REASONING ABOUT KNOWLEDGE AND ACTION

Robert C. Moore
Artificial Intelligence Laboratory
Stanford University
Stanford. California 94S05

Abstract

This paper discusses the problems of representing and
reasoning with information about knowledge and action. The
first section discusses the importance of having systems that
understand the concept of knowledge, and how knowledge is
related to action. Section 2 points out some of the special problems
that are involved in reasoning about knowledge, and section S
presents a logic of knowledge based on the idea of possible worlds.
Section 4 integrates this with a logic of actions and gives an
example of reasoning in the combined system. Section 5 makes
some concluding comments.

1. Introduction

One of the most important concepts an intelligent system needs
to understand is the concept of knowledge. Al systems need to
understand what knowledge they and the systems or people they
interact with have, what knowledge is needed to achieve
particular goals, and how that knowledge can be obtained. This
paper develops a formalism that provides a framework for stating
and solving problems like these. For example, suppose that there
is a safe that John wants to open. The common sense inferences
that we would like to make might include:

If John knows the combination, he can immediately open
the safe.

If John does not know the combination, he cannot
immediately open the safe.

If John knows where the combination is written, he can
read the combination and then open the safe.

In thinking about this example, consider how intimately the
concept of knowledge is tied up with action. Reasoning about
knowledge alone is of limited value. We may want to conclude
from the fact that John knows A and B that he must also know C
and D, but the real importance of such information is usually that
it tells us something about what John can do or is likely to do. A
major goal of my research has been to work out some of the
interactions of knowing and doing.

That this area has received little attention in Al is somewhat
surprising. It is frequently stated that good interactive Al
programs will require good models of the people they are
communicating with. Surely, one of the most important aspects of
a model of another person Is a model of what he knows. The
only serious work on these problems in Al which | am aware of is
a brief disscussion in McCarthy and Hayes (1969), and some more
recent unpublished writings of McCarthy. In philosophy there is
a substantial literature on the logic of knowledge and belief. A
good introduction to this is Hintikka (1962) and papers by Quine,
Kaplan, and Hintikka in Linsky (1971). Many of the ideas | will
use come from these papers.

In representing facts about knowledge and actions, | will use
first-order predicate calculus, a practice which is currently
unfashionable. It seems to be widely believed that use of

predicate calculus necessarily leads to inefficient reasoning and
information retrieval programs. | believe that this is an over-
reaction to earlier attempts to build domain-independent theorem
provers based on resolution. More recent research, including my
own M.S. thesis (Moore, 1975), suggests that predicate calculus can
be treated in a more natural manner than resolution and
combined with domain-dependent control information for greater
efficiency. Furthermore, the problems of reasoning about
knowledge seem to require the full ability to handle quantifiers
and logical connectives which only predicate calculus posseses.

Section 2 of this paper attempts to bring out some of the
special problems involved in reasoning about knowledge. Section
3 presents a formalism which | believe solves these problems, and
Section 4 integrates this with a formalism for actions. Section 5
makes some concluding comments.

2. Problems in Reasoning about Knowledge

Reasoning about knowledge presents special difficulties. It
turns out that we cannot treat know" as just another relation. If
we can represent "Block 1 is on Block2" by On(Blockl,Block2), we
might be tempted to represent "John knows that P" simply by
Know(John,P). This approach glosses over a number of problems.
We might be suspicious from the first, since P is not the name of
an object but is rather a sentence (or proposition). The semantics
of predicate calculus forbid the arbitrary intermingling of
sentences and terms for good reason. For one thing, the second
argument position of Know is a referentially opaque context.
Ordinarily in logic we can freely substitute an expression for one
that is extensionally equivalent (i.e., one that has the same referent
or truth value), without affecting the truth of the formula that
contains the expression. This is called referential transparency.
For example, if X ¢ Y =7 and X =3, then 3 ¢ Y=7. This pattern
of reasoning is not valid with Know. We cannot infer from
Know(John,(X ¢ Y m 7)) and X « 3 that Know(John,3 ¢ Y m 7)) is true,
since John might not know the value of X.

One possible solution to this problem is to make the second
argument of Know the name of a formula rather than the formula
itself. This is essentially the same idea as Goedel numbering,
although it is not necessary to use such an obscure encoding as
the natural numbers. We won't specify exactly how the encoding
is done, but simply use "P" to represent a term denoting the
formula P. The representation of "John knows that P" now
becomes Know(John."P°). We are no longer in any danger of
infering Know(JohnYP(A)") from Know(John,"P(BD and A - B,
because A is not contained in “P(A)' Only the name of A, ie.
"A", is contained, and since "A" does not equal "B", there is no
problem.

There is, however, a more serious problem, the fact that
people can reason with their knowledge. We would expect a
reasoning system to have built into it the ability to conclude B
from A and A => B But if we treat Know as just an ordinary
predicate, we will have no reason to suppose that Know(John,"A")
and Know(John,"A B") might suggest KnowUohn.-B"). This
problem is emphasised by the fact that there is no formal
connection between a formula and its name. The fact that we

Knowledge Repr.-2: Moore

223

regard "P" as the name of P is entirely outside the system. To get
around this, it is necessary to re-axiomatize the rules of logic
within the system, e.g. Va,p,q(Know(a/’p * q") A Know(a,"p") D
Know(a,V)). But if we hope to do automated reasoning, this
amounts to re-programming the deductive system in first-order
logic, and using the top-level inference routines as the interpreter.
When we consider the complexities of quantification and
matching, it seems likely that this would be an inefficient process.

A different idea which initially seems very appealing is to use
the multiple data-base capabilities of advanced Al languages to
set up a separate data base for each person whose knowledge we
have some information about. We then can record what we know
about his knowledge in that data base, and simulate his reasoning
by running our standard inference routines in that data base.
This idea seems to have wide currency in Al circles, and |
advocated it myself in an earlier paper (Moore, 1973).

Unfortunately, it doesn't work very well. It can handle simple
statements of the form "John knows that P," but more complicated
expressions cause trouble. Consider "John knows that P or John
knows that Q." We can't represent this by simply adding 'P or
Q," to the data base representing John's knowledge, because this
would mean "John knows that P or Q," ¢ something quite
different. We could try setting up two data bases, DB1 and DB2,
add "P" to one and "Q" to the other, and then assert in the main
data base "DB1 represents John's knowledge, or DB2 represents
John's knowledge." However, if we also wanted to assert "John
knows that C, or John knows that D, or John knows that E," we
would need six data bases to represent all the possibilites for
John's knowledge - one for each of the combinations "A" and "C",
B" and "C, A" and "D", etc. As we add more disjunctive
assertions, we get a combinatorial explosion in the number of data
bases.

We also have a problem in representing "John doesn't know
that P." We can't add "not P" to John's data base, because this
would be asserting "John knows that not P," and simply omitting
"P" from John's data base means that we don't know whether
John knows that P. So it seems that what John doesn't know has
to be kept separate from what he does know. But there are
inferences that require looking at both. For example, if we have
"John doesn't know that P," and "John knows that Q, implies P,"
we might want to conclude that "John doesn't know that Q," is
probably true. This is representative of a class of inferences that
the data base approach doesn't capture. There seems to be a
fundamental problem in saying things about a person's knowledge
that go beyond simply enumerating what he knows.

3. Reasoning about Knowledge via Possible Worlds

While there may be ways to directly attack the difficulties we
have been discussing, there is a way to avoid them entirety by
reformulating the problem in terms of possible worlds. When we
want to reason about someone's knowledge, rather than talking
about what facts he knows, we will talk about which of the
various possible worlds might be, so far as he knows, the real
world. A person is never completely sure which possible world (or
possible state of the world) he is in, because his knowledge is
incomplete. We will be willing to conclude that a person knows a
particular fact, if the fact is true in all the worlds that are possible
according to what he knows. This idea is due to Hintikka (1969),
and is an adaptation of the semantics for modal logic developed
chiefly by Kripke (1963).

Hintikka uses these ideas about possible worlds to provide a
model theory for a modal logic of knowledge. In order to use this
theory directly for reasoning, we will axiomatize it in first-order

Knowlf»H*:e Renr.-2:
22U

logic. To do this, we must encode a language that talks about
knowing facts (which we will call the object language) into term
expressions of a first-order language that talks about possible
worlds (which we will call the meta-language). Then we will have
a relation T, such that T(W,P) means the object-language formula
denoted by P is true in the possible world denoted by W. So that
we can talk more easily about truth in the actual world, we will
have a predicate True, such that Trut(P) m T(WO,P), where WO Is a
constant which refers to the actual world. We will also have a
relation K(A,W1,W2), which means that W2 is a world which is
possible according to what A knows in Wi. The fundamental
axiom of knowledge is then Vwla,p(T(wl,Know(a,p) =
Vw2(K(a,wl,w2) => T(w2,p)). This simply says that a person knows
the facts that are true in every world that is possible according to
what he knows.

One problem with this axiom is that it is not universally true.
For a perton to know everything that is true in all worlds which
are possible as far as he knows, he would have to know all the
logical consequences of his knowledge. Of course, he can know
only some of them. But in any particular case, if we can see that
a certain conclusion follows from someone's knowledge, we are
probably justified in assuming that he can see this also. So we
can regard this axiom as a rule of plausible inference, using it
when needed, but being prepared to retract our conclusions if they
generate contradictions. | will not attempt here to deviop a
general theory of plausible reasoning, but | believe that a theory
can be worked out that will allow us to use this axiom in
essentially its current form.

| should clarify what type of possible worlds | have in mind.
Rather than all logically possible worlds, we will consider only
those worlds which are possible according to “"common
knowledge". So, | will feel free to say that facts like "Fish live in
water," are true in all possible worlds. This gives us an easy way
of saying that not only does everyone know something, but
everyone knows that everyone knows it, and everyone knows that
everyone knows that everyone knows, etc.

We can now give the full axiomatization of knowledge in
terms of possible worlds:

LL.Tru«(pl)«T(WO,pl)
L2. T(wle(p! And p2)) m (T(wl,pl) A T(wl,p2))
L3. T(wl,(pl Or p2)) m (T(wl,pl) v T(wl,p2))

L4. T(wl,(pl -> p2)) m (T(wl,pl) = T(wl,p2))

L5. T(wl,(pl <> p2)) m (T(wl,pl) m T(wl,p2))

L6. T(wl,Not(pl))«-T(wl,pl)

KI. T(wliKnow(alipl)) « Vw2(K(al,wl,w2) * T(w2,pl))
K2. K(il,wl,wi)

K3. «al,wl,w2) => (K(al,w2,w3) => K(al,wl,w3))

K4. K(il,wl,w2) => (K(al,wl,w3) => K(al,w2,w3))

Axioms LI - L6 just translate the logical connectives from the
object language to the meta-language, using the ordinary Tarski
definition of truth. For instance, according to L2, (A And B) is
true in a world if and only if A is true in the world and B is true
in the world. KI is the fundamental axiom of knowledge which
we already looked at. K2 says that each world is possible as far as
anyone in that world can tell, which is another way of saying that
if something is known then it is true. Although it may not be
obvious, K3 and K4 imply that everyone knows whether he
knows a certain fact. K2 - K4 imply that for fixed A, K(A,wl,w2)
is an equivalence relation. This makes our logic of knowledge
isomorphic to the modal logic S5. The correspondence between
various modal logics and and possible-worlds models for them is
discussed in Kripke(1963).

The meta-

This representation gives us what we need.

Moore

language translations of the object-language statements have a
structure that reflects their logical properties. To illustrate the use
of these axioms, we can prove that people can do simple
inferences:

Given True(Know(A,P) And Know(A,(P => Q)))

Prove: Trus{Know{A,Q)}

). Trus{Know(A,P) And Know(A,(F »» Q))) Givan
2. TIWO,(Know{A,2) And Know(a,(P = Q})}) L,
3. T(WO,Know{A,P)) A T(WOKnow(A,(P => Q))) 12,2
A. TIWO KnowtA,P)) 3

5. K(AWO,wl) ® Tiwi P) Kl 4
6. T{WO,Know{A,(P »> Q))) 3

7. K(A,m,*l, = T"lv‘P - Qn Kll‘
B K{AWOwI) Aas
9. TiwlP) 5.8
10. Tiwi,(P» Q) T3
15, Tiwl,P) 2 Tiwl Q) L4,l0
12, Tiwl,Q) 19
13. KIAWO,w1) = T{wl,Q) Die{8,12)
14, T{WO,Know(A,0)) K1,13
15. True({Know(A,Q)) L1,14

Proofs in this paper use natural deduction. The right hand
column gives the axioms and preceding lines which justify each
step. Indented sections are subordinate proofs, and Ass marks the
assumptions on which these subordinate proofs are based. Dis
indicates the discharge of an assumption.

This proof is completely straight-forward. Lines 1 - 7 simply
expand the given facts into possible-worlds notation. Then we
pick wl as a typical world which is possible according to what A
knows. In lines 9 - 12, we do the inference that we want to
attribute to A. Since this inference can be done in an abitrarily
chosen member of the set of worlds which are possible for A, it
must be valid in all of them (line 13). From this we conclude that
A can probably do the inference also (lines 14 - 15).

So far 1 have avoided dealing with the problem of quantifiers.
Exactly what do expressions like 3x(Know(A,P(x))). mean? This is
not a simple assertion that someone knows a certain fact, so its
intuitive meaning may not be clear. The best paraphrase seems to
be "There is something that A knows has property P." It is a
matter of great dispute in philosophy exactly how to handle this.
I will take a pragmatic approach. To say that a person knows of
something that it has property P means that he can name
something that has property P. Furthermore, just any sort of
name won't do. "The thing that has property P is no good, for
instance. We will say that A must know the standard name of the
thing that has P. This is, of course, a simplification. Not all
things have standard names, and some things have different
standard names in different contexts, but we will ignore these
difficulties to preserve the simplicity of the ordinary case.
Abstract entities usually have unproblematical standard names -
"23" is the standard name of 23, "15 ¢ 8" is not.

Turning to the model theory, the interpretation of the formula
we are considering would be that there is something that is P in
all worlds compatible with what A knows. That means that
standard names must refer to the same thing in all possible
worlds. There is a term for this in philosophy, rigid designator.
We can greatly simplify our formalism if we require that all
ordinary terms in the object language be rigid designators. We
would then have to have a special notation for non-rigid
designators, but this will not come up in our examples, so | will
not develop that idea here. We can now give the axioms for
quantifiers and equality:

L7. T{w] Existivi P} « 3x(T(wl,P[x/v1)}
provided x is not free in P

LE. Tiwl All(vl,P}) » ¥x(Tiwl Plx/v1]))
provided x is not free in P

LS, Tiwl Eqixl,x2}) = {xi = x2)

L7 and L8 are axiom schemas relative to P and x, and vl is a
met a-lanayage variable that ranges over object-language
variables. P{xf¥1] means the result of substituting x for vl in P.

These three axioms may seem somewhat peculiar in that they
appear to say that individuals in the world can be part of object-
language expressions. In L7 and L8, we took x, a variable
ranging over real objects, and inserted it into P, the name of a
sentence, implying that objects can be contained in sentences. To
preserve the simplicity of the notation, without this apparent
absurdity, we will make the interpretation that all functions which
represent atomic predicates in the object language (e.g. Eq) take
individuals as arguments and return expressions containing the
standard names of those individuals.

4. Integrating Knowledge and Action

In order to integrate knowledge with actions, we need to
formalize a logic of actions in terms comparable to our logic of
knowledge. Happily, the standard Al way of looking at actions
does Just that. Most Al programs that reason about actions view
the world as a set of possible situations, and each action
determines a binary relation on situations, one situation being the
outcome of performing the action in the other situation. We will
integrate knowledge and action by identifying the possible worlds
in our logic of knowledge with the possible situations in our logic
of actions.

First, we need to define our formalism for actions exactly
parallel to our formalism for knowledge. We will have an object-
language relation Res(E,P) which says that it is possible for event
E to occur, and P would be true in the resulting situation. In the
meta-language, we will have the corresponding relation
R(E,W1,W2) which says that W2 is a possible situation/world which
could result from event E happening in WI. These two concepts
are related in the following way:

RL. Tiwl Renlal pli}s
(Iw2(R{al wiw2)) A ¥Yw2Z(R{al,wl w2} > Tiw2pl)))

The existential clause on the right side of Rl says that it is
possible for the event to occur, and the universal clause says that
in every possible outcome the condition of interest is true. There
is a direct parallel here with concepts of program correctness, the
first clause expressing termination, and the second, partial
correctness.

We can extend the parallel with programming-language
semantics to the structure of actions. We will have a type of event
which is an actor performing an action, Do(A,C). (C stands for
"command".) Actions can be built up from simpler actions using
loops, conditionals, and sequences:

R2. T{iw1 ReaiDotal Loopipl cl)}p2) n
Tiwl Rex{Do{s) lipl {c} sLoopip} c13),Nil}),p2))

R3. T{wl Ras{Dolal Hipl.cie2))p2)n
((T{w] Knowlai pi)) A Tiwl Ree(Do(sl cl},p2}) v
{Tiwl Know(sl Not{pl)}) A T{w] Res(Dofal,c2},p2)))

Knowledpe Repr.-2: Moore

225

R4, T{wl.Res{Do,al, (cl52))pl}»
Tiwi ,Ree(Dolal c]},Res(Dolal c2),pi))}

N1. R{De(al Nillwl w2} s (w] « w2)

R2 defines the step-by step expansion of while-loops: if the
test is true, execute the body and repeat the loop, else do nothing.
To prove general results we would need some sort of induction
axiom. R3 defines the execution of a conditional action. Notice
that being able to execute a conditional requires knowing whether
the test condition is true. This differs from ordinary program
conditionals, where the test condition is either assumed to be a
decidable primitive, or is itself a piece of code to be executed. R4
says that the result of carrying out a sequence of actions is the
result of executing the first action, and then executing the rest.
NI simply defines the no-op action we need for the definition of
Loop.

One of the most important problems we want to look at is
how knowledge affects the ability to achieve a goal. Part of the
answer is given in the definition of the notion Can. We will say
that a person can bring about a condition if and only if there is
an action which he knows will achieve the condition:

Cl. T{wl,Can{al,pl}}» 3cl{T{wl Knowial Res(Do{a} cl),p}})}

The idea is that to achieve something, a person must know of a
plan for achieving it, and then be able to carry out the plan.

We have seen a couple of ways that knowledge affects the
possibility of action in R3 and Cl. We now want to describe how
actions affect knowledge. For actions that are not information-
acquiring, we can simply say that the actor knows that he has
performed the action. Since our axiomatization of particular
actions implies that everyone knows what their effects are, this is
sufficient. For information-acquiring actions, like looking at
something, we will also add that the information has been
acquired. This is best explained by a concrete example. Below,
we will work out an example about opening safes, so we will now
look at the facts about dialing combinations.

D1. Aw2({R{Do{al Dial{x) x2}),wi w2) »
{Tiwl,Combixl)) A T{wi Snie(x2)) A Tiwl At{al x2)})

D2. R(Dolal Disl{x] x2))wiw2) o
[(T(wi Je=comb=01{x],x2)} = T{w2,Dpan{x2}}) A
{{~T{w] ls-comb-oi(x1 x2)) A -T{wl Qpen{x2}} =

~Tiw2,Dpan{x2)}) A
(Tiw1,0pen(x2)) = Tiw2,0psnix2)})

03, R{Dolal Dinflx) x2))wi,w2l 2
{Klal w2,w3) » {T{w2,Openix2)) & T{w3,0pan(x2)}) A
IwA(K(el,w]l ,w4) A R(Dofal Dialix] x2)),wa,w3}))

DI says that an actor can perform a dialing action if the thing
he is dialing is a combination, the thing he is dialing it on is a
safe, and he is at the same place as the safe. D2 tells how dialing
a combination affects whether the safe is open: if the combination
is the combination of the safe, then the safe will be open; if it is
not the combination of the safe and the safe was locked, the safe
stays locked; if the safe was already open, it stays open.

D3 describes how dialing affects the knowledge of the dialer.
Roughly it says that the actor knows he has done the dialing, and
he now knows whether the safe is open. More precisely, it says
that the worlds that are now possible as far as he knows are
exactly those which are the result of doing the action in some
previously possible world and in which the information acquired
matches the actual world. Notice that by making the consequent
of D3 a biconditional, we have said that the actor has not
acquired any other information by doing the action. Also notice

KnowlpHjre

Repr, m2:
226

that D3 is more subtle than just saying that whatever he knew
before he knows now. This is not strictly true. He might have
known before that the safe was locked, and now know that the
safe is open. According to D3, if the actor knew before the action
"P is true", after the action he knows "P was true before | did this
action.”

Having presented the basic formalism, | would now like to
work out a simple example to illustrate its use. Simply stated,
what | will show is that if a person knows the combination of a
safe, and he is where the safe is, he can open the safe. Besides
the axioms for Dili, we will need two more domain-specific
axioms:

Al Tiwl e=comb=-ol{x] x2}) =
{T{w1 Combixi})) n T{wi Safe(x2)})

A2 Tiwl Al{el x1)) 5 T{wi Know{a] At(el x1)}

A 1 says that if one thing is the combination of another, the first
thing is a combination and the second thing is a safe. A2 says
that a person knows what is around him. The proof is as follows:

Giv*n: True(At(John,Sf))
Tru«(Exi6ts(X 1 ,Know(John,ls-comb-of (X1,Sf))))

Prove: True(Can{John,Opan(5f)))

1. True{Exisls{X1 Know(Jobhn,ls-comb=-0f{X1,5M})) Givan

2. T(WO0,Exists (X1 Know{John,|s=-comb-o! (X1 50 Ll

3. T{WO0 Know(John,ls=comb-0!{C 5{)}) Lrz

4. K{John WO, wl) = Tiwi le-tomb-ol{C,5f}) Ki,3

5. Truel(At{John,Sf)) Given

6. T(WO, At John,Sf)) L5

7. T(WO Know (John,At{john,51))) A28

8. K{John,WO,wi} » T{wl At{lohn,5f)) K1,7

9. KilohnWO,wi) Ass

10, Tiw] lz=-comb=of{C,51)} 4.9

11. Tiwl CombiCH AlLLD

12, Tiwl Safe(51}) AlLLC

13, T{w2,At({John5f}) 8,9

14, 3w2{R{Do(John,Dial{C,51)),wl w2) &1,11,i2,13

15, R{Do{John,DisliC,51)},wl,w2) Awn

I6. Tiw) Jz=comb=-al[C,51)) = Tiw2,0peniSf)) 02,15

17. Tiw2,0pani(Sf)) 16,10

18. R{Do{JohnDial{C,51)),w] w2} = T{w2,0pen(5f)) Dig{15,17)

19. T{wl,Res{Dolsohn,Dial (C,56)),0peniSN)} RI,i4,)8

20 K{John WO wl) > Din{9,19)
T{w] Res{Do(tohn,Dial{C,51)},0peni(Si}}

21. T(w0 Know{John,Res (DofJohn,Cial{C,51)),0pen(SIN)) K},20

22. T(WOo,Can{John,Dpen{5f}]) cl121
23. Trus{CanlJohn,Open{5)}) L1,22

The proof is actually simpler than it may look The real work
is done in the ten steps between 10 and 19; the other steps are the
overhead involved in translating between the object language and
the meta language. Notice that we did not have to say explictly
that someone needs to know the combination in order to open a
safe. Instead we said something more general, that it is necessary
to know a procedure in order to do anything. In this case, the
combination is part of that procedure. It may also be interesting
to point out what would have happened if we had said only that
John knew the safe had a combination, but not that he knew
what it was. If we had done that, the existential quantifier in the
second assertion would have been inside the scope of Know. Then
the Skolem constant C would have depended on the variable wl,
and the step from 20 to 21 would have failed.

5- Conclusions

In summary, the possible-worlds approach seems to have two
major advantages as a tool for reasoning about knowledge. First,

Moore

it allows "lifting" reasoning in knowledge contexts into the basic
deductive system, eliminating the need for separate axioms or
rules of inference for these contexts. Second, it permits a very
elegant integration of the logic of knowledge with the logic of
actions.

This approach seems to work very well as far as we have
taken it, but there are some major issues we have not discussed. |
have said nothing so far about procedures for reasoning
automatically about knowledge. | have some results in this area
which appear very promising, but they are too fragmentary for
inclusion here. | have also avoided bringing up the frame
problem, by not looking at any sequences of action. | am also
working in this area, and | consider it one of the largest IOU's
generated by this paper. However, the possible-worlds approach
has an important advantage here. Whatever method is used to
handle the frame problem, whether procedural or axiomatic,
knowledge contexts will be handled automatically, simply by
applying the method uniformly to all possible worlds. This
should eliminate any difficulties of representing what someone
knows about the frame problem.

6. References

Hintikka, J. (1963) Knowledge and Belief. Ithica, New York:
Cornell University Press.

Hintikka, J. (1969) Semantics for Propositional Attitudes, in
Linsky (1971), 145-167.

Rripke, S. (1963) Semantical Considerations on Modal Logic, in
Linsky (1971), 63-72.

Linsky, L. (ed.) (1971) Reference and Modality. London: Oxford
University Press.

McCarthy, J. and Hayes, P. J. (1969) Some Philosophical
Problems from the Standpoint of Artificial Intelligence, in B.
Meltzer and D. Michie (eds.) Machine Intelligence 4, 463-502.
Edinburgh: Edinburgh University Press.

Moore, R. C (1973) D-SCRIPT: A Computational Theory of
Descriptions. Advance Papers of the Third International Joint
Conference on Artificial Intelligence, 223-229.

Moore, R. C. (1975) Reasoning from Incomplete Knowledge in a
Procedural Deduction System. MIT Artificial Intelligence
Laboratory, AlI-TR-347.

KnowlpHp;e Repr.-2:
227

Moorp

A STATE LOGIC FOR, THE PEPPESENTATION OP
NATURAL LANGUAGE 12ASED INTELLIGENT SYSTEMS

CamiliaP.Sc)iwind
Tcchnischc Univorsit*~it Minchen
lunich, FPG

Summary

Tho work described herein introduces a ge-
neral logic based formalism for the acti-
ons of an intelligent system understandinn
natural language sentences, executing com-
nands and answering questions.

natural
language

translation

state logic derivations
formulae AN=-====-

logical
axioms

interpretation

of the logic
charnctcri-
zation

1 >

Kripke-type
mod e

nnn-logical
axioms

The heart of this formal system is a sta-
te (or tense) lonic containing special

operators for immediately next and prece-
ding states (+,--) as well as for all fu-
ture states (F) and all past states (P) .

Natural Ilanguage texts are analysed syn-
tactically and transduced into state Ilo-
gic formulae by an attributed grammar (in
the same way as described by Sehwind).

The state logic is formalized by a set of
logical axioms and derivation rules for
which completeness has been proven. Simi-
lar systems have also been mentioned by
Rescher. But in usual tense logic systems,
the structure of tense has been studied
only as to its "pure logical” properties.
In intelligent systems however, wo nood
theorems about the non-logical properties
of state changes. The tense structure of
a world is determined by changes within
the world which affect the non-logical sym-

bols of the world, i.e. the functions or
predicates: If a robot takes a block "a"
lying on a block "b", then this causes a

change of the world (i.e. a state transi-
tion) with the meaning of the predicate
symbol ON changing. Such non-logical chan-
ge descriptions are incorporated into our
formal system. A model for the state lo-
gic is given by a set of classical struc-
tures M and a binary relation P on M
where s P s' means that the state of the
world s immediately precedes the state st.
Truth values are assigned to formulae de-
pending on the state of the v/orld in which
the formula is evaluated. And the state
operators take into account the truth va-
lue of a formula in some other states

Knowlf>H<re Repr.-2:
228

which can be "reached" from the actual
state. To represent the knowledge incor-
porated in an intelligent system by such
Kripkc-type models we assign a non-logical
interpretation to state transitions. The
very general model of Kripke-structures
is used in such a way that the relation

P bears a non-logical meaning. For two
structures A, and A , s P s' holds iff
the ''v/orld" ° A , is obtained from the
world A, as the'result of an action which
can be executed within A V’hat actions
can be executed within a v/orld depend on
the extensions of the non-logical symbols.
On natural language level actions are
verbs. The execution of an action has con-
sequences on the extensions of the non-
logical symbols of the v/orld, i.e. a
structure is subject to some change when-
ever the action described by the verb is
executed in it. |If somebody takes a thing
the position of that thin” changes, i.e.
the extension of the predicate symbols ON,
BEHIND etc. and the extension of the verb
predicate symbol HOLD changes, because the
person holds the thing now. There are al-
so preconditions for the execution of an
action; "a takes b" s only possible if
"a does not yet hold anything and if "b"
has a POsition such that it can be ta):on,
i.e. there is nothing on "b". We describe
both the Preconditions and the consequen-
ces of an action by non-logical axioms.
And the appropriate structure must have
the property that in whatever state all
the conditions of an action hold there
must be some following state in which its
consequences are realized.

Example: Action verb "take"

Precondition axiom (PA)

TAKE x y*"HANO x ,-"HING y-\ 1HOLU , z ->-'
ON z y This means: x can take y iff x is
a hand and y is a thing and x does not
hold any other object and there is
nothing on vy.

Execution axiom (FA)

TAKE x y-*g+I[HOT,D x ya~ION y z] This means:
If x takes y then there is an immediately
following state such that x holds y and vy
is not lying on anything.

We could only describe a small part of
the possibilities of our formalism here.
Wo actually develop application examples
of very different types: one for the ana-
lysis of tales and one for traffic.

P.Hayes, A logic of Actions. Machine In-

tell. 6. pp.495-520. Ed. B.Meltzcr +

D.Michie. Edinb. Univers. Press (1971)
M.Minsky, A Framework for Pepresenting
Knowledge. M.I.T.A.l. Memo 306 (6.1974)

N.Peschcr + A.Urquhart, Temporal logic.

Springer-Verlag, Wien 1971

C.Sehwind, Generating Hierarchical Seman-
tic Networks from Natural Language Dis-

course. Proceed, of the IJCAI4, (9.1975)
T.Winograd, Understanding Natural Langua-
ge. Academic Press (1972)

Sehwind

VOCABULARIES FOR PROBLEM SOLVER STATE DESCRIPTIONS

Drew McDermott
Computer Science Department
Yale University
New Haven, Connecticut 06520

ABSTRACT,:
presented
solvers'

lem solver,
tary circuit

A model of knowledge representation is
and applied to representing problem
states. The focus is on the NASL prob-
which has been used to study elemen-
design. The model distinguishes
between the form and the content ("vocabulary")
of a representation. The vocabularies wused by
the modules of NASL are displayed. It is con-
cluded that the model allows flexible Implemen-
tation and clear description of problem solvers.
In particular, it demonstrates the importance of
shallow reasoning in the control of problem
solvers.

knowledge
production

Descriptive terms: Problem solvers,
representation, computer-aided design,
systems, rule-based systems.

Acknowledgements: 1 thank Gerald Sussman for the
word "vocabulary," and many of the concepts be-
hind it. Much of the work reported herein was
conducted at the Artificial Intelligence Labora-
tory, a Massachusetts Institute of Technology
research program supported in part by the Ad-
vanced Research Projects Agency of the Department

concerns. Inside the data base,
into property-list opera-
network marking, or some
for inferential

of the user's
they are translated
tions, pattern matching,
other internal representation
processing.

conventions used inside
should be hidden from the user.
level of representational
power and retrieval efficiency that he can take
for granted (Moore, 1975), so that he will be
free to think in problem-oriented terms. Another
way to put this is that content must be allowed
to be more important than form.

Ideally, the formal
data base

There is a certain

the

content appears as the
ulary the user's programs use in talking
gatekeeper. Since ray focus in this paper
the vocabulary, let me expand Fig. 1
trate some points.

vocab-
to the
is on
illus-

In this model,

to

-==> Module 1
/

ata Base <-——> (atekeeper <---> Meodule 2
\

-—=> Module 3

Figure 2 Structure of User's Programs

The user's programs often come in "modules," each

of Defense, and monitored by the Office of Naval of which is the primary holder of a specialized
Research under contract number N00014-75-C-0643. vocabulary. For example, in the MYCIN system
(Shortliffe, 1976; Davis, 1976), there are two
vocabularies: a system of medical terms and a
1 Introduction "meta-vocabulary” used in controlling rule ap-
T plication. Inside the data base, most of the
This paper is about the "representation of rules are in medical terms; the rule-application
knowledge" in problem-solving systems. 1 focus vocabulary Is used by "meta-rulcs.”
on the representation of facts about the state of
the problem solver itself, rather than on its An alternative way of approaching these
representations of the ~current problem state. issues would be to let each module have its own
The discussion uses as an example the NASL data base, gatekeeper, and formal conventions,
problem-solving system. (McDermott, 1976) It s not just its own vocabulary. For example, in
argued that the range of "representational vo- NOAH (Sacerdoti, 1975), the procedural net s
cabularies" determines the power of a problem stored separately (as special-purpose list
solver. structures) from the QL1SP data base used to
represent the current problem model. The problem
Every representational system has two as- with this approach is that it makes the communi-
pects: form and content. Its form determines cation channel between any two modules ad hoc and
what can be inferred from what; its content de- clumsy. In my model, the data base is the chan-
termines how what is inferred is used by the user nel; any two rules in the data base can inter-
of the representational system. In abstract act, regardless of their origin or, principal vo-
form, such a system can be represented by Fig. cabulary.
1.
A consequence of my model is that symbols
used by user programs have two kinds of "mean-
Data Base <-~--> Gatekeeper <-——-> User Programs ing": their "inferential" meaning, determined
solely by the behavior of the data-base expres-
sions in which they appear, and their "pragmatic"
Figure 1 General Representation System meaning, which depends on the way in which they
alter the behavior of the user programs which
employ them. Further, a user module can use a
The data base is managed by a ‘"gatekeeper." Ad- symbol in two different ways: in expressions
ditions to the data base and requests to the added to the data base to trigger inferences
gatekeeper from the user's programs are in terms (thus, as it were, telling itself what it's
Knowledge Repr.-3: McDermott

229

doing), and in requests to the gatekeeper
are often asking what to do next). Clearly,
same symbol may be used in both these ways.

(which
the

Il The NASL Problem Solver

NASL is a problem-reduction problem solver
which has been applied mainly to the problem of
designing simple electronic circuits.

(McDermott, 1976) As will be seen shortly, it is
implemented as interleaved planning and execution
modules. The data base is managed by a
PLANNER-like (Hewitt, 1972) predicate-calculus
theorem prover, about which | will say no more
here. (See McDermott, 1977.) Its "problem vo-
cabulary" includes terms pertaining to devices,
circuits, signals, and component values. What |
will describe are its "control vocabularies."

which solves
subproblems,
which can be
A problem solver

A problem solver
problems by reducing
and ultimately to "primitives"
solved by built-in programs.
must maintain somewhere a data structure repre-
senting important features of its current state.
Usually this data structure is different from the
data structure representing the current problem
state, or "world model." NASL, however, follows
the structure of Figure 2, and maintains all its
data structures in the same predicate-calculus
data base.

is a system
them to simpler

This means that the formal system used by
NASL restricts as little as possible the content
and interaction of the problem-state and problem
solver-state descriptions. In what follows, |
will first describe the vocabularies used by NASL
modules, then show rules which illustrate the
interactions of the concepts they define.

NASL looks like this:
Task Creator €——————————————o
/ i \
v \ /----> Rephraszer
Task Scheduler Task Reducer
A A \=m==> Chooser
/
Task Executor
I
v

Primitive Actlons

As will be seen shortly, the notations wused
by these modules result in a task network being
represented in the data base.

Two of the modules
further

in Figure 3 are worthy of
description now. The task reducer tries
to retrieve exactly one "plan" (set of subtasks)
to carry out its task. This attempt can fail in
two ways: either too many plans (more than one)
are retrieved, or too few (none at all). In the
first case, the cholce module tries to choose
among them. In the second, the rephrasing module
creates a new task which treats the recalcitrant
task as an object to be transformed into sub-
tasks; that is, it brings all the problem
solver's resources to bear on it.

I1.A NASL's
Meanings

Vocabularies and_ their Pragmatic

Task Creation and Classification—
The basic predicate for describing tasks Is

(TASK name

< -input-data- > action < -output-data- >)

which defines a task with a certain name, which
in NASL can
be

from task to

carries out a certain action. Tasks

deduce or create Information, there must

for

SO

some mechanism passing data

task.
For example, this formula

(TASK (COUFPLER PLANT7L)
<{BUFFER72) (AMP73)>
(LAMBDA (STAGE! STAGE2)
{COUPLE ?STAGE2? ?STAGEIL))
<{CKT74)>)
which

describes a task (COUPLER PLAN71) couples

two circuits and calls the result (CKT74). The
action slot must be a function which gives an
action given the input data. (Angle brackets

surround tuples; "?" indicates a variable.)

| use the neutral word "task" to describe a
problem to be worked on, because the concept is
intended to be broad. Most problem solvers re-
strict themselves to actions which cause a (real

or simulated) change in the state of the problem
model. For example, in the blocks world, actions
cause the positions of blocks to change. There

Figure 3 —- NASL Modules are many actions which do not satisfy this defi-
nition, for example, "Think of someone who would
be willing to lend you $100"; and "While moving

These modules do not correspond one-to-one with block A, avoid disturbing the blocks on top of
programs, but are only conceptual. In Figure 3, it." The first example differs from the paradigm
an arrow from module A to module B means that A in that it causes no change in the world, but
"depends on," “precedes," or “calls" B. The only the retrieval of some information. The
central cycle in the graph is intended to suggest second is an example of an action ("avoid...")
that a problem, or "task," is created, then which is executed solely as an influence on the
scheduled, then executed, either as a primitive execution of another action ("move..."). Another
action or by being reduced to subtasks. such "parasitic" action is "Wait here five min-
utes."
Knowledge Repr.-3: McDermott

230

These classifications are indicated by using

the predicates
(INFERENTIAL task-name action)

to indicate an information-retrieval task, and

(POLICY task-name action)

to indicate a task which is parasitic.

Task Scheduling—

Tasks are not executed as soon as they are
created (unlike the right-hand sides of produc-
tions (Newell, 1973)). They may be postponed by
rules using the "scheduling vocabulary." The
basic predicate here is

(SUCCESSOR task-1 task-2)
which means (roughly) "task-1 must be executed or
reduced before task-2." The scheduler examines
SUCCESSOR formulas, then sets the. state of a task

using the predicate-calculus term

(TASK-STATUS task)
which is successively asserted EQUAL (in the data
base) to PENDING, ENABLED, ACTIVE, and FINISHED.
(The actual scheme is more complex. See
McDermott (1976) for details.)
Task Reduction—

Even when a task is ENABLED, it cannot usu-
ally be executed immediately. If its action is
not a primitive (i.e., does not have a LISP
function to carry it out), it must be reduced to

subtasks by the task reducer. Such tasks are-
called "problematic." The reducer first calls the
theorem prover with a request of the form

(TO-DO task action output-data 7?PLAN)

to retrieve a plan. A plan is either a single
action, or a plan schema ("macro action") which
expands into a set of subtasks. (For the de-
tails, see. McDermott, 1976.) Either way, new
tasks are created by the task reducer, and, for
each one, a proposition of the form
(SUBTASK new-task problematic-task)

is recorded.

At any instant, the set of created tasks

form a network defined by SUCCESSOR and SUBTASK

formulas.

Knowl e*rp Re

**acquire speaker

*connect

0 ——mmmmmmmmmmw 0 —————
7 ¥
/ _/ plek compo-
nent
! / values
#**aoquite amp /[—— 30
0 _/ /
A A /
fI_\ ¥ _/
o ———=> o f *%: reduced
olive it up bias it *: enabled

Figure k — Task Network Midway
through Designing a Hi-Fi

Here the arrows indicate SUCCESSOR formulas. A
triangle pointing from low nodes to high indi-
cates SUBTASK formulas; i.e., the low nodes are
the subtasks of the high one.

Primitive Actions—
There are only a few primitive actions in
the system. When the user is specifying a new

domain, he uses the predicate

(MOD-MANIP task-name action delete-list add-list)

to define new "primitive" actions. (Cf. Fikes
and Nilsson, 1971) For example, to define the
effect of PUTON in the blocks world, one would

write

(IMPLIES (ON ?X ?2)
(MOD~MANTP ?ANY-TASK (PUTON X 7Y)
<{ON X 7Z)>
<(ON X ?Yax))

The built-in primitives include
> INFER — for inferring a new fact
> FIND — primitive information retriever
> NO-OP — wused for relabeling calculated data
> MONITOR — a primitive policy (used for imple-
menting things like prerequisite protection
(Sussman, 1975)) to create an "interrupt" task
when its monitored datum is erased.

Choice and Rephrasing—

Finally, there are the vocabularies be-
longing to the choice and rephrasing modules.
The rephraser does not have a very rich vocabu-
lary, a lack which reflects the shallowness of my
theories regarding it. Rephrasing currently
consists of creating a task with action

(REPHRASE recalcitrant-task action).
This falls in the category of "telling yourself
what you are doing." If the wuser's domain-

specific information does not include a plan for

3: McHprmott

rephrasing tasks of this sort, the system will
produce a task with action (REPHRASE ... (RE-
PHRASE ...)), for which there is a built-in plan
to stop and ask for help.

The choice vocabulary is slightly richer.
Rather than merely set up a "choice maker" task,
NASL enters a special choice protocol. In this
special module, the options (the set of competing

plans) are set up by being mentioned in formulas
of the form
(OPTION choice-name option-name
option-description)
Then a series of requests is made to the infor-
mation retriever. Each is of one of these forms:

(RULE-OUT option-name)
(RULE-IN option-name)
(RULE-TOGETHER < -options- > new-option)

Retrieved formulas instruct the choice protocol
to eliminate options, favor options, or compose
options (in domain-specific ways). The cycle

continues until only one option remains, or all
options have been ruled out, or no progress has
been made on the last loop. For example, the
circuit-design knowledge has rules which suggest
how to decide between alternative amplifier cir-
cuits, and when to try cascading them.

I11*B Inferential Meanings of_ Vocabularies

The preceding survey of module vocabularies
may be thought of as an informal description of
the pragmatic component of their meanings — how
they are used by the modules. The richness of
the system derives from the "inferential"” mean-
ings of the same symbols, determined by their
interactions on the other side of the gatekeeper,
that is, by the interactions of the rules con-
taining them. These interactions are the medium
of communication between modules.

An act of communication occurs when one
module adds an expression to the data base from
which an expression of interest to another module
may be inferred. For example, one rule used by
the designer is

(IMPLIES
(POLICY 1P
(CONSTRAIN DEV VOLTAGE~GAIN HIGH))
(TO-DO ?TSK (MAKE AMPLIFIER) <?DEV>
{MAKE OP-AMF}))

which defines the effect of the parasitic action
CONSTRAIN as influencing the execution of MAKE.
It suggests MAKE'ing an op-amp as a way of
"solving" (MAKE AMPLIFIER) in the case where the
amplifier's voltage gain is constrained to be
high.

(Before going on, | should point out that
not all rules relate two or more module vocabu-
laries. Most TO-DO rules are "plan context" in-

dependent. Since in this paper | am emphasizing
problem-solver state description, | will ignore
the problem of domain-dependent vocabularies and
their interactions.)

The most common <classes of interactions

which 1 have observed are these:

(1) TASK =~> SUCCESSOR: Tasks which can
interfere with each other must trigger rules to
schedule them properly. For example, in elec-
tronics, there are rules to the effect that

"Any component-value selection subtask of a
design task must follow every topology-altering
subtask."

(The full rule, called SELECT-POSTPONE, may be
found in McDermott, 1976). Many of the "critics"
of Sacerdoti's (1975) NOAH may be thought of as
built-in rules of this kind.

(2) POLICY —-» TO-DO: Policies are defined

as "parasitic" actions which influence other ac-
tions. One way this happens is by deduction of
TO-DO formulas. 1 gave an example of this above.

(3) POLICY --» CHOICE rule: Another common
way to define policies' effects is in terms of
their influence on the operation of the choice
protocol used to pick among plans. For example,
one amplifier-design rule says:

"In choosing between a one-stage common-
emitter and a multi-stage, if the bandwidth is
CONSTRAINed to be HIGH, RULE-OUT the one-stage."

(Cf. DIFF-CE-N-STAGE, in McDermott, 1976)

(A) TASK —> SUBTASK: Sometimes task re-
duction occurs entirely via inferential rules;
the task reducer just ignores an already-reduced
task. For example, bias and coupling plans for
multi-stage circuits overlap in their duties. A
typical rule from a coupling plan says,

"The tasks for coupling to the second stage
also do the work of biasing the base of the
second-stage transistor."

(By the way, to make these rules effective, there
is another rule, of "interaction type (1)," which
says, "Do coupling before biasing." (Cf. Figure
4.) See the rules COUPLE-BEFORE-BIAS and CE-
DIR-VOL-COUPLE-PLAN in McDermott, 1976.)

There is nothing special about this list of
common interactions; any rule may be used that
can be handled by the inferential system. (Of
course, we can't expect genius-level insight from
the data-base machinery. For instance, we must
help it out by telling it whether to use a
statement of the form (IMPLIES p q) in a forward
or backward direction. Cf. Hewitt, 1972.)

Knowledge Repr.-3: McDermott
232

11l Results

The NASL system has been applied to two
rather different tasks: electronic-circuit de-
sign and the blocks world. Both applications are
still being debugged. The first domain requires
many rules implementing theories of design and
electronics; the system currently possesses
about 350 rules defining design, elementary
electronics, typical circuits, standard biasing
plans, and much more; even so, its knowledge is
pitifully sketchy compared to what a technician
knows. The blocks world was studied for a dif-
ferent reason: as a way of comparing NASL with
Sacerdoti's (1975) NOAH; in this domain, the
knowledge requires about six pages of rules (on
the order of 30 rules).

NASL plus electronics and design rules is
called DES1. DESI has never designed a circuit
all the way through. It has, however, given
ample opportunity for testing the power of NASL'S
vocabularies. The system at this writing is ca-
pable of doing most of the steps in some simple
design tasks. For example, its theory of design
specifies a standard "design rephrasing plan”
which transforms design problems in ways varying
from splitting conjunctive problems into their
conjuncts, to translating signal-conversion
problems from the time to the frequency domain.
(McDermott, 1976, 1978)
fairly domain-

The theory of design s

specific. That is, there is no general theory of
putting to use a new kind of element; instead,
there are many prepackaged partial plans for
various tasks, and the main job of the designer

is to coordinate them. It would be nice if some
of the Inferential interaction rules of the Iast
section were deducible from knowledge about new
devices, but accomplishing this seems very hard.

After NASL was devised for this task, 1
tried applying it to the rather different blocks
world, to see how general it was. My model was
the NOAH program, which has several built-in
constructs | thought could be expressed as rules.
Some could; some couldn't.

For example, the notion of "prerequisite"
(Sacerdoti, 1975; Sussman, 1975) is not built
into NASL. It can be defined by rules which say

"IF Tl's effect P is a prereq of T2, then T2
is a SUCCESSOR of Tl, and there is a policy TP to
protect P until T2 is begun."

(Protection must be further defined in terms of
MONITOR.) The notion of prerequisite can then be
used in two ways: passively, to catch "protec-
tion violations" (Sussman, 1975); and actively,
as a trigger of critics like "Resolve Conflicts."
(Sacerdoti, 1975)

One irreducible difference between NASL and
NOAH is NASL's inability to reduce a task before
its predecessors are reduced. To be able to do
this, one must have at least a partial model of

the problem state after the predecessors are
finished. NOAH can assume such a model is well
defined, because NOAH assumes actions are defined
as state changes. NASL is pessimistic about the
existence of such a model; it never reduces a
task until it is time to start executing it.

It is instructive to think of this as a de-
ficiency in vocabulary. That is, there is no
action of the form "reduce a task" which NASL can

carry out. There is also no built-in term (BE-
FORE task) which would designate the problem
model in which to carry out the reduction (but |

believe this could be defined now in terms of

things like MOD-MANIP without extensions to
NASL). NOAH, on the other hand, has a more
limited notion of "task," in which all tasks are

non-inferential and non-parasitic, have foresee-
able effects, and do not compute results. This
enabled its author to separate planning from ex-
ecution cleanly.

IV Conclusions

1 have presented a model of using a repre-
sentational system, especially its use by a
problem solver to represent its state. The model
assigns to each module of a problem solver a vo-

cabulary consisting of symbols with special
meanings not derived from inferential interac-
tions. | applied the model to the description of

the NASL system (McDermott, 1976), and sketched a
comparison with NOAH. (Sacerdoti, 1975)

This model has the following advantages:

(1) Expository clarity — In describing a
problem solver, one can factor the description
into a formal, representational component, and a
"pragmatic" representation user.

(2) Modular implementation — The two pieces
can be implemented and optimized separately.
(McDermott, 1976)

(3) Ease of comparison — Many differences

between programs can be expressed as a difference
in vocabulary.

(4) Ease of experimentation — To add a new
module is to add a new vocabulary, as far as the
representation system is concerned. There are no
unnecessary restrictions on form, and no need for
a set of special communication channels between a
new module and the old ones.

The model brings out these points about NASL

(1) It has an unconstrained notion of prob-
lem, the "task." Tasks may be "inferential" or
"parasitic,"” and may compute and receive data
from other tasks.

McDernott

233

(2) NASL interleaves planning and execution
tightly. Planning amounts to the execution of a
problematic task.

(3) NASL is incapable of "lookahead" task
reduction. There is no built-in term for the
state of affairs after an action.

(4) More generally, NASL relies on "shallow
reasoning” for thinking about plans. It does not
contain a complete axiomatization of any pro-
gramming language, and cannot prove the correct-
ness of any of its plans. The reason it is suc-
cessful in spite of these limitations is that it
represents its current plan in a very redundant
way; almost all features of interest can be re-
trieved quickly. This means that interesting
advice about the domain is likely to be effi-
ciently representable. In a complex and uncer-
tain world, this is probably the best we can do.

The model is still under development. One
area in which it needs work is in a general
characterization of modules which would allow us
to be as unrestrictive yet precise in describing
the "pragmatic" component of symbol meaning as
predicate calculus allows us to be in describing
the "inferential" component. So far, we must
make do with English descriptions like those of
Section |1.

One possibility is to use a production sys-
tem for this. That |Is, a problem solver would be
described by a set of "state transition" rules
whose left-hand sides described problem-solver
states and whose right-hand sides specified
changes in terms neutral enough to cover all
problem solvers. Modules would correspond to
groups of productions sharing a vocabulary. A
problem solver would then consist of two comple-
mentary pattern-directed systems, one to do in-
ference, the other to do action. This has a
certain pleasing symmetry.

References

1. Davis, Randall. Applications of meta Ilevel
knowledge to the construction, maintenance and
use of large knowledge bases. Memo AIM-283,
Stanford University Artificial Intelligence Lab-
oratory, 1976.

2. Fikes, R.E. and Nilsson, Nils J. STRIPS: a
new approach to the application of theorem
proving to problem solving. Artificial Intelli-
gence 2, 1971, p. 189.

3. Hewitt, Carl. Description and theoretical
analysis (using schemata) of PLANNER: a language
for proving theorems and manipulating models in a
robot. Technical Report 258, MIT Artificial In-
telligence Laboratory, 1972.

4. McDermott, Drew. Flexibility and efficiency

in a computer program for designing circuits.
Ph.D. thesis, MIT Artificial Intelligence Labo-

\

Knowledge Repr.-3:
234

ratory, 1976.

5. McDermott, Drew. Deduction in the pejorative
sense. Forthcoming, 1977.

6. McDermott, Drew. Circuit design as problem
solving. Submitted to IFIPS Working Conference
on Al and Pattern Recognition in Computer-Aided
Design, 1978.

7. Moore, Robert C. Reasoning from incomplete
knowledge in a procedural deductive system.
Technical Report 347, MIT Artificial Intelligence
Laboratory, 1975.

8. Newell, Allen. Production systems: models
of control structures. In Chase, W.C. (Ed.) Vi-
sual Information Processing, Academic Press, New
York, 1973, p. 463..

9. Sacerdoti, Earl D. A structure for plans and
behavior. Technical Note 109, SRI Artificial
Intelligence Center, 1975.

10. Shortliffe, Edward H. Computer-Based Medi-
cal Consultations: MYCIN, American Elsevier
Publishing Company, Inc., New York, 1976.

11. Sussman, Gerald J. A Computer Model of

Skill Acquisition, American Efsevier Publishing
Company, Inc., New York, 1975.

McDermott

