k s a r e c r e a t e d b y t h e t ask r e d u c e r , a n d , f o r 
each o n e , a p r o p o s i t i o n o f the fo rm 

(SUBTASK n e w - t a s k p r o b l e m a t i c - t a s k ) 

i s r e c o r d e d . 

At any i n s t a n t , the 
form a network def ined 
formulas. 

set of created tasks 
by SUCCESSOR and SUBTASK 

Knowl e^frp Re 

F i g u r e k — Task Network Midway 
t h r o u g h D e s i g n i n g a H i - F i 

Here the a r rows i n d i c a t e SUCCESSOR f o r m u l a s . A 
t r i a n g l e p o i n t i n g f rom low nodes t o h i g h i n d i ­
c a t e s SUBTASK f o r m u l a s ; i . e . , t h e low nodes a r e 
the sub tasks o f t he h i g h one . 

P r i m i t i v e A c t i o n s — 

There a re o n l y a few p r i m i t i v e a c t i o n s i n 
the s y s t e m . When the user is s p e c i f y i n g a new 
doma in , he uses the p r e d i c a t e 

(MOD-MANIP task-name a c t i o n d e l e t e - l i s t a d d - l i s t ) 

t o d e f i n e new " p r i m i t i v e " a c t i o n s . ( C f . F i k e s 
and N i l s s o n , 1971) For example , to d e f i n e the 
e f f e c t o f PUTON in the b l o c k s w o r l d , one wou ld 
w r i t e 

The b u i l t - i n p r i m i t i v e s i n c l u d e 

> INFER — f o r i n f e r r i n g a new f a c t 

> FIND — p r i m i t i v e i n f o r m a t i o n r e t r i e v e r 

> NO-OP — used f o r r e l a b e l i n g c a l c u l a t e d d a t a 
> MONITOR — a p r i m i t i v e p o l i c y (used f o r i m p l e ­
men t i ng t h i n g s l i k e p r e r e q u i s i t e p r o t e c t i o n 
(Sussman, 1975) ) t o c r e a t e an " i n t e r r u p t " task 
when i t s m o n i t o r e d datum i s e r a s e d . 

Cho ice and R e p h r a s i n g — 

F i n a l l y , t h e r e a re the v o c a b u l a r i e s b e ­
l o n g i n g to the c h o i c e and r e p h r a s i n g modu les . 
The r e p h r a s e r does n o t have a v e r y r i c h v o c a b u ­
l a r y , a l a c k w h i c h r e f l e c t s the s h a l l o w n e s s o f my 
t h e o r i e s r e g a r d i n g i t . Rephras ing c u r r e n t l y 
c o n s i s t s o f c r e a t i n g a t a s k w i t h a c t i o n 

(REPHRASE r e c a l c i t r a n t - t a s k a c t i o n ) . 

T h i s f a l l s i n the c a t e g o r y o f " t e l l i n g y o u r s e l f 
what you a r e d o i n g . " I f t he u s e r ' s d o m a i n -
s p e c i f i c i n f o r m a t i o n does n o t i n c l u d e a p l a n f o r 
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r e p h r a s i n g t asks o f t h i s s o r t , t h e sys tem w i l l 
p roduce a t a s k w i t h a c t i o n (REPHRASE . . . (RE­
PHRASE . . . ) ) , f o r w h i c h t h e r e i s a b u i l t - i n p l a n 
t o s t o p and ask f o r h e l p . 

The c h o i c e v o c a b u l a r y i s s l i g h t l y r i c h e r . 
R a t h e r t h a n m e r e l y s e t up a " c h o i c e maker" t a s k , 
NASL e n t e r s a s p e c i a l c h o i c e p r o t o c o l . I n t h i s 
s p e c i a l m o d u l e , t h e o p t i o n s ( t h e s e t o f compe t i ng 
p l a n s ) a r e s e t up by b e i n g ment ioned i n f o r m u l a s 
o f t h e fo rm 

(OPTION cho ice -name op t i on -name 
o p t i o n - d e s c r i p t i o n ) 

Then a s e r i e s o f r e q u e s t s i s made to the i n f o r ­
m a t i o n r e t r i e v e r . Each i s o f one o f t hese f o r m s : 

(RULE-OUT o p t i o n - n a m e ) 
(RULE-IN o p t i o n - n a m e ) 
(RULE-TOGETHER < - o p t i o n s - > n e w - o p t i o n ) 

R e t r i e v e d f o r m u l a s i n s t r u c t the c h o i c e p r o t o c o l 
t o e l i m i n a t e o p t i o n s , f a v o r o p t i o n s , o r compose 
o p t i o n s ( i n d o m a i n - s p e c i f i c w a y s ) . The c y c l e 
c o n t i n u e s u n t i l o n l y one o p t i o n r e m a i n s , o r a l l 
o p t i o n s have been r u l e d o u t , o r no p r o g r e s s has 
been made on the l a s t l o o p . For examp le , t h e 
c i r c u i t - d e s i g n knowledge has r u l e s w h i c h sugges t 
how t o d e c i d e between a l t e r n a t i v e a m p l i f i e r c i r ­
c u i t s , and when t o t r y cascad ing them. 

I I * B I n f e r e n t i a l Meanings o f_ V o c a b u l a r i e s 

The p r e c e d i n g su rvey o f module v o c a b u l a r i e s 
may be t h o u g h t o f as an i n f o r m a l d e s c r i p t i o n o f 
t h e p r a g m a t i c component o f t h e i r meanings — how 
t h e y a r e used by t h e modu les . The r i c h n e s s o f 
t h e system d e r i v e s f r o m the " i n f e r e n t i a l " mean­
i n g s o f the same symbo ls , d e t e r m i n e d by t h e i r 
i n t e r a c t i o n s o n the o t h e r s i d e o f t he g a t e k e e p e r , 
t h a t i s , b y t h e i n t e r a c t i o n s o f t h e r u l e s c o n ­
t a i n i n g them. These i n t e r a c t i o n s a r e the medium 
o f commun ica t i on between modu les . 

An a c t of commun ica t i on o c c u r s when one 
module adds an e x p r e s s i o n to the d a t a base f r o m 
w h i c h a n e x p r e s s i o n o f i n t e r e s t t o a n o t h e r module 
may be i n f e r r e d . For examp le , one r u l e used by 
t h e d e s i g n e r i s 

w h i c h d e f i n e s t he e f f e c t o f t h e p a r a s i t i c a c t i o n 
CONSTRAIN as i n f l u e n c i n g the e x e c u t i o n of MAKE. 
I t sugges t s MAKE' ing an op-amp as a way of 
" s o l v i n g " (MAKE AMPLIFIER) in t he case where the 
a m p l i f i e r ' s v o l t a g e g a i n i s c o n s t r a i n e d t o b e 
h i g h . 

( B e f o r e g o i n g o n , I s h o u l d p o i n t o u t t h a t 
n o t a l l r u l e s r e l a t e two o r more module v o c a b u ­
l a r i e s . Most TO-DO r u l e s a r e " p l a n c o n t e x t " i n ­

dependen t . S ince in t h i s paper I am emphas i z i ng 
p r o b l e m - s o l v e r s t a t e d e s c r i p t i o n , I w i l l i g n o r e 
t h e p rob lem o f domain-dependent v o c a b u l a r i e s and 
t h e i r i n t e r a c t i o n s . ) 

The most common c l a s s e s of i n t e r a c t i o n s 
w h i c h 1 have observed a re t h e s e : 

( 1 ) TASK SUCCESSOR: Tasks w h i c h can 
i n t e r f e r e w i t h each o t h e r must t r i g g e r r u l e s t o 
s c h e d u l e them p r o p e r l y . For examp le , i n e l e c ­
t r o n i c s , t h e r e a re r u l e s t o the e f f e c t t h a t 

"Any componen t - va lue s e l e c t i o n s u b t a s k o f a 
d e s i g n t a s k must f o l l o w e v e r y t o p o l o g y - a l t e r i n g 
s u b t a s k . " 

(The f u l l r u l e , c a l l e d SELECT-POSTPONE, may be 
found i n McDermot t , 1976 ) . Many o f t h e " c r i t i c s " 
of S a c e r d o t i ' s (1975) NOAH may be t h o u g h t of as 
b u i l t - i n r u l e s o f t h i s k i n d . 

( 2 ) POLICY TO-DO: P o l i c i e s a r e d e f i n e d 
a s " p a r a s i t i c " a c t i o n s w h i c h i n f l u e n c e o t h e r a c ­
t i o n s . One way t h i s happens i s by d e d u c t i o n o f 
TO-DO f o r m u l a s . 1 gave an example of t h i s a b o v e . 

( 3 ) POLICY CHOICE r u l e : A n o t h e r common 
way t o d e f i n e p o l i c i e s ' e f f e c t s i s i n te rms o f 
t h e i r i n f l u e n c e o n the o p e r a t i o n o f t he c h o i c e 
p r o t o c o l used to p i c k among p l a n s . For examp le , 
one a m p l i f i e r - d e s i g n r u l e s a y s : 

" I n choos ing between a o n e - s t a g e common-
e m i t t e r and a m u l t i - s t a g e , i f t h e b a n d w i d t h i s 
CONSTRAINed to be HIGH, RULE-OUT the o n e - s t a g e . " 

( C f . DIFF-CE-N-STAGE, i n McDermot t , 1976) 

(A) TASK —> SUBTASK: Sometimes t a s k r e ­
d u c t i o n o c c u r s e n t i r e l y v i a i n f e r e n t i a l r u l e s ; 
t h e t a s k r e d u c e r j u s t i g n o r e s a n a l r e a d y - r e d u c e d 
t a s k . For examp le , b i a s and c o u p l i n g p l a n s f o r 
m u l t i - s t a g e c i r c u i t s o v e r l a p i n t h e i r d u t i e s . A 
t y p i c a l r u l e f rom a c o u p l i n g p l a n s a y s , 

"The tasks f o r c o u p l i n g t o the second s t a g e 
a l s o do the work o f b i a s i n g the base o f t h e 
s e c o n d - s t a g e t r a n s i s t o r . " 

(By t he way, t o make these r u l e s e f f e c t i v e , t h e r e 
i s a n o t h e r r u l e , o f " i n t e r a c t i o n t ype ( 1 ) , " w h i c h 
s a y s , "Do c o u p l i n g b e f o r e b i a s i n g . " ( C f . F i g u r e 
4 . ) See the r u l e s COUPLE-BEFORE-BIAS and CE-
DIR-VOL-COUPLE-PLAN i n McDermot t , 1976. ) 

There i s n o t h i n g s p e c i a l about t h i s l i s t o f 
common i n t e r a c t i o n s ; any r u l e may be used t h a t 
can be hand led by t he i n f e r e n t i a l s y s t e m . (Of 
c o u r s e , w e c a n ' t e x p e c t g e n i u s - l e v e l i n s i g h t f r om 
t h e d a t a - b a s e m a c h i n e r y . For i n s t a n c e , we must 
h e l p i t o u t b y t e l l i n g i t whe the r t o use a 
s t a t e m e n t o f t h e fo rm (IMPLIES p q) in a f o r w a r d 
o r backward d i r e c t i o n . C f . H e w i t t , 1972. ) 
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I l l Results 

The NASL system has been appl ied to two 
ra ther d i f f e r e n t tasks: e l e c t r o n i c - c i r c u i t de­
s ign and the blocks wor ld . Both app l i ca t ions are 
s t i l l being debugged. The f i r s t domain requires 
many ru les implementing theor ies of design and 
e l e c t r o n i c s ; the system cu r ren t l y possesses 
about 350 ru les de f in ing design, elementary 
e l e c t r o n i c s , t y p i c a l c i r c u i t s , standard b ias ing 
p lans, and much more; even so, i t s knowledge is 
p i t i f u l l y sketchy compared to what a technic ian 
knows. The blocks world was studied fo r a d i f ­
fe ren t reason: as a way of comparing NASL w i t h 
Sacerdot i ' s (1975) NOAH; in t h i s domain, the 
knowledge requi res about six pages of ru les (on 
the order of 30 r u l e s ) . 

NASL plus e lec t ron i cs and design ru les is 
ca l led DES1. DESI has never designed a c i r c u i t 
a l l the way through. I t has, however, given 
ample oppor tun i ty f o r tes t ing the power of NASL'S 
vocabu lar ies . The system at t h i s w r i t i n g is ca­
pable of doing most of the steps in some simple 
design tasks. For example, i t s theory of design 
spec i f i es a standard "design rephrasing p lan" 
which transforms design problems in ways vary ing 
from s p l i t t i n g conjunct ive problems i n to t he i r 
con juncts , to t r ans la t i ng s ignal -convers ion 
problems from the time to the frequency domain. 
(McDermott, 1976, 1978) 

The theory of design is f a i r l y domain-
s p e c i f i c . That i s , there is no general theory of 
pu t t i ng to use a new k ind of element; i ns tead , 
there are many prepackaged p a r t i a l plans fo r 
var ious tasks , and the main job of the designer 
is to coordinate them. It would be nice if some 
of the I n f e r e n t i a l i n t e r a c t i o n ru les of the l as t 
sect ion were deducible from knowledge about new 
devices, but accomplishing th i s seems very hard. 

A f te r NASL was devised for t h i s task, 1 
t r i e d apply ing i t to the rather d i f f e r e n t blocks 
wor ld , to see how general it was. My model was 
the NOAH program, which has several b u i l t - i n 
const ructs I thought could be expressed as r u l e s . 
Some cou ld ; some c o u l d n ' t . 

For example, the not ion of " p r e r e q u i s i t e " 
(Sacerdo t i , 1975; Sussman, 1975) is not b u i l t 
i n t o NASL. It can be defined by ru les which say 

" IF T l ' s e f f e c t P is a prereq of T2, then T2 
is a SUCCESSOR of T l , and there is a po l i cy TP to 
p ro tec t P u n t i l T2 is begun." 

the problem state a f t e r the predecessors are 
f i n i s h e d . NOAH can assume such a model is w e l l 
de f ined , because NOAH assumes act ions are def ined 
as s tate changes. NASL is pess imis t ic about the 
existence of such a model; it never reduces a 
task u n t i l i t i s time t o s t a r t executing i t . 

I t is i n s t r u c t i v e to th ink of t h i s as a de­
f i c i e n c y in vocabulary. That i s , there is no 
ac t ion of the form "reduce a task" which NASL can 
carry ou t . There is also no b u i l t - i n term (BE­
FORE task) which would designate the problem 
model in which to carry out the reduct ion (but I 
be l ieve t h i s could be defined now in terms of 
th ings l i k e MOD-MANIP wi thout extensions to 
NASL). NOAH, on the other hand, has a more 
l i m i t e d not ion o f " t a s k , " in which a l l tasks are 
n o n - i n f e r e n t i a l and non-paras i t i c , have foresee­
able e f f e c t s , and do not compute r e s u l t s . This 
enabled i t s author to separate planning from ex­
ecut ion c lean ly . 

IV Conclusions 

1 have presented a model of using a repre­
sen ta t iona l system, espec ia l l y i t s use by a 
problem solver to represent i t s s t a t e . The model 
assigns to each module of a problem solver a vo-
cabulary cons is t ing of symbols w i th spec ia l 
meanings not der ived from i n f e r e n t i a l i n t e rac ­
t i o n s . I appl ied the model to the desc r i p t i on of 
the NASL system (McDermott, 1976), and sketched a 
comparison w i th NOAH. (Sacerdot i , 1975) 

This model has the fo l low ing advantages: 

(1) Exposi tory c l a r i t y — In descr ib ing a 
problem so lver , one can fac to r the desc r i p t i on 
in to a fo rma l , representa t iona l component, and a 
"pragmatic" representat ion user. 

(2) Modular implementation — The two pieces 
can be implemented and optimized separa te ly . 
(McDermott, 1976) 

(3) Ease of comparison — Many d i f fe rences 
between programs can be expressed as a d i f f e rence 
in vocabulary. 

(4) Ease of experimentat ion — To add a new 
module is to add a new vocabulary, as fa r as the 
representa t ion system is concerned. There are no 
unnecessary r e s t r i c t i o n s on form, and no need fo r 
a set of spec ia l communication channels between a 
new module and the o ld ones. 

(Pro tec t ion must be fu r the r defined in terms of 
MONITOR.) The no t ion of p rerequ is i te can then be 
used in two ways: pass ive ly , to catch "p ro tec ­
t i o n v i o l a t i o n s " (Sussman, 1975); and a c t i v e l y , 
as a t r i g g e r of c r i t i c s l i k e "Resolve C o n f l i c t s . " 
(Sacerdo t i , 1975) 

One i r r e d u c i b l e d i f fe rence between NASL and 
NOAH is NASL's i n a b i l i t y to reduce a task before 
i t s predecessors are reduced. To be able to do 
t h i s , one must have at least a p a r t i a l model of 

The model br ings out these points about NASL 

(1) It has an unconstrained not ion of prob­
lem, the " t a s k . " Tasks may be " i n f e r e n t i a l " or 
" p a r a s i t i c , " and may compute and receive data 
from other tasks. 

233 
McDernott 



(2) NASL in te r leaves planning and execution 
t i g h t l y . Planning amounts to the execut ion of a 
problematic task . 

(3) NASL is incapable of " lookahead" task 
reduc t i on . There is no b u i l t - i n term fo r the 
s ta te of a f f a i r s a f t e r an a c t i o n . 

(4) More gene ra l l y , NASL r e l i e s on "shal low 
reasoning" f o r th ink ing about plans. I t does not 
conta in a complete ax iomat izat ion of any p ro­
gramming language, and cannot prove the co r rec t ­
ness of any of i t s p lans. The reason it is suc­
cess fu l i n sp i te o f these l i m i t a t i o n s i s that i t 
represents i t s cur rent plan in a very redundant 
way; almost a l l features of i n t e res t can be r e ­
t r i eved q u i c k l y . This means that i n t e r e s t i n g 
advice about the domain is l i k e l y to be e f f i ­
c i e n t l y representable. In a complex and uncer­
t a i n wo r ld , t h i s is probably the best we can do. 

The model is s t i l l under development. One 
area in which it needs work is in a general 
cha rac te r i za t i on of modules which would al low us 
to be as u n r e s t r i c t i v e yet precise in descr ib ing 
the "pragmat ic" component of symbol meaning as 
pred icate ca lcu lus al lows us to be in descr ib ing 
the " i n f e r e n t i a l " component. So f a r , we must 
make do wi th English descr ip t ions l i k e those of 
Sect ion I I . 

One p o s s i b i l i t y is to use a product ion sys­
tem fo r t h i s . That I s , a problem solver would be 
described by a set of " s ta te t r a n s i t i o n " ru les 
whose le f t -hand sides described problem-solver 
s ta tes and whose r ight-hand sides spec i f i ed 
changes in terms neut ra l enough to cover a l l 
problem so lve rs . Modules would correspond to 
groups of productions sharing a vocabulary. A 
problem solver would then consist of two comple­
mentary pa t te rn -d i rec ted systems, one to do i n ­
ference, the other to do a c t i o n . This has a 
c e r t a i n pleasing symmetry. 
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