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Abstract. The representat ion of concepts and 
.»nlec eclent consequent pi odur linns is discussed and a 
method for indue inp knowled:,,e by absh -at t in;; Mich 
i ep i esontat inns from a sequence of training examples is 
desc i ibed. I ho proposed le,n ninp method, interference 
male limp,, induces abstractions by finding relational 
p i o p e r t i e s common to two or more exemplars. 

1. INTRODUCTION 

A numboi of distinct paradigm*"- for studying learning 
machines have emei \\f"(\ dminn the last twenty yeai s. 
Though each di f fers f iom the olhers in a var iety of ways, 
the t h i c e d i f ferences which most cleat ly demark each 
p.it adit'.m are ( I ) the types of knowledge which can be 
a r q m i e d , (?) the way in WICh this knowledge is 
isplesea.ed and (3) the type of learning alponthm used. 
the leai ninp machine which we will desci ibe in this paper 
.anquiies concepts i epi esen la l le as conjunctive forms of 
the pred icate calculus and hehavjoi s repie osnntable as 
p ioduc t ions (antecedent consequent paii s of such 
conjunctive? forms); those concept', ,)\)(\ behavior rules are 
i n f e r r ed f rom sequential ly p iosen lod pairs of examples by 
an a lponthm that is provably effect ive foi a wide var ie ty 
of problem' , . 

I eat ninp, is v iewed bet e as a continual process of 
knowledge expansion, that is, as, the acquisition, in adaption 
h> t ra in inp experiences, of h igher-oi dor, more complex, and 
here e e laborate knowledge structures. One's knowledp.e at 
any point in line inc ludos those concepts and productions 
innate ly pi ov ided or previously learned. I he concepts are 
p a l t r i n template's; events which match a concept are 
i o< op,ni/ed as belnnpinp to the class delimited by that 
concept. | the product ions are pairs of concepts; one of the 
concepts funct ions as a rocopnizer, the other specifies the 
form of an associated action. A product ion is in terpre ted 
as a behavior generator in the sense that (in some 
comput ing environment wi th an appropr iate control 
.hue tore) the detect ion of a condition in the environment 

wh ich matches the antecedent causes the consequent 
component to be instantiated and then evoked. Mere both 
The antecedent and the consequent are templates; the 
antecedent determines whether the p ioduct ion is to be 
execu ted , and if so, what specific constants in the 
d e s c i i p l i o n of the event beinp, attended to are to be bound 
to var iab les in the consequent. 

With in this fi amework, the machine learninp problem 
w i l d which we are concerned can be stated in the 
fo l low ing way: Given a collection of concepts and 
produc t ions const i tut ing what is known at some time and a 
way of describing events in terms of their s t ructure, 
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i onsh uc t a machine which is able to induce additional 
concepts or product ions from t iaininp data. to make our 
teo lmenl of this problem more concrete, we will use the 
amplest of the concept fo imat ion tasks attempted by our 

machine as r)\) example throuphnut the paper. The task is 
f ind what the three exemplars in Figure 1 have in 

common. Our propram induces the fol lowing abstract ion: 

There are three objects, including a small circle and 
a small square. The square is above the circle. 
The th i rd objec t is larp„e. 

This paper is divided into four sections. In the next 
sect ion we discuss in perioral a way of describing events 
wh ich faci l i tates hndinp what two of more events have in 

which can be used to 
locale SPROE R, Our 
program, within the 

third section describes 

common and a matchinp alpoi i l lm 
f ind these abstract ions. we 
concept and product ion inducing 
broader context of out work. The 
SI 'ROUER'S in te r fe ience matching (induction) algorithm in 
some deta i l ; we indicate here more specifically how 
SPROUTCR makes use of structural representat ions of 
even ts to acquire and store knowledge. In the final section 
we conclude w i th a brief consideration of the strengths 
and weaknesses of SPROUTER and directions for fu ture 
research . 

I I . STRUCTURAL REPRESENTATIONS 

The prob lem which we are addressing is simply 
doser ibed : Dosipn a propram which can infer concepts and 
produc l ions f iom. i l lustrat ive instances. 1 he method we 
employ is correspondingly s t ra ight forward: Extract 
commonal i t ies f rom the examples and attenuate their 
d i f fe rences . Such an approach is like Galton's very 
p r im i t i ve "composite pholopraph theory" of concept 
learn ing [ 8 ] and the "posit ive focusinp s t ra tepy" for 
con junc t i ve concept learninp fust studied by Bruner, et al. 
| 3 | . While Gallon's contr ibut ion was simply to propose that 
unknown pat terns could be in ferred by over lay ing 
homologous memory representat ions of related examples 
(as if one were forminp a composite of many photographs 
of the same subject) , Bruner and his colleapues showed 
bow such a process could in fact be realized. Each 
p resen ted object (exemplar) is described as a conjunct ion 
of specif ic feature values. To find the template which is 
matched by all of the presented objects, a feature vector 
conta in ing only those features common to all of the 
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exemplars is generated. This feature vector is the 
concept . Since that seminal worK, many computer 
sc ient is ts have produced increasingly practical and 
soph is t ica ted feature-va lue concept learners based on 
i H a l e d techniques [ 1 , JO, 16, ?0, 21, 29]. 

ex tending such learning models so that they can 
induce general elNat ional) classification and behavior rules 
is the goal of our work. In focusing on methods for 
for senerating relat ional abstractions which make possible the 
tecgnition of complex events, we encounter three 
problems"; not encounleiocl in previous work, first we must 
deve lop a formal scheme for desu ih ing complex events 
wh ich fa< i l i tatos the generation of absh actions. Second, 
g i ven descr ip t ions of two examples of the same concept or 
p roduc t i on , we must develop a method for comparing them 
so that their commonalities can be identif ied. Third, it is 
necessary to develop a way of stor ing The discovered 
abst rac t ions to faci l i tate their subsequent use in either of 
two ways : they may be used as templates, for classification 
and behavior generat ion, or they may be used as 
knowledge represeetahons whose precision may later be 
improved by learning if new instances of the same concept 
or p roduc t ion are provided. These problems are re fe r red 
to below as the descr ipt ion problem, the comparison 
p rob lem, and the stot age problem. fach is considorod in 
more detai l in the subsequent paragraphs, 

I he dose Option problem entails providing a symbolic 
i epi eson lahon of each exemplar satisfying two demands. 
I n s t , those at t r ibutes of the exemplar which are salient 
and potent ia l ly cr i ler ia l must be ref lected in its descript ion 
In i i vane that the1 classification t i l l t * induced will be 
su f f i c ien t l y discriminating. Note that since an exemplar 
may be composed of many objects, the descript ion must 
d is t ingu ish each ohjec t and indicate cleai ly how it relates 
to I he o thers . Second, the descriptions should facilitate 
the ident i f ica t ion of commonalities among the exemplars so 
that the abstract ion being, sought can be found quickly. 
Since each object may exhibit a var iety of charac teiistic s 
and par tic ipate in numerous relationships wi th other 
ob jec t s , f inding commonalities between two or more 
examples wil l necessitate search. A representat ional 
scheme which helps direct this search is almost essential. 

The method of descript ion we employ is built on 
th ree centra l concepts, the proper ty , the case frame, and 
The pai ameter. A propei ty is a feature or characteristic of 
an ob jec t , f o r example, SQUAW: and SMAI. I. name two 
p i o p e r t i e s of small squares the p ioper t ies AMOVE and 

W ar e used in our work to describe objects; which are 
above or below others in pictorial displays. To define the 
te la t ionsh ip of one object hemp, above another, a case 
f rame of the sor t {ABOVE:', BHOW} is used. In general, 
case frames are sets of propert ies which are semantically 
re la ted in some exogenenra'y determined manner. To 
p roduce descr ipt ions of objects, events, or behaviors, case 
fr anes are parameter ized (instantiated); that is, a name is 
g i ven to each object in the event being described and this 
name is associated wi th each proper ty of the object. 
Parameter ized case frames are called case relations. For 
example , if b is the name of a square above a circle named 
c, this might be described by the fol lowing set of case 
te la t ions : {{SQUARE: b), {CIRCI E : c }, {AMOVE:!.!, BEI OW: c}J. 
Such a set of case relations in terpreted as a conjunction of 
va l id propos i t ions is called a parameterized structural 
r ep resen ta t i on or PSR [9 , 12} 13]. In this example, {b, c) is 
the parameter set of the PSR. 

A s t ruc tura l descr ipt ion of the f irst two exemplars in 
the concept format ion task discussed in the introduct ion is 
g i ven be low. 

The deser ipt ion of (1 asserts that there is an event 
c omposed of three object'"., named a, b, rind c; that the 
object labeled a ha-. the propert ies of a t i ang le , of a large 
ob jec t , and of containing the object labeled b; and so on. 

PSRs provide a solution to the storage problem as 
wel l as to the descr ipt ion problem; that is, they can be 
used in stor ing discovered ahsti actions In the case of 
descr ip t ions, pai ameler symbols are chosen to name each 
object so that if the same object is part of more than one 
case re la t ion, it is r e f e n e d to in a consistent way. If one 
al ters the in terpre ta t ion so that ea< h distinct parameter is 
cons idered as an unbound vni lable, the PSR can be 
consrdored a template for concept identif ication. Such 
templates have been used by several researchers [ 1 , 9 , 12, 
13, 15>, 281 to specify what propert ies an object must have 
in o i de r to satisfy member ship in a pattern class. While 
the pa ramet r r s in a descript ion can be thought of as being 
e / i s ten t ia l l v quant i f ied, those in a PSR used as a template 
should bo thought of as being universally quantif ied. When 
used as a template for pat tern classification, the PSR if, 
compa iod wi th an event (an existontially quantif ied P5R). 
If a mapping from the event to the template can be found 
wh ich preserves., the par amotet bindings in the event 
d e s i i i p h o n and which makes each case relation of the 
template t rue, the event is said to match the template. 

In addit ion to their role as classification ruler,, PSRs 
can be used as general hohavioi r ules. In this case two 
templates- are associated. One of them, the antecedent, is 
used to recognise a set of conditions (a context) which 
indicates that a particular r et of actions is appropr iate; 
when the antecedent template is matehed by some event in 
the env i ronment , the rule is invoked. The second template, 
The consequent, specifics, what actions are to be 
p e r f o i m e d . When the two templates share common 
pai a in f te i s, each parameter in the- consequent is bound to 
the same value as the con responding parameter in the 
antecedent. These behavior rules may act, for example, as 
Post product ions, transformational grammar rules, or the 
prob lem solving rules of STRIPS [7 ] In short, a rule w i th 
the antecedent A(X) and the consequent C(X) over the 
var iab les in the ret X is interpreted to mean (X) [A(X) «> 
C(X)]. In actual applications, A defines a precondit ion 
which can be true of the contents of some work ing 
memory , and C defines what is to be done if the 
p recond i t ion is satisfied. Note that any such product ion 
can be descr ibed by a PSR in which each case relat ion in 
the antecedent includes a term of the sort t EVENT:a, each 
case re la t ion in the consequent includes a term of the sort 
EVLNT:c, and the PSR itself includes a case relat ion 
! ANIECDENBA . CEDEI :a, CONSQUENE. NI :c}. 

't he abstract ion of the first and second examples in 
the sample concept formation task can be represented in 
the fo l lowing way: 
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discover the best maximal abstractions as quickly as 
poss ib le , t w o approaches to interference matching are 
Known: ( I ) In the b ind- f i rs t appi oac h, each pai ameter in 
one PSR is associated wi th a parameter in the second PSR 
and then a maximal abstract ion is found by extract ing the 
c ase re lat ions which are identical in the two PSRs (modulo 
Ibe parameter bindings). In this case, if the lesser number 
of parameters (in either PSR) is MP and the greater 
number is NP the. number of possible binding functions is 
combina tor ia l , (binomial coefficient of NP over MP) * MP!. 
(?) A l te rna t i ve ly , in the match-f irst approach, all 
ins tant ia t ions of case frames of one type in one PSR are 
compared w i t h all instantiations of the same type of case 
f rame in the other PSR, and possible parameter bindings 
are ident i f ied by determining which parameter*; have 
co r respond ing proper t ies in comparnl.>le relations. Here if 
N\ and Ml are the numbers of case relations in the larger 
and smaller PSR (assuming only one type of case f iame), 
the number of possible way:, in which the relations can be 
f o r ced into correspondence is similarly combinatorial. 
While it is true that if one were interested in computing 
abstract ion*; of quite low- level event descript ions (such as 
und i rec ted graphs) neither method would bo much 
p i e f o r a b l o to the other, in most leal problems the number 
of instances of any particular case frame is quite small 
re la t i ve to the number of parameters in the PSR, and so 
the second method is usually prefei able to the f i rst . It is 
this method which is used in our current work. 

"The ci rcular are.is labelled A and B correspond to two 
PSRs, all of the case relations common to the two PSRs arc 
in the area labelled A+B (read "A star B"). Because any 
subset of this (conjunct ive) set of common relations- also 
def ines an abstract ion of A snc\ B, it is important to be able 
to d is t inguish be tween the set and its proper subsets. We 
call i\ny abst ract ion of A and B which is proper ly contained 
in no o ther abstract ion of A and B a maximal abstract ion. 
More formal ly , if S (*) A denotes that A is a PSP matched 
by the PSR S, then a maximal abstract ion, A, of two PSNs. S 

T, sat isf ies S(*)A and 1(+)A and (B) 

It should be pointed out that for any two PSRs, 
the re may be more than one abstraction which is maximal 
in the above sense. For example, given the fol lowing two 
exemplars , 

t w o innxim.nl abstract ions o x i d . If the parameters a and b 
are cons idered to be identical, the maximal abstract ion is 

If on the o ther hand, the parameters a and c are 
cons idered to be identical, the maximal abstraction is 

To pe r fo rm inter ference matching on reasonably 
complex representa t ions, we need an algorithm which, 
ope ra t i ng w i th in as small a search space as possible, can 

The actual algori thm we use has the fol lowing form: 
A randomly selected case relat ion from one of the 
exemplai PSRs is put into correspondence wi th a case 
re la t ion (which is a parameter izal ion of the same case 
f rame) f rom a second exemplar PSR; parameters having 
ident ical p roper t ies are identi f ied as equivalent and the 
i nsu l t i ng common case relat ion becomes the (pr imit ive) 
abst i ac l ion associated wi th that set of parameter bindings. 
I hen o ther pairs of pr imit ive case relations, one f rom each 
of the t w o exemplai PSRs, are put into correspondence. If 
a co inpa ied pair of relations entails parameter bindings 
consistent w i t h those already identi f ied, the common 
re la t ion is added to the ahsti action being produced. "Ibis 
now abst rac t ion is the set union of the old absti action and 
the new case re lat ion, and the new set of parameter 
b indings is the set union of those bindings entailed by the 
p rev ious abstract ion and the forced bindings of the 
parameters in the compared pair of case relations. If a 
pair of case relat ions entails parameter bindings 
inconsistent w i th those already identi f ied, the common case 
re la t ion becomes a new (primit ive) abstraction. 

Clear ly , this algorithin may f ind a number of 
compet ing maximal abstractions. Our approach is to build 
as many dist inct abstractions as possible, one relat ion at a 
t ime, unt i l a l imitat ion on the number of distinct 
abst rac t ions which can be considered at one time is 
exceeded. At that point, only those abstractions which arc 
most signif icant in terms of the number >\\M\ type of case 
re la t ions they include an* retained. These abstractions 
cont inue to be extended as other pairs of consistent 
re la t ions are iount\\ at the same time, the least significant 
abst i act ions are continually pruned from fur ther 
cons idera t ion in order to keep the search space as sma 
poss ib le . 

all as 

The result of the process is a set of best maximal 
alis t ract ions, represented as PSRs. Any one of these 
abst i act ions ( in te rp re ted as exislential ly quantif ied) can 
then be input to SPROUTER together wi th a th i rd exemplar 
to p roduce a set of maximal abstractions of three 
exemplars , or the process may be repeated on as many 
addi t ional exemplars as desired. Since a maximal 
abs t rac t ion is compared to an exemplar in the same way 
that an exemplar is compared to another exemptar, we f ind 
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it des i rab le to store abstrac lions as PSRs, wi th the 
i n t e r p r e t a t i o n that their parametersm tors ropt esent exislential ly 
quant i f ied variables, der ived from the correspondence of 
case le la t ions in the exemplars from which the P$R was 
induced. 

The successive steps involved in producing the 
maximal abst ract ion of the first two examples in the 
concept format ion task are shown below. 

'The case re lat ion {SMAl I :c } is selected at random from EJ 
and is then put into correspondence with the case relation 
SMALEF} f rom \2. 't he parameters r and f are identif ied 
as equivalent and so (since c and f are The first pair of 
pa ramete rs hound) the primit ive abstraction {{SMALL:!}} is 
genera ted . Then the pair of c asr relations {ABOVE:b, 
'BLLOW:C} and {ABOVL:d, BELO)W:f} are put into 
cor respondence . Since the idenl i f ical ion of c wi th f and of 
b w i t h d is consistent w i th the already established binding, 
the p i im i t i ve abstract ion {{AHOVE:2, BELOW:l}} is added to 
{•SMALI :J }(. II should be noted that our basic 1M 
a lgo i i l hm actual ly finds only siy of the eight case relations 
c nns t i tu t ing the abstract ion. This is because the? partial 
abs t rac t ion {{ FRIANGLE '.:3}t {I. ARG-.:3}} was pruned from 
cons idera t ion ear ly in the match under the space limitation 
const ra in t , to insure that such complementary relations 
are not missed, our algorithm, after completing the process 
desc r ibed above, searches for additional relations which 
can ex tend the abstract ions produced. Any such relations 
wh ich are found are conjoined to the abstraction to 
p roduce a maximal abstract ion. 

SPROUIER, the program which induces abstractions 
fi oin s t ruc tu ra l descr ipt ions, is only one part of a 
c lassi f icat ion and learning system which wo are developing. 
I be t op - l eve l progi am, called SI JM | 1 , 10, 16J, is a general 
space l imited in le i ference matching proceduie which builds 
abst rac t ions f rom example-. and then uses these 
abst rac t ions to classify test stimuli. While the abstraction 
of featrei e v a l u e repesentat ions can be performed by 
simple bit vector operat ions (which SLIM itself is capable 
o f ) , the gonei ation of abstractions bom PSRs requires the 
matching and paiamoler binding, detei minahons discussed 
above. The progi am, SPROUIIR, was t reated for this 
pu rpose . Once an abstract ion is computed from some PSRs, 
it is near ly as complex a problem lo use it for classification 
as it was to generate it originally [ 1 , 11-13] . With this in 
mind, SPROU'TER was designed to produce two outputs: one 
of these is a PSR, which as we have indicated can be 
matched w i t h subsequent exemplars to produce more 
re f i ned abstract ions; the other is a special purpose 
recogn i t i on ne twork used to exploit an abstraction as a 
templa te . 

t h e templates which SPROUTER generates for GLIM 
are automatical ly compilable recognit ion networks or 
ACORNs [13 , 18] . An ACORN is a special data st ructure, 
equ iva lent in representat ional power to a PSR, but better 
adapted to serve as a template; it is essentially a 
Pandemonium pa t te rn recognit ion system [27] , generalised 
to handle pat terns and data described as general 

pi operational formulae. Once an ACORN has been 
p roduced , SLIM can determine whether a descript ive PSR 
matches it by using The PSR to create an instance list at 
each of the lowest- level nodes in the ACORN and then 
a l lowing the relevant instances of subpat lo ins of interest 
lo perco late upward in the network. If any instances of 
the highest level node are found, the template is matched 
by The stimulus pat tern. The lowest- level nodes of an 
ACORN cor respond to the distinct case frames in a 
un iversa l ly quant i f ied PSR and are like the feature demons 
of a Pandemonium system. A feature demon, however, 
repor t s only the number of instances of its part icular 
fea lu re to higher level demons, whereas the node in an 
ACORN actually passes its instances up to the higher- level 
nodes which it supports. The higher- level nodes look for 
instances of the particular conjunction of case, relations in 
wh ich they are interested, just as higher- level "cognit ive 
demons" in Pandemonium look for specific combinations of 
f ea tu i e values. the highest level node in an ACORN is 
instant ia ted if and only if the abstraction is matched by the 
PSR. I bus this highest- level node corresponds lo a 
Pandemonium's highest level cognitive demon which 
recognizes when a pat tern of interest is matched. Because 
ACORNs have been developed to provide a means for 
shar ing the results of the evaluation of subexpressions 
common to numerous templates, each conjunction of 
(Medicates or subtemplales is. associated wi th a single 
binai y bachcing node whose two descendants represent 
The conjo ined preposit ional formulae. 

Once a set of best maximal abstractions is computed 
for two or more exemplars, all training exemplars (or a 
sample of them) may be examined to see if they match the 
i n f e n e d hypothet ical concept or rule. Only to the extent 
that exemplars of the same class match an abstraction and 
those of the other classes do not, do we find support for 
the inference that the abshr action is the cr i ter ia! concept 
under ly ing the training data [9-J0J. ACORNs great ly 
faci l i tate this examination process. One simply instantiates 
the terminal nodes of the ACORN whose highest nodes 
rep resen t the abstractions of interest, and then i terat ively 
computes all instances of each higher- level node from 
those pairs of instances of its subordinate' nodes which 
sat is fy c r i t c i ta l tests on their values. If any instances of 
the abstract ion are produced, the training exemplar 
matches the abstract ion. Without ACORNs, it would be 
ex t reme ly dif f icult to determine which posit ive and 
negat ive t ra in ing exemplars matched each abstraction. 

111. THE INTERFERENCE MATCHING ALGORITHM 

SPROUIPRY. funct ion, as we have said, is to bui ld 
ACORNs which can he used by SI IM for recognit ion, 
Be fore this construct ion process can begin, a set of 
p i im i l i ve (bottorn- level) nodes must be generated and then 
instant ia ted, Fo generate these nodes, SPROUTER reads in 
the set of caso frames which are relevant to the task it is 
facing, f o r each of these case frames, a primit ive node is 
c rea ted which is essential ly a universally quanti f ied case 
i e la t ion. SPROUTER then finds, in the descript ive PSRs of 
two exemplars, the set of distinct instances (case relat ions) 
wh ich are instances of each of these nodes. Each node has 
two associated instance lists; each of these lists contains 
the instances of the case relat ion for one of the exemplars. 
Tor example, g iven the two case frames N l : {CIRCLE}, N2: 
{ABOVE, B L O W } and the two exemplars 

SPROUTER will create two nodes, Nl and N2, and then 
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produce four instance lists. Two of these lists, ( [E5/a] , 
|165/67) and ( [ ( "6/c ] ) , are associalod wi th node N l . The 
o ther two , ( [ 1 5 / a , E5) /b ] ) and ( ), are amounted w i lh node 

When the pr imi t ive nodes have been instant iated, 
GPROUHR produce'., the set of maximal abstractions of the 
two PSRs by construel ing, bot tom-up, a b inary-branching 
ACORN Fach h igher- leve l node of this network is a 
con junc t ion of two nodes, one of which is always a 
p r im i t i ve node. Before init iat ing the building process, 
SPROUII R deletes all of the primit ive nodes that do not 
bave at least one instance from each exemplar. Then one 
exemplar , the one w i l h fewer instances over the remaining 
nodes, is tagged Finto the other exemplar is tanged 
f-comp' And each instance-intro is marked ; unused. 
SPROUTER then begins the actual construe lion. An unused 
' i n t ro insance frrom a pr imit ive node is chosen as one of 
t h r two instances to be used in tbe construct ion; it is 
se lec ted on the basis of tbe likelihood of its being an 
instance of a node which is a constituent of a best maximal 
abs t rac t ion . This instance is then paired wi th every 
instance f rom Einto of every node, f a r h of these pairs of 
instances is used to construct a candidate node which wil l 
accept instance pairs only if They are equivalent to The 
p ro to t yp i c pair. If there is al least one such pair of 
instances in e c o m r y the candidate node is , added to the 
n e t w o r k and all instances of the node ( f iom both 
exemplars) are computed. Thus, each step in the 
abs t rac t ion bui lding PROCess involves combining, itei at ively, 
an unused instance from a p r im i t ve node wi lh each other 
instance in the ACORN. After each of the result ing 
con junc t i ve nodes is generated for a pair of instances from 
into, all instances of that node, f irst from I comp, and then 
f rom einto, are computed, if no instances are found in 
I comp node represents an abstraction that is not t rue 
of the second exemplar and so the node is not added to 
the ne twork . 'I tie process continue?, until all of the case 
re la t ions that are common to both exemplars have been 
con jo ined. 

Of course, this algorithm, left unconstrained, would 
bui ld a node for each subset of case relations in Einto for 
wh ich there was an equivalent subset in ' C O m n Clearly, 
tbe size of tbe search space would increase exponential ly. 
Thus, for even small problems, it is important to somehow 
reduce tbe number of nodes construe ted. We use two 
heur is t ics . The f irst of these enables us to keep the 
search space to a manageable size by providing for the 
automatic prun ing of those conjunct ions least l ikely to be 
par t of a best maximal abstraction. To determine which 
par t ia l abstract ions are least promising, a value is 
computed which we call the uti l i ty of a node. Basically, the 
u t i l i t y of a node is an increasing function of the number of 
p i o p e r t i e s covered by tbe node and a decreasing funct ion 
of the number of distinct parameters needed to instantiate 
the node. More specif ical ly, our current ut i l i ty measure 
adds 1.0 for each p rope r t y of a case relat ion and subtracts 
1.0 for each dist inct parameter in the associated PSR. Our 
jus t i f i ca t ion for this rather rough measure of ut i l i ty is that 
it wi l l y ie ld as tbe highest valued nodes, those w i th the 
grea tes t scope and connect iv i ty. Equivalently, tbe higher 
tbe u t i l i t y of a node, tbe more informative and apparent ly 
" b e t t e r " it is as an abstract ion. 

Dur ing the construct ion of the ACORN, a list of all 
nodes cu r ren t l y in the network is maintained. This l ist, 
wh ich is o rde red by tbe ut i l i ty of its elements, has a 
s t ipu la ted maximum length. Whenever the number of total 
nodes in the ACORN exceeds this st ipulated maximum, a 
p r im i t i ve node which does not support any h igher-order 
nodes is marked as removed from consideration. If all 
remain ing pr imi t ive nodes support some higher- level node, 
then the least valued maximal abstract ion (provided there 

is more than one maximal abstract ion in the network) and 
all nodes supoi t ing it (or support ing one of its supports , 
r ecu rs i ve l y ) and not support ing some other higher valued 
maximal abst ract ion are deleted (or marked as removed 
f rom cons iderat ion if they are primit ive nodes). Thus, the 
numbei of nodes in the network can ex< eed Ihe st ipulated 
maximum only if just one maximal abstraction remains. 
While in some cases, it might be desirable to require that 
at least k (k>J) best maximal abstractions be maintained, 
we have not yet found a \need\ for this option. 

As a result of the limitation on nodes in the ACORN, 
the typ ica l behavior dur ing construct ion is as fo l lows: 
Instances are in t roduced one at-a -time from Einto and are 
con jo ined w i th other Einto node instances to form PSRs 
l e p r e s p n l i n g subsets of case lelal ions of vary ing ut i l i ty. 
As soon as the number of nodes corresponding to these 
nodes in the ACORN exceeds the st ipulated maximum, the 
maximal node w i th the lowest ut i l i ty together w i th all 
nodes which support only it are deleted from the network. 
I b i s cons t ruc t ion and pruining cycle is lepoated until the 
sot of best maximal abstractions has been found. 

The second heuristic provides the search wi th 
d i rec t i on by indicating which one of the unused instances 
is to bo used in the next cycle of construct ion. Our search 
for the best maximal abstractions is essentially hill 
climbing,, but occurs on manv bills simultaneously. Since 
our p run ing heuristic enables us to maintain a gradually 
d e c e a s i n g number of maximal abstractions. the number of 
lulls under considerat ion is reduced as the search 
p rogresses . Clear ly, if we could select first all of those 
instances f rom Einto which were instances of the best 
inaximal abstract ions (Ihe highest hills), then our search, 
s ince it wou ld take place in an essentially unimodal space, 
wou ld be as eff ic ient as possible. Of course it is 
impossib le to cleteimine a pr ior i which instances are 
instances of the best maximal absh actions. However, by 
using a var iant of the ut i l i ty function described above, it is 
possib le to compute, fair ly cheaply, the upper bound of the 
actual u t i l i ty of any node which might be constructed. 
Using, the; s t ra tegy , we can, at relat ively l i t t le cost, 
s ign i f icant ly increase the probabi l i ty that the node 
cnns t i ue ted wi l l be a constituent of a best maximal 
abs t rac t ion . "The select ion procedure wo use is as fol lows: 
We set a sampling factor (current ly 207] for the propor t ion 
of tbe unused instances from Einto which are to be 
examined. We select at random this percent of the unused 
instances (but at least three until there are fewer than 
th ree unused instances), for each of the instances in this 
sample, we determine an upper bound of the ut i l i ty of all 
of the nodes which could bo cons tuc tod by conjoining the 
sampled instance w i th the remaining instances of nodes stil l 
under considerat ion. The one instance which produces tbe 
node w i t h the highest potential ut i l i ty is constructed. 

The actual construct ion of a node is a two step 
process. Tirst SPROUTER creates a set of tests which are 
b o t h necessary and sufficient to accept just those 
instances that are equivalent to the pair of instances used 
as a model in bui lding the higher- level candidate node. It 
is possib le to create such a set of tests working only wi th 
the 'ameness or d i f ference of selected parameters. For 
example, to construct an ACORN node To accept tbe two 
instances {CIRCIFx} and {AHOVB :a, BILOWicj, a same 
parameter (SP) test is generated to insure that the f irst 
parameter of Ihe f irst case relat ion is the same as the 
second parameter of the second relat ion, and a di f ferent 
parameter (DP) test is generated to insure that no 
non-exp l ic i t SPs are accepted. If one thinks of this ACORN 
node as being const ructed from a left and a right instance, 
w h e r e the parameter of the left instance is numbered 1, 
and tbe parameters of the right instance are numbered 2 
and 3, then a minimal complete set of tests needed to 
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exact ly represent the same and different relation*; are 
(SP:1, SP:3} and {DP: I , DP:?}. 

Af ter tho sot of tests has been created, the 
candidate node is assoc iated with a |'generator set whichspeciture how the parameters of its instances are to he 
extracted f rom pair ' , of submchnte instance-, which satisfy 
the node' ' . SP and DP tests. Hoc an .r of tho implicit 
i equi i ement for DP relatione to hold on all distinct 
parameters'., the order of thr new relation is exactly the 
number of dist inct parametoi •.. in the two relation instances 
need in bui ld ing the node. In the ahove example, there 
wou ld ho two parameter ' , in each instance of tho new node 
and these would correspond to pat amr lets ] and 2 (since 
I and 3are identical). I he genei atm list for this node 
wou ld he just (J,?). IFrom the nature of The explicit SP and 
DP tests used, it fol lows thaT any two nodes having 
instances der ived front equivalent pairs of instances must 
he equivalent . Whenever such a duplicate node is 
const i uc ted, it is removed f iom the ACORN. 

It should he apparonl that an ACORN constructed in 
the fashion descr ibed ahove will not necessarily contain a 
maximal abstract ion. Whether or not it will is partial ly 
dependent on what maximum has been stipulated for the 
number of nodes in thr- ACORN Hut even if the stipulated 
maximum is large enough so that thr- highest node in the 
ACORN is a const i tuent of a maximal abstraction, the ACORN 
may not he complete; that is, some of the case elations in 
the abst rac t ion may have been lost. This can occur if one 
more pr imi t ive nodes whose instances are a part of the 
abs t rac t ion were o r omoved frorn consideiation early in the 
c o n s t i o n process. In such a case, howeve i , it is always 
possib le to ex tend the ACORN with conjunctions of these 
lost pr imi t ive node instances. This is done by successively 
• ( i n t r o d u c i n g into the construct and prune c yc lo each 
instance in l - j n | ( n which does not support all of the 
instances of all of the highest nodes in the ACORN. Each 
Eache in t roduced instance is conjoined with each of the 
instances of each highest node In produce candidate nodes, 
If instances of any of these new abstractions are found in 
I Ecome| .,, these new nodes ate retained; the ACORN is then 
ex tended fu r the r , in the same way, until the* best maximal 
absb actions have been found, 

We have already soon the abstraction SPROUTER 
cons t ruc ts g iven the first two exemplars in the first 
concept fo imat ion task. "The set of case frames from which 
the pr im i t i ve nodes were created, all three exemplars, and 
the best maximal abs rac t i on found by SPROUIER are given 
be low. 

CE: 
{ NE{ClRCEE}, 

N2:( SQUARE}, 
N:*:{T WANGLE}, 
N1:| l ARGL!, 
Nb:{SMAI.I.}, 
N6:{1NNFR, OUT ER}, 
N7:{ AMOVE, B L U M } , 
N8:{l.rf- '1 , RICHI} , 
N):JSAMt !SI IAPE, SAMEJSIIAPE}, 
NI0:{SAME!SI7E, SAMI ISIzE), 
NI 1 bESIDE, nrsior.}, 
N.I ?:{C0N1 1GU0US, CONTIGUOUS}} 

T l : 
{ {ER1ANGI L:a, SQUARE:!*, CIRCLE* }, 

R.ARGE:a, SMALL:b, SMALL*} , 
{INIMLR:b, OUTER:a}, 
{AHOVha, AROVI :b, BELOW:c}, 
{SAME!SIZE:b, SAME!SIZE:c}} 

12: 
{ {SQUARE:d, I RIANGEt m, CIRCLE-.I}, 

{S.MAII :d, I.ARGI :e, SMAl I :f}, 
ANNI R:f, OUII R.-eJ, 
■JAHOVI :d, 111 IOW:e, Pi LOW:f}, 
{ S A M I ' M / h d , SAME!SE/E:f}} 

13: 
I (SOUARErg, CIRCI f :h, CJRCI I :i}, 

SMAI I :g, I AREI :h, SMAl I :i}, 
■1NNI R:i, OUR R:h}, 
lAUOVI'.g, UELOW.h, BLLOW:i}, 
{SAMI M IAP I :h, SAMI IShAPl : i | , 
{SAMI !SI / I :g, SAMI !Sl/E:i}} 

I- h i ' / i I :): 
{ !NIO:{SAME!Si/E: l ,SAMI !SJ7 I :2}, 

;N / : { AMOVE:),BELOW:?}, 
( N O I C I R C I h ? } , 
!N!-.:{S.MAI.I.:1 }, 
•;N!>:.;SMAI L :?}, 
;NV,:{5;0UARE:I }, 
{N/I:{t ARGI :3\\ 

INSIANOES f ROM I XI MPl AR I 1 it ? 
(|r i-tt //;>,[ i iT/71,1 \H ;/3\) 

INSIANCI S I ROM I XI-MPl AR I 3 
<|l 3 / } . s i 'V i ,L3 /h | ) 

SPROUIER took b sc*conds of < pu time on a POP JO 
(model KA 10) to produce* I h i ? which it found after 
const i uc l ing M nodes (/ moi e than necessaiy). SPROUTE R 
too l ; A seconds and consh uc ted (> node-, (the* fewest 
po-.'. iblo) to p r o d m e (F I it ? ) i l 3. 1 he ah'.traction 
SPRoU"II"R found, however, though it is the best 
absh action producible using our urate h frist melhod, is not 
maximal. It is missing two case relations. As we indicated 
in the* fust sect ion of the paper, the abstraction SPROUTER 
induces is the fo l lowing: 

There are throe objects, including a small circle and 
a small square, 1 he square is above? the circle. 
The th i rd object is large. 

The best maximal abstraction includes the 
speci f icat ion that thr* lauge object contain:; another one 
wh ich is one of the two small objects, SPROUTER is unable 
to f ind this abstract ion for two reasons: ( I ) The grain sizo 
of The i epi esentabons used in describing the examples is 
b io big,; more atomic uniform representat ions ai e needed to 
make abstract ion, which is a s tuc l ly subh active process, 
ino ie general ly applicable | l l , l b ] (?) Many-one 
pai amojor correspondences must be allowed in order to 
i i v u i e that relevant cot respondences are not lost, these 
two problems, whose solution require*, methods of greater 
gonei al i ty than we have current ly implemented, are 
discussed in detail in the CMU technical report f rom which 
this paper is taken. 

IV. CONCLUDING REMARKS 

SPROUIER has already solved learning problems of 
theoret ica l significance and of considerable complexity. 
Brcauso of the extensive size of the search spaces, such 
learn ing could not be done with simple enumerat ive 
matching algorithms. In essence, SPROUTER establishes the 
feas ib i l i ty of induction from non-tr iv ia l exemplar 
descr ip t ions. In many respects, however, SPROUTER is 
qu i te pr imi t ive. It is a purely syntactic matcher; it knows 
noth ing at all about the underlying structure or significance 
of any of the predicate descriptions upon which it 
opera tes . Eor this reason, its ut i l i ty function, and thus its 
heur is t ics , are ve ry weak. One interest ing aproach to 
improv ing the performance of SPROUTER would be to 
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