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Abstract. The representation of concepts and
»nlec eclent consequent piodur linns is discussed and a
method for indue inp knowled:,e by absh -at tin;; Mich

i epi esontatinns from a sequence of training examples is
desc i ibed. I ho proposed le,n ninp method, interference
male limp,, induces abstractions by finding relational

pioperties common to two or more exemplars.

1. INTRODUCTION

A numboi of distinct paradigm*"- for studying learning
machines have emei \\ffl' dminn the last twenty vyeais.
Though each differs fiom the olhers in a variety of ways,
the thice differences which most cleatly demark each
p.it adit.m are (l) the types of knowledge which can be
arqmied, (?) the way in WICh this knowledge is
isplesea.ed and (3) the type of learning alponthm used.
the leai ninp machine which we will desciibe in this paper
.anquiies concepts iepiesenlalle as conjunctive forms of
the predicate calculus and hehavjoi s repie osnntable as
pioductions (antecedent consequent paii s of such
conjunctive? forms); those concept', ,)\)(\ behavior rules are
inferred from sequentially piosenlod pairs of examples by
an alponthm that is provably effective foi a wide variety
of problem’',.

| eat ninp, is viewed bete as a continual process of
knowledge expansion, that is, as, the acquisition, in adaption
h> traininp experiences, of higher-oi dor, more complex, and
here e elaborate knowledge structures. One's knowledp.e at
any point in line inc ludos those concepts and productions
innately piovided or previously learned. |he concepts are

paltrin template's; events which match a concept are
i o< op,ni/ed as belnnpinp to the class delimited by that
concept. | the productions are pairs of concepts; one of the

concepts functions as a rocopnizer, the other specifies the
form of an associated action. A production is interpreted
as a behavior generator in the sense that (in some
computing environment with an appropriate control
.hue tore) the detection of a condition in the environment
which matches the antecedent causes the consequent
component to be instantiated and then evoked. Mere both
The antecedent and the consequent are templates; the
antecedent determines whether the pioduction is to be
executed, and if so, what specific constants in the
desciiplion of the event beinp, attended to are to be bound
to variables in the consequent.

Within this fi amework, the machine learninp problem
wild which we are concerned can be stated in the
following way: Given a collection of concepts and
productions constituting what is known at some time and a
way of describing events in terms of their structure,
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ionshuct a machine which is able to induce additional
concepts or productions from tiaininp data. to make our
teolmenl of this problem more concrete, we will use the

amplest of the concept foimation tasks attempted by our

machine as r)l) example throuphnut the paper. The task is
find what the three exemplars in Figure 1 have in

common. Our propram induces the following abstraction:

There are three objects, including a small circle and
a small square. The square is above the circle.
The third objec t is larp,e.

This paper is divided into four sections. In the next
section we discuss in perioral a way of describing events
which facilitates hndinp what two of more events have in
common and a matchinp alpoiillm which can be used to
find these abstractions. we locale SPROE R, Our
concept and production inducing program, within the
broader context of out work. The third section describes

SI 'ROUER'S interfeience matching (induction) algorithm in
some detail; we indicate here more specifically how
SPROUTCR makes wuse of structural representations of

events to acquire and store knowledge. In the final section
we conclude with a brief consideration of the strengths

and weaknesses of SPROUTER and directions for future
research.
Il. STRUCTURAL REPRESENTATIONS
The problem which we are addressing is simply

doseribed: Dosipn a propram which can infer concepts and
produc lions fiom. illustrative instances. 1he method we
employ is correspondingly straightforward: Extract
commonalities from the examples and attenuate their
differences. Such an approach like Galton's very
primitive  "composite pholopraph theory" of concept
learning [8] and the "positive focusinp stratepy" for
conjunctive concept learninp fust studied by Bruner, et al.
|3]. While Gallon's contribution was simply to propose that
unknown patterns could be inferred by overlaying
homologous memory representations of related examples
(as if one were forminp a composite of many photographs
of the same subject), Bruner and his colleapues showed
bow such a process could in fact be realized. Each
presented object (exemplar) is described as a conjunction
of specific feature values. To find the template which is
matched by all of the presented objects, a feature vector
containing only those features common to all of the

is

Hayes-Roth



exemplars is generated. This feature vector is the
concept. Since that seminal worK, many computer
scientists have produced increasingly practical and
sophisticated feature-value concept learners based on
iHaled techniques [1, JO, 16, ?0, 21, 29].

extending such learning models so that they can

induce general elNational) classification and behavior rules
is the goal of our work. In focusing on methods for
forsenerating relational abstractions which make possible the
tecgnition of complex events, we encounter three
problems"; not encounleiocl in previous work, first we must
develop a formal scheme for desuihing complex events
which fa< ilitatos the generation of absh actions. Second,
given descriptions of two examples of the same concept or
production, we must develop a method for comparing them
so that their commonalities can be identified. Third, it is
necessary to develop a way of storing The discovered
abstractions to facilitate their subsequent use in either of
two ways: they may be used as templates, for classification
and behavior generation, or they may be used as
knowledge represeetahons whose precision may later be
improved by learning if new instances of the same concept

or production are provided. These problems are referred
to below as the description problem, the comparison
problem, and the stot age problem. fach is considorod in

more detail in the subsequent paragraphs,

| he dose Option problem entails providing a symbolic
i epi esonlahon of each exemplar satisfying two demands.
Inst, those attributes of the exemplar which are salient
and potentially crilerial must be reflected in its description
In iivane that the' classification till t * induced will be
sufficiently discriminating. Note that since an exemplar
may be composed of many objects, the description must
distinguish each ohject and indicate cleai ly how it relates
to lhe others. Second, the descriptions should facilitate
the identification of commonalities among the exemplars so
that the abstraction being, sought can be found quickly.
Since each object may exhibit a variety of charac teiistic s

and par tic ipate in  numerous relationships with other
objects, finding commonalities between two or more
examples will necessitate search. A representational

scheme which helps direct this search is almost essential.

The method of description we employ is built on
three central concepts, the property, the case frame, and
The pai ameter. A propeity is a feature or characteristic of
an object, for example, SQUAW: and SMAI.l. name two
pioperties of small squares the pioperties AMOVE and

W ar e used in our work to describe objects; which are
above or below others in pictorial displays. To define the
telationship of one object hemp, above another, a case
frame of the sor t {ABOVE:!, BHOW} is used. In general,
case frames are sets of properties which are semantically
related in some exogenenra'y determined manner. To
produce descriptions of objects, events, or behaviors, case
franes are parameterized (instantiated); that is, a name is
given to each object in the event being described and this
name is associated with each property of the object.
Parameterized case frames are called case relations. For
example, if b is the name of a square above a circle named
c, this might be described by the following set of case
telations: {{SQUARE: b), {CIRCIE: c}, {AMOVE:!.!, BEI OW: c}J.
Such a set of case relations interpreted as a conjunction of
valid propositions is called a parameterized structural
representation or PSR [9, 12; 13]. In this example, {b, c) is
the parameter set of the PSR.

A structural description of the first two exemplars in
the concept formation task discussed in the introduction is
given below.
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POVTRIANGE s, SOUAR M, CIHCH ey,
{1 ARGE :a, GRMAIL b, SMALL ),
PINNE b, OUTE [,

PABOVE s, ABOVE 1, BLLOW Y,
TSAMEISIZE b, SAML IS o b}

]

{ {SOUARE o, THIAMNGE e, CIRCLE o,
FOMAL L, ARG o, SMAL LT,
PINNCR:E, OUTCR:Y,

FABOVE:d, HECOWe, BT OWT,
{SAMIIGTZC e, SAMEISTL )

The deseription of (1 asserts that there is an event
composed of three object"., named a, b, rind c; that the
object labeled a ha-. the properties of a tiangle, of a large
object, and of containing the object labeled b; and so on.

PSRs provide a solution to the storage problem as
well as to the description problem; that is, they can be
used in storing discovered ahsti actions In the case of
descriptions, pai ameler symbols are chosen to name each
object so that if the same object is part of more than one
case relation, it is refened to in a consistent way. If one

alters the interpretation so that ea< h distinct parameter is
considered as an unbound vni lable, the PSR can be
consrdored a template for concept identification. Such

templates have been used by several researchers [1,9, 12,
13, 15>, 281 to specify what properties an object must have
in oider to satisfy member ship in a pattern class. While
the parametrrs in a description can be thought of as being
el/istentiallv quantified, those in a PSR used as a template
should bo thought of as being universally quantified. When
used as a template for pattern classification, the PSR if,
compaiod with an event (an existontially quantified P5R).
If a mapping from the event to the template can be found
which preserves., the par amotet bindings in the event
desiiiphon and which makes each case relation of the
template true, the event is said to match the template.

In addition to their role as classification ruler,, PSRs
can be used as general hohavioi r ules. In this case two
templates- are associated. One of them, the antecedent, is
used to recognise a set of conditions (a context) which
indicates that a particular "et of actions is appropriate;
when the antecedent template is matehed by some event in
the environment, the rule is invoked. The second template,
The consequent, specifics, what actions are to be
perfoimed. When the two templates share common
pai ainftei s, each parameter in the- consequent is bound to
the same value as the con responding parameter in the
antecedent. These behavior rules may act, for example, as
Post productions, transformational grammar rules, or the
problem solving rules of STRIPS [7] In short, a rule with
the antecedent A(X) and the consequent C(X) over the
variables in the ret X is interpreted to mean (X) [A(X) «>

C(X)]. In actual applications, A defines a precondition
which can be true of the contents of some working
memory, and C defines what is to be done if the

precondition is satisfied. Note that any such production
can be described by a PSR in which each case relation in
the antecedent includes a term of the sort tEVENT:a,each
case relation in the consequent includes a term of the sort
EVLNT:c, and the PSR itself includes a case relation
IANIECDENBA . CEDEI :a, CONSQUENE. NI :c}.

'the abstraction of the first and second examples in

the sample concept formation task can be represented in
the following way:
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El+[2:
{ABOVE: | 1IF LOW:?},
{SAMEISTZE 2, 5AMEISIZE: 1},
{SMAL LR,
{SQUARE 1},
{SMALL-L Y,
{CIRCLE:2),
{TRIANG F a3,
{LARGES 1}

Exemplar | is in fact an instance of {his abstraclion if 1he
parameler 1 s replaced by the pmameter by {he parameter
7 by o, and the parameler 3 by a Likewise, exemplar 2
can be seen o mateh the absivaction il the pacameler 1 is
roplaced by o, 1he parameter 7 by 1, and the paramefer 3
by o,

The comparicon problem can he soived by wsing a
leclminue ralled inlerference sealehing ar IM [11-12, 15]
It i« a process for denlilyimpg all of the common properhics
ol two PSH: and extracling a ihird PSR which is a template
malehiesdd by {he two oxemplars, Wheo Two ovenls have N
allrihules in common, hew descophons will contam al mnst
N caze relalinns whith are identic al {oxgept for alphabetic
titlerences belween  fhe  names  of  corresponding
parameiers), Nigare 2 schematives 1M an 2 process for
fincling,  the inlersechion confaning thewe cone relalions,

Figure 2. ‘Interference matching.

"The circular are.is labelled A and B correspond to two
PSRs, all of the case relations common to the two PSRs arc
in the area labelled A+B (read "A star B"). Because any
subset of this (conjunctive) set of common relations- also
defines an abstraction of A snc\ B, it is important to be able
to distinguish between the set and its proper subsets. We
call \ny abstraction of A and B which is properly contained
in no other abstraction of A and B a maximal abstraction.
More formally, if S (*) A denotes that A is a PSP matched
by the PSR S, then a maximal abstraction, A, of two PSNs, S

T. satisfies S(*)A and 1(+)A and (B) [B(+)A S(+B T{x)B3
== A($D],

It should be pointed out that for any two PSRs,
there may be more than one abstraction which is maximal
in the above sense. For example, given the following two
exemplars,

E3: { {CIHCLE:a},
{RED:a}, {LARGE:a}}
EA: HICIRCI E:by, {GIRCLE ), [HFIXD),
{GREEN: ), {SMALL:R], {LARGE. )}

two innxim.nl abstractions oxid. If the parameters a and b
are considered to be identical, the maximal abstraction is

E3+£4A: | {CIRCLE:L], {REIXL})

If on the other hand, the parameters a and
considered to be identical, the maximal abstraction is

E3+EA; | {CIRCLE:1}, {LARGE:i}}

c are

To perform interference matching on reasonably
complex representations, we need an algorithm which,
operating within as small a search space as possible, can

discover the best maximal abstractions as quickly as
possible, two approaches to interference matching are
Known: (I) In the bind-first appi oac h, each pai ameter in
one PSR is associated with a parameter in the second PSR
and then a maximal abstraction is found by extracting the
c ase relations which are identical in the two PSRs (modulo
Ibe parameter bindings). In this case, if the lesser number
of parameters (in either PSR) is MP and the greater
number is NP the. number of possible binding functions is
combinatorial, (binomial coefficient of NP over MP) * MPL
(?)  Alternatively, in the match-first approach, all
instantiations of case frames of one type in one PSR are
compared with all instantiations of the same type of case

frame in the other PSR, and possible parameter bindings
are identified by determining which parameter*; have
corresponding properties in comparnl.>le relations. Here if

N\ and MI are the numbers of case relations in the larger
and smaller PSR (assuming only one type of case fiame),
the number of possible way:, in which the relations can be
forced into correspondence is similarly combinatorial.
While it is true that if one were interested in computing
abstraction*; of quite low-level event descriptions (such as
undirected graphs) neither method would bo much
pieforablo to the other, in most leal problems the number
of instances of any particular case frame is quite small
relative to the number of parameters in the PSR, and so
the second method is usually prefei able to the first. It is
this method which is used in our current work.

The actual algorithm we use has the following form:

A randomly selected case relation from one of the
exemplai PSRs is put into correspondence with a case
relation (which is a parameterizalion of the same case

frame) from a second exemplar
identical properties are identified as equivalent and the
insulting common case relation becomes the (primitive)
absti ac lion associated with that set of parameter bindings.
| hen other pairs of primitive case relations, one from each
of the two exemplai PSRs, are put into correspondence. If
a coinpaied pair of relations entails parameter bindings
consistent with those already identified, the common
relation is added to the ahsti action being produced. "lbis
now abstraction is the set union of the old absti action and
the new case relation, and the new set of parameter
bindings is the set union of those bindings entailed by the
previous abstraction and the forced bindings of the
parameters in the compared pair of case relations. |If a
pair of case relations  entails parameter bindings
inconsistent with those already identified, the common case
relation becomes a new (primitive) abstraction.

PSR; parameters having

Clearly, this algorithin may find a number of
competing maximal abstractions. Our approach is to build
as many distinct abstractions as possible, one relation at a

time, until a limitation on the number of distinct
abstractions which can be considered at one time is
exceeded. At that point, only those abstractions which arc

most significant in terms of the number >\WM\ type of case
relations they include an* retained. These abstractions
continue to be extended as other pairs of consistent
relations are Jiount\l at the same time, the least significant
absti actions are continually pruned from further
consideration in order to keep the search space as small as
possible.

The result of the process is a set of best maximal
alistractions, represented as PSRs. Any one of these
absti actions (interpreted as exislentially quantified) can
then be input to SPROUTER together with a third exemplar
to produce a set of maximal abstractions of three
exemplars, or the process may be repeated on as many
additional exemplars as desired. Since a maximal
abstraction is compared to an exemplar in the same way
that an exemplar is compared to another exemptar, we find
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it desirable to store abstraclions as PSRs, with the
interpretation thattheir parametersm tors ropt esent exislentially
quantified variables, derived from the correspondence of

case lelations in the exemplars from which the P$R was
induced.

The successive steps involved in producing the
maximal abstraction of the first two examples in the

concept formation task are shown below.

{1 IGMALL:]}
(2 GUOMALLD Y, EADROVE 2, ETOW: D 1)
LAY G SMAAL LY, TAROVIE 52, BETOW: L,

FSAMUISIZE:, SAMEISIZE R 1)

£ QL SMAL LY, JALOVE 2, 31 LOW: 1),
FOARMIISIZE 1, SAMUIGITL 2 1), 10MALL2 1)

() QOTSMALL LY, (AIOVE 2, HLTOW: LD,
ISAMIISTZT L, SAMUISIAL 2D, [SMALT 23,
ISOUIARF 17 D)

{6) LOLOSMATL 1Y, FAROVI 2, BE
FSAMIIGIZE L, SAMIISITE 21
FSOUARE:Z D, IGIRCLH 11 )

W,
L, 1GMALLR Y,

'The case relation {SMAI | :c } is selected at random from EJ
and is then put into correspondence with the case relation
SMALEF} from \2. 't he parameters r and f are identified
as equivalent and so (since ¢ and f are The first pair of
parameters hound) the primitive abstraction {{SMALL:!}} is

generated. Then the pair of casr relations {ABOVE:b,
'BLLOW:C} and {ABOVL:d, BELO)W:f} are put into
correspondence. Since the idenlificalion of ¢ with f and of

b with d is consistent with the already established binding,
the piimitive abstraction {{AHOVE:2, BELOW:I}} is added to
{*SMALI :J }(. I should be noted that our basic 1M
algoiilhm actually finds only siy of the eight case relations
c nnstituting the abstraction. This is because the? partial
abstraction {{ FRIANGLE ':3}; {I. ARG-.:3}} was pruned from
consideration early in the match under the space limitation
constraint, to insure that such complementary relations
are not missed, our algorithm, after completing the process
described above, searches for additional relations which
can extend the abstractions produced. Any such relations
which are found are conjoined to the abstraction to
produce a maximal abstraction.

SPROUIER, the program which induces abstractions
fi oin structural descriptions, is only one part of a
classification and learning system which wo are developing.
| be top-level progi am, called SI JM |1, 10, 16J, is a general
space limited inlei ference matching proceduie which builds
abstractions from example-. and then wuses these
abstractions to classify test stimuli. While the abstraction
of featrei evalue repesentations can be performed by
simple bit vector operations (which SLIM itself is capable
of), the gonei ation of abstractions bom PSRs requires the
matching and paiamoler binding, detei minahons discussed
above. The progi am, SPROUIIR, was treated for this
purpose. Once an abstraction is computed from some PSRs,
it is nearly as complex a problem lo use it for classification
as it was to generate it originally [1, 11-13]. With this in
mind, SPROUTER was designed to produce two outputs: one

of these is a PSR, which as we have indicated can be
matched with subsequent exemplars to produce more
refined abstractions; the other is a special purpose

recognition network used
template.

to exploit an abstraction as a

the templates which SPROUTER generates for GLIM
are automatically compilable recognition networks or
ACORNs [13, 18]. An ACORN is a special data structure,
equivalent in representational power to a PSR, but better
adapted to serve as a template; it is essentially a
Pandemonium pattern recognition system [27], generalised
to handle patterns and data described as general
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pi operational formulae. Once an ACORN has been
produced, SLIM can determine whether a descriptive PSR
matches it by using The PSR to create an instance list at
each of the lowest-level nodes in the ACORN and then
allowing the relevant instances of subpatloins of interest
lo percolate upward in the network. |If any instances of
the highest level node are found, the template is matched
by The stimulus pattern. The lowest-level nodes of an
ACORN correspond to the distinct case frames in a
universally quantified PSR and are like the feature demons
of a Pandemonium system. A feature demon, however,
reports only the number of instances of its particular
fealure to higher level demons, whereas the node in an
ACORN actually passes its instances up to the higher-level
nodes which it supports. The higher-level nodes look for
instances of the particular conjunction of case, relations in
which they are interested, just as higher-level "cognitive
demons" in Pandemonium look for specific combinations of
featuie values. the highest level node in an ACORN is
instantiated if and only if the abstraction is matched by the

PSR. I bus this highest-level node corresponds lo a
Pandemonium's highest level cognitive demon  which
recognizes when a pattern of interest is matched. Because

ACORNs have been developed to provide a means for
sharing the results of the evaluation of subexpressions
common to numerous templates, each conjunction of

(Medicates or subtemplales is. associated with a single
binai y bachcing node whose two descendants represent
The conjoined prepositional formulae.

Once a set of best maximal abstractions is computed
for two or more exemplars, all training exemplars (or a
sample of them) may be examined to see if they match the
infened hypothetical concept or rule. Only to the extent
that exemplars of the same class match an abstraction and
those of the other classes do not, do we find support for
the inference that the abshr action is the criteria! concept
underlying the training data [9-JOJ. ACORNs greatly
facilitate this examination process. One simply instantiates
the terminal nodes of the ACORN whose highest nodes
represent the abstractions of interest, and then iteratively
computes all instances of each higher-level node from
those pairs of instances of its subordinate’ nodes which
satisfy critcital tests on their values. If any instances of
the abstraction are produced, the training exemplar
matches the abstraction. Without ACORNSs, it would be
extremely difficult to determine which positive and
negative training exemplars matched each abstraction.

111. THE INTERFERENCE MATCHING ALGORITHM

SPROUIPRY. function, as we have said, is to build
ACORNs which can he used by SIIM for recognition,
Before this construction process can begin, a set of

piimilive (bottorn- level) nodes must be generated and then
instantiated, Fo generate these nodes, SPROUTER reads in
the set of caso frames which are relevant to the task it is
facing, for each of these case frames, a primitive node is
created which is essentially a universally quantified case
i elation. SPROUTER then finds, in the descriptive PSRs of
two exemplars, the set of distinct instances (case relations)
which are instances of each of these nodes. Each node has
two associated instance lists; each of these lists contains
the instances of the case relation for one of the exemplars.
Tor example, given the two case frames NI: {CIRCLE}, N2:
{ABOVE, BLOW} and the two exemplars

£5: { {CIRCLE:a, CIRCLE:b},
{ABOVE :a, BELOW:h )

(1-H { {CIRCLE:c}}

SPROUTER will create two nodes, NI and N2, and then
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produce four instance lists. Two of these lists, ([E5/a],
|165/67) and ([("6/c]), are associalod with node NI. The
other two, ([15/a, E5)/b]) and ( ), are amounted wilh node

When the primitive nodes have been instantiated,
GPROUHR produce'., the set of maximal abstractions of the
two PSRs by construeling, bottom-up, a binary-branching
ACORN Fach higher-level node of this network is a
conjunction of two nodes, one of which is always a
primitive node. Before initiating the building process,
SPROUII R deletes all of the primitive nodes that do not
bave at least one instance from each exemplar. Then one
exemplar, the one wilh fewer instances over the remaining
nodes, is tagged Finto the other exemplar is tanged

f-comp' And each instance-intro is marked’ unused.
SPROUTER then begins the actual construe lion. An unused
'intro insance frrom a primitive node is chosen as one of
thr two instances to be used in tbe construction; it is
selected on the basis of tbe likelihood of its being an
instance of a node which is a constituent of a best maximal
abstraction. This instance is then paired with every
instance from Einto of every node, farh of these pairs of
instances is used to construct a candidate node which will
accept instance pairs only if They are equivalent to The
prototypic pair. If there is al least one such pair of
instances in e;omry the candidate node is, added to the
network and all instances of the node (fiom both
exemplars) are computed. Thus, each step in the
abstraction building PROCess involves combining, itei atively,
an unused instance from a primitve node wilh each other
instance in the ACORN. After each of the resulting
conjunctive nodes is generated for a pair of instances from
into, all instances of that node, first from | comp, and then
from einto, are computed, if no instances are found in
| comp node represents an abstraction that is not true

of the second exemplar and so the node is not added to
the network. 'ltie process continue?, until all of the case
relations that are common to both exemplars have been
conjoined.

Of course, this algorithm, left unconstrained, would
build a node for each subset of case relations in Einto for
which there was an equivalent subset in 'comn Clearly,
tbe size of tbe search space would increase exponentially.
Thus, for even small problems, it is important to somehow
reduce tbe number of nodes construe ted. We use two
heuristics. The first of these enables us to keep the
search space to a manageable size by providing for the
automatic pruning of those conjunctions least likely to be
part of a best maximal abstraction. To determine which
partial abstractions are least promising, a value s
computed which we call the utility of a node. Basically, the
utility of a node is an increasing function of the number of
pioperties covered by tbe node and a decreasing function
of the number of distinct parameters needed to instantiate
the node. More specifically, our current utility measure
adds 1.0 for each property of a case relation and subtracts
1.0 for each distinct parameter in the associated PSR. Our
justification for this rather rough measure of utility is that
it will yield as tbe highest valued nodes, those with the
greatest scope and connectivity. Equivalently, tbe higher
tbe utility of a node, tbe more informative and apparently
"better" it is as an abstraction.

During the construction of the ACORN, a list of all
nodes currently in the network is maintained. This list,
which is ordered by tbe utility of its elements, has a
stipulated maximum length. Whenever the number of total
nodes in the ACORN exceeds this stipulated maximum, a
primitive node which does not support any higher-order
nodes is marked as removed from consideration. If all
remaining primitive nodes support some higher-level node,
then the least valued maximal abstraction (provided there

is more than one maximal abstraction in the network) and
all nodes supoiting it (or supporting one of its supports,
recursively) and not supporting some other higher valued
maximal abstraction are deleted (or marked as removed
from consideration if they are primitive nodes). Thus, the
numbei of nodes in the network can ex< eed lhe stipulated
maximum only if just one maximal abstraction remains.
While in some cases, it might be desirable to require that
at least k (k>J) best maximal abstractions be maintained,
we have not yet found a\need\for this option.

As a result of the limitation on nodes in the ACORN,
the typical behavior during construction is as follows:
Instances are introduced one at-a-time from Einto and are
conjoined with other Einto node instances to form PSRs
leprespnling subsets of case lelalions of varying utility.
As soon as the number of nodes corresponding to these
nodes in the ACORN exceeds the stipulated maximum, the
maximal node with the lowest utility together with all
nodes which support only it are deleted from the network.
Ibis construction and pruining cycle is lepoated until the
sot of best maximal abstractions has been found.

The second heuristic provides the search with
direction by indicating which one of the unused instances
is to bo used in the next cycle of construction. Our search
for the best maximal abstractions is essentially hill
climbing,, but occurs on manv bills simultaneously. Since
our pruning heuristic enables us to maintain a gradually
deceasing number of maximal abstractions. the number of
lulls  under consideration is reduced as the search
progresses. Clearly, if we could select first all of those
instances from Einto which were instances of the best
inaximal abstractions (lhe highest hills), then our search,
since it would take place in an essentially unimodal space,
would be as efficient as possible. Of course it is
impossible to cleteimine a priori which instances are
instances of the best maximal absh actions. However, by
using a variant of the utility function described above, it is
possible to compute, fairly cheaply, the upper bound of the

actual utility of any node which might be constructed.
Using, the; strategy, we can, at relatively little cost,
significantly increase the probability that the node
cnnstiueted will be a constituent of a best maximal

abstraction. "The selection procedure wo use is as follows:
We set a sampling factor (currently 207] for the proportion
of tbe unused instances from Einto which are to be
examined. We select at random this percent of the unused
instances (but at least three until there are fewer than
three unused instances), for each of the instances in this
sample, we determine an upper bound of the utility of all
of the nodes which could bo constuctod by conjoining the
sampled instance with the remaining instances of nodes still
under consideration. The one instance which produces tbe
node with the highest potential utility is constructed.

The actual construction of a node is a two step
process. Tirst SPROUTER creates a set of tests which are
both necessary and sufficient to accept just those
instances that are equivalent to the pair of instances used
as a model in building the higher-level candidate node. It
is possible to create such a set of tests working only with
the 'ameness or difference of selected parameters. For
example, to construct an ACORN node To accept tbe two
instances {CIRCIFx} and {AHOVB :a, BILOWicj, a same
parameter (SP) test is generated to insure that the first
parameter of lhe first case relation is the same as the
second parameter of the second relation, and a different
parameter (DP) test is generated to insure that no
non-explicit SPs are accepted. If one thinks of this ACORN
node as being constructed from a left and a right instance,
where the parameter of the left instance is numbered 1,
and tbe parameters of the right instance are numbered 2
and 3, then a minimal complete set of tests needed to

Knowledge Acq.-4 Hayes-Roth
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exactly represent the same and different relation*; are
(SP:1, SP:3} and {DP:l, DP:?}.
After tho sot of tests has been created, the

12:

{ {SQUARE:d, | RIANGEt m, CIRCLE-.I},
{S.MAIl :d, I.LARGI :e, SMAI | :f},
ANNI R:f, OUIl R-eJ,

candidatenodeisassociatedwitha|'generator setwhichspeciture how the paragiatgyglofdtsinstewes ape taow:f},

extracted from pair', of submchnte
the node'. SP and DP tests.

i equii ement for DP relatione to hold on all distinct
parameters'., the order of thr new relation is exactly the
number of distinct parametoi - in the two relation instances
need in building the node. In the ahove example, there
would ho two parameter', in each instance of tho new node
and these would correspond to pat amr lets ] and 2 (since
I and 3are identical). |he genei atm list for this node
would he just (J,?). IFrom the nature of The explicit SP and
DP tests wused, it follows thaT any two nodes having
instances der ived front equivalent pairs of instances must
he equivalent. Whenever such a duplicate node is
consti ucted, it is removed fiom the ACORN.

instance-, which satisfy
Hoc an .r of tho implicit

It should he apparonl that an ACORN constructed in
the fashion described ahove will not necessarily contain a
maximal abstraction. Whether or not it will is partially
dependent on what maximum has been stipulated for the
number of nodes in thr- ACORN Hut even if the stipulated
maximum is large enough so that thr- highest node in the
ACORN is a constituent of a maximal abstraction, the ACORN
may not he complete; that is, some of the case elations in
the abstraction may have been lost. This can occur if one
more primitive nodes whose instances are a part of the
abstractionwere o r omoved frorn consideiation early in the
constion process. In such a case, howevei, it is always
possible to extend the ACORN with conjunctions of these
lost primitive node instances. This is done by successively

* (introducing into the construct and prune cyclo each
instance in I-j,|(n» which does not support all of the
instances of all of the highest nodes in the ACORN. Each

Eache introduced instance is conjoined with each of the
instances of each highest node In produce candidate nodes,
If instances of any of these new abstractions are found in
| Ecome, .,, these new nodes ate retained; the ACORN is then
extended further, in the same way, until the* best maximal
absb actions have been found,

We have already soon the abstraction SPROUTER
constructs given the first two exemplars in the first
concept foimation task. "The set of case frames from which
the primitive nodes were created, all three exemplars, and
the best maximal absraction found by SPROUIER are given
below.

CE:
{ NE{CIRCEE},
N2:( SQUARE},
N:*{T WANGLE},
N1:|I ARGL!,
Nb:{SMALL.},
N6:{1NNFR, OUT ER},
N7:{ AMOVE, BLUM},
N8:{l.rf- '1, RICHI},
N):JSAMt !SI IAPE, SAMEJSIIAPE},
NI0:{SAME!SI7E, SAMI ISIzE),

NI 1 bESIDE, nrsior.},
N.I 2:{CON1 1GUOUS, CONTIGUOUS}}

TI:

—~

{ER1ANGI L:a, SQUARE:!*, CIRCLE" },
R.ARGE:a, SMALL:b, SMALL*},
{INIMLR:b, OUTER:a},

{AHOVha, AROVI :b, BELOW:c},
{SAME!SIZE:b, SAME!SIZE:c}}

Knowledge Aq
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{SAMI'M/hd, SAME!SE/E:f}}

13:

| (SOUARErg, CIRCI f :h, CJRCI | :i},
SMAI | :g, | AREI :h, SMAI I :i},
mINNI R:i, OUR R:h},
IAUOVI'.g, UELOW.h, BLLOW:i},
{SAMI MIAPI :h, SAMI IShAPI :i],
{SAMI !SI/l :g, SAMI ISI/E:i}}

Fohi il o):

{ INIO:{SAME!SI/E:I,SAMI
;N/:{ AMOVE:),BELOW:?},
(NOICIRCI h?},
INI-.{S.MALI.:1 },
“NI>.:SMAI L.?},
:NV:{5;0UARE:I },

{N/I:{t ARGI :3\\
INSIANOES f ROM | XI MPI AR | 1it ?
(Ir it />0 0 iTI71,1 \H /3)

INSIANCI S | ROM | XI-MPI AR | 3
<l 3/}.si'Vi,L3/h]|)

18471 22},

SPROUIER took b sc*conds of < pu time on a POP JO
(model KA 10) to produce* | hi? which it found after
consti uc ling M nodes (/ moi e than necessaiy). SPROUTE R

tool; A seconds and consh ucted (> node-, (the* fewest
po-.".iblo) to prodme (F Ilit?)il 3. 1he ah'.traction
SPRoU"II'R found, however, though it is the best

absh action producible using our urate h frist melhod, is not
maximal. It is missing two case relations. As we indicated
in the* fust section of the paper, the abstraction SPROUTER
induces is the following:

There are throe objects, including a small circle and
a small square, 1he square is above? the circle.
The third object is large.

The best maximal abstraction includes the
specification that thr* lauge object contain:; another one
which is one of the two small objects, SPROUTER is unable
to find this abstraction for two reasons: (I) The grain sizo
of The iepi esentabons used in describing the examples is
bio big,; more atomic uniform representations aie needed to
make abstraction, which is a stuclly subh active process,

inoie generally applicable |Il, Ib] (?) Many-one
pai amojor correspondences must be allowed in order to
iivuie that relevant cot respondences are not lost, these

two problems, whose solution require*, methods of greater
gonei ality than we have currently implemented, are
discussed in detail in the CMU technical report from which
this paper is taken.

IV. CONCLUDING REMARKS

SPROUIER has already solved learning problems of
theoretical significance and of considerable complexity.
Brcauso of the extensive size of the search spaces, such
learning could not be done with simple enumerative
matching algorithms. In essence, SPROUTER establishes the
feasibility of induction  from non-trivial exemplar
descriptions. In many respects, however, SPROUTER is
quite primitive. It is a purely syntactic matcher; it knows
nothing at all about the underlying structure or significance

of any of the predicate descriptions wupon which it

operates. Eor this reason, its utility function, and thus its

heuristics, are very weak. One interesting aproach to

improving the performance of SPROUTER would be to
Hayes-Roth
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