FORVAL GRAVWIRS AS MCDHS OF LOGIC DERIVATIONS

Sharon Sickel
Information Sciences
University of California
Santa Cruz CA 95064

Keywords and phrases: Automatic theorem proving,
clause interconnectivity graphs, context-free
grammars, attribute grammars, proof theory.

This work supported in part by the Office of Naval
Research under contract 76-C-0681.

Abstract

Context-free attribute grammars are proposed
as derivational models for proofs in the predicate
calculus. The new representation is developed and
its correspondence to resolution-based clause in-
terconnectivity graphs is established. The new
representation may be used to transform a predi-
cate calculus characterization of a problem into a
regular algebra characterization of the solutions.

The new representation can be used to simplify
the search for proofs. It allows us to express and
derive predicate calculus proofs as a constraining
function that serves as a filter to the set of
candidate proofs that ignore the arguments to
predicates. The effect of this is to separate the
underlying propositional structure from the re-
strictions imposed by the required unifications.

While previous theorem proving methods have
been able to enumerate all proofs of a theorem,
the method reported here is unique in being able
to characterize all proofs of some theorems, re-
presenting even an infinite set of proofs with a
finite formula. This work has implications for
proof theory as well as providing a useful tool in
the analysis of programs specified in logic.

1. Introduction

This section gives definitions of clause
interconnectivity graphs and context-free grammars.
The definitions have been extended where needed to
express the additional structure treated in this
paper. A more detailed description of clause
interconnectivity graphs is given by Sickel[4].
Commn ‘definitions in theorem proving used here
are given by Chang and Lee][l],

A substitution 0 is a set of ordered pairs
[t1/x], t2/x§,...tn/xn] where each ti is an arbi-
trary term and each xi is a distinct variable.
For an arbitrary literal L, Lo denotes the literal
L with all occurrences of xi replaced by ti for
[*isn. Similiar definitions apply for terms to,
and clauses C.

A directed substitution is given by €y s$
where 0 is a substitution [tl/xI,...,tn/xn], and

si and s2 form a partitioning of the variables of
0. For example, [f(y)/x, 9(*)/*J(x)(y,.) ° ?
directed substitution.

A variant 0, of a directed substitution
]

¥

Theorem Proving-3:

61 62 is a substitution derived from e in which
each variable y ¢ s1 1s replaced by ¥ in 8, and
each variable z € s2 1s replaced by z, in 6.
Variant o replaces only variables from s1; var-

Ta=
fant o_ ; replaces only variables from s2. a_ _
L]
= 9.

Given & set of clauses that are variable dis-
joint, we can construct a clause interconnectivity
graph (CIG}. A CIG is a quadruple:

<Nodes, Edges, Subst, Clause> where

Nodes is a set of graph nodes, one for each

Titeral in each clause. Even if two literals

in separate clauses are identical, they cor-

respond to different nodes.

Edges 1s a symmetric relation between pairs

of nodes such that <A,B> ¢ Edges 1ff the 1it-

erals associated with nodes A and B have op-

posite signs and unifiable atoms. We write

A<>B if <A.B> ¢ Edges and A<t»B 1f either

A<»B or if 3C,D such that A<>C, C ¢ Clause(D)

but C#D, and D<+»>B.

Subst is a mapping: Edges + Directed Substi-

tutions such that Subst cA,B>}=esI 52 Where ©

is a most general unifier of the atoms of the
literals associated with nodes A and B, si is
the set of variables appearing in both A and
@, and s2 is the set of variables appearing
in both B and ©. In the ground case, Subst
maps to the empty substitution.

Clause is a mapping: Nodes - Powerset{Nodes).
{Tause partitions the nodes so that literals
in the same clause have corresponding nodes
in the same partition.

The start clauses are one or more clause par-
titions which may be chasen arbitrarily. Us-
ually they are the clauses representing the
negation of the theorem to be proved.
Residual literals is a mapping:

Nodes + Powerset{Nodes) where
Residual_literals{B) = Clause(B) - {B}.

For example, Figure 1 shows a simple CIG.
Throughout the discussion of this example we refer
to nodes by the Titerals they represent. If two
or more 1iterals were identical, it would be neces-
sary to distinguish between them. For this example

Nodes = the set of circled Titerals

tdges = {<A,B>! A and B are connected by an
e%%e of the graph}. I.e., {<A(x), A(y)>,
<Aly). Al{x)>, etc.}

A(x)<+>C(g ugg since Alx)<>Aly)}, Aly) ¢
Clause{C(gly))land C(g(y))<>C{g{u)).
Intuttively P<t+>Q means that from P we can .
get to { by first traversing an edge and then
alternating between selecting a residual of
the destination and from there traversing an

Sickel

edge, etc.

Subst maps each edge to a_directed substitu-
tioﬂ' e.0., SUbSt((A(X], I{y)>)=[xfy](x}()i
Subst{‘i%yj. A(X)>)=[xfy](y)(x). ete. y

Undirected substitutions are shown on the un-
directed edges of the figure.

Clause maps each node to the set of nodes in

the same clause, e.g.,
Clause(A(F(z))) = (R(F(2)), c{g(u)), B(w)}.

Residual_l1iterals maps a node to the other
nodes in the same clause, e.g., _
Residual _literals(A(f(z)}) = {C{g(u))}, D(w)}.

\W]
[Gurand G T

{olelsy €

[V

g

€
G

Figure 1: A CIG for clauses {A(x) B{f{x)),
A(y) Tlg(y)), D(b}, A(f{z)) ¢ blw),
BUF(F(a))] Elale)) Fla)e tlv) Fiayo "

Continuing with the definitions,

Unifying composition (@)} is a mapping:

Substitutions«<Substitutions + Substitutions
where a®g = vy such that v is a most general
unifier satisfying, for an arbitrary term t,

(tady = (ty)e = ty = (tB}y = {ty)s.

If no such y exists, a®p is undefined. © is
commutatfve and associative, i.e.,

alp = BQOa

a@(BOY) = («C B)OY
Composition of substitutions is normally de-
fined in the context of applying substitutions
sequentially. However, for this application
we are looking for evidence that substitutions
are compatible. Here, substitutions may be
applied in any order; therefore they must be
comutative and associative.

Suppose we have a seguence of edges ei=<A1.Bi>
1sisn, such that Al = Bn and for lsi<n,

A(141) € Residual T1terals{Bi), and for 1#j

Al ¢ Clause{Aj). Then the sequence leads from
node A1 back to itself (i.e., Al<+>A1) without
visiting any other clause more than once. The
base node is A1, If the substitutions along
the way allow us to use the same instance of
Al at both ends of the sequence (i.e.,, 1f

a = Sﬂﬂﬁt(e1)(ﬂ$ubst(e2}t) ... OSubst{en) is
defin then m is called a merge loop.
Sub(m), the substitution of the Joop, is the

directed substftutfon o, _, such that s1 is

Theorem Proving-3:
545

the 1ist of variables from the clause of base node
Al and 82 15 the 1ist of all other variables ap-
pearing in the loop.

For a merge loop <Al1,B1>, <A2,B2>, ...<An,Bn>
the undeleted residuals = {L| L ¢ Residual_

Yiterals(Bk) -{ATK+¥1)T where 1sksn-1}.

In order to find proofs, we must find ways to
delete all literals in a start clause. If a CIG
is a tree to begfn with, then 1t models a preoof in
which the root is the start clause. However, if
the CIG is not a tree, then it must be made into
one. For example,

M
(Ej// (5) becomes {E) ’@)
i 5 ®

The definitions for deletion tree and solution tree
do that transformation, along with checking for
substitution consistency.

A deletion tree for node N, denoted T{N) 1is:

a) a finite tree
(i) having root N
{ii1) where K has a single child L such that
<N,L> ¢ Edges

(ii7) and L has k children T(L1), ... T{Lk}
where Residual_literals{L) =
iL1,...,Lk}
and Sub(T(N)) = Subst{<N,l>} (=

Sub, (T(L1))@ ... ©sub (T(Lk)) " 1s

defined where j is an integer not used
before+, and where Sub,(T(N)) =
Sub(T(N}) with a1l pretfously unsub-
scripted variables now subscripted
with i. The subscripts are used to
distinguish between different occur-
rences of the variables.

Note: if k=0, then L is a leaf.

b} a finite tree

(i; having root N

(i1) where N has a single child m such that
m is a merge loop with base node N

{iit}) and m has k children T(L1}, ... T(Lk}

where §{L1,...Lk} are the undeleted

residuals of m

and Sub(T{(N}) = Sub(m)_ jG)Subd(T{Ll)}

6. Dub (T(Lk)) s defined where j
{s an integer that has not been used

bafore and where Subi{T(N)) is as in
case a.

Note: if k=0, then m 15 a leaf.

t+ The reason for this condition is to guarantee
that subtrees T{L1)...T{Lk) do not have common
renaming constants, The chofce of § is by 2
global function similar to GENSYM in LISP,

{iv)

(iv)

Slckel

c) derived only by means of a) and b).

A solution tree, Ts{C), for a CIG C i5s a tree
such that:
(1) it has root “."
(11} and "<" has as children deletion trees
for all the 'I‘Itera]s of a start clause
iL1, .
(iii) and Sub(Ts(C)) = Sub (T{Lt1))e ...¢C

Subj(T(Lk)) is defmed where j is an
integer that has not been used before.

Again, consider the_exam 1e in F'l?ure 1. The
sequence <A(x), A{y)>, <Clg(y)). C{g{u))> .
<A(f(z)), A{x)> is a merge 1oop The base node is

A{x). The substitution of the loop is
[xiy1 ey (' D793y () © TR @D () (x)

= [f(z)/x, f{z)}y, f(z){u](x)(u’y’z). T(w) is the

only undeleted residual, For the start clause
{Af{x), B(f{x))}, Figure 2 shows the solution tree
for this example.

T\['F(a},hdl, f{a)/y2, fla)/uz, bwl, a/z2,g9{e)/v3]

A -
[$?32J/x.f(zz}/yz.f(zz)/uz,b/w1] BPf(x))
1 [f(a)/x.g9{e)/v3]
| merse Toop—
L<A(x},A(y)>, <C(g{y)} clo{u))>,
<A(f{z)),A{x
szfz/“ﬂaﬁyﬂwyz}
"‘ B(f(f{a)))
D{w) o i
[v/wi] o
| st:);(e)) Fla)
[g(e}/v3] |
D(b) i _
g(v} F{a)

Figure 2: The only solution tree for
Figure 1 with start clause {A{x),B(f(x))}
Nonempty substitutions of the subtrees
are denoted at the roots.

A context-free grammar i a quadruple:
<Nontermninals, Jerminals, Productions, Start symbol-
in which

1} Nonterminals, Terminals and Productions are

finite sets

2) Nanterminals N Terminals = 4

3) vp ¢ Productions, p is of the form:

N+ sl s2 ... sk for any finite k where

N ¢ Nontermimals for 1zisk,

59 € Nonterminals U Terminals.

N i5 known as the left-hand side (1.h.s5.)
and s1...5k as the right hand side (r h.s)
of the product1on p.

4) Start symbo1 € Nonterminals.

E.g., <N={5,A}, T={0,1,2}, P, S> where P is:

{S+~0A2

5+02
A=-1A
A+ 1}

Theorem Proving-3:
546

If we always use upper case Latin letters to
denote nonterminals and never to denote terminals,
and restrict the start symbol to be "S", then the
production set will fully specify the grammar. We
sometimes use this shortcut notation.

For any set of characters C, the set of all
strings of those characters is denoted C*. E.g.,
for the above grammar, T* equals all strings made
up only of symbols 0, 1, 2. The empty string, a
string consisting of no symbols, is denoted e.

e € T* for all T.

If « and g are strings of symbols and there .
exists a production A - Bl ... Bn and by replacing
a single occurrence of symbol A in a by the string
Bl ... Bh we get B8, thenwe say ¢ = 8. In the
preceding gammar, 0A2 = 01A2. If a and & are
strings such that for finite mzl
a =gl =62 =..= Bn = 8, then we say a can be de-
rived from g and denote it a%s. A special case of
this definition is that u%a. 5 & 0111112 in
the previous grammar.

The language L(G) of a context-free grammar
G =«N,T,P,5> is the set of all terminal strings
derivable from G, i.e., {x| x € T™ and 5 % x}.

A tree is a derivation tree[2] for G if:
1) Every node has a label which is inN U T.

2) The label of the root is S.

3) If a node s has at least one descendant,
and s has label A, then A must be in N.

4) If nodes s1, s2,...,sk are the direct de-
scendants of node s, in order from the left,
with labels Al,...,Ak respectively, then
A~ Al A2...Ak must be a production in P.

Denote by D(A) a derivation tree for a string de-
rivable from nonterminal A.

2. CIG's to Grammars

Grammars provide concise representations for
very rich sets of objects. For example, all com-
putable functions are grammatically describable.
The functions that we are interested in are the
ones that take statements of theorems as input and
produce proofs of those theorems as output. This
paper attacks that problem by transforming the in-
put into a grammar that will generate exactly the
set of proofs to the theorem.

Ground case. In the ground case, all substitutions
are empty and are therefore all mutually compatible.
Ignoring substitutions simplifies the problem so we
will start here. From a ground case CIG:
C = <Nodes, Edges, Subst, Clause>,
construct a context-free grammar G.
G = <Nodes U {S}, Edges, P, S>
where S £ Nodes U Edges. P consists of:
a) S + L1...Lk for each starting clause
o {LY,. .. Lk},
b) B + aCl...Ck for each edge e=<B,C> and
Residual 11tera1s{C] {€1,...Ck}.
¢) B -~ mLY...Lk for each mer'ge 100p m and where
L1...Lk are the undeleted residuals of m.
For examp1e, consider the ground case CIG of Fig-
ure 3. The edges of Figure 3 are named a-d and the
nodes A-G for purposes of exposition. Let the
start clause be {A,B} and let e' denote edge <Y, X>
1f e denotes edge <X,Y>. Edges are directed to

Sikel

Let

designate in which direction the Tabel applies.

-

Then G is:
<{S$,A,B,C,D,E,F,G}, {a,b,c.d}, P, S> where P is:
S+AB C+a'8
A-+abc (a merge loop} D-bE
A+al E+cB
A-c'F F-+-b"C
B»d G+d A

L(G) = {abcdd, c'b'a'dd, abcd}.
A derivation tree for abcdd is shown in Figure 4.

/\3 A B Lo
& \}/
\ B D EF
a/} d If/
!

b E BE AB
i [.
c 8 -~

| BB

d

c

. "
. Loy

(1) derfvation tree {ii) proof tree

Figure 4: Trees for abcdd

The string abcdd corresponds to the proof in
which the sequence of resolutions corresponding to
edges a, b, ¢, d, d are performed as shown in Fig-

ure 4(ii). AG are merely labels, not the literals
themselves. Because edges represent complementary
pairs, A AE, DMF, B=G; dashed lines con-

nect these pairs in the proof for the convenience
of the reader. Each edge traversed is denoted at
the corresponding resolution step, also for con-
venience.

Tm 1. For the ground case, the set of deletion
trees for node N of CIG C is equivalent to the set
of derivation trees for strings derivable from non-
terminal N using the productions of the grammar G
derived from C.

Proof The proof is by induction on the depth of the
trees. Both cases contain a basis step as an in-
stance. There are two operations for constructing
each of the deletion trees and derivation trees.
We shall show that the two pair correspond. The
first production for G does not apply since we have
no way of generating S from any other nonterminal.
Part a Construction rule a for deletion trees
corresponds to production rule b of grammars
constructed from CIG's. Figure 5 shows the cor-
responding constructions.

Theorem Proving-3:

N
|
L

N

TLYY ... T(Lk)

e D{L1) ... D(Lk)

{ii) a construction
rule for derivation
trees

(i) a construction
rule for deletion
trees

Figure 5: A corresponding pair
of construction rules for de-
Tetion and derivation trees.

For k=0, it is ¢lear that L, as a child of N, can
be mapped onto <N,L> and vice versa. For k>0, we
assume that if T(ti} is equivalent to D{Li) for
1£9sk then Figure 5(i) 1s equivalent to Figure
5{ii}. The only transformations to be made are
between L and <N,L> and a simple tree reshaping.
Part b Construction rule b for deletion trees
corresponds to production rule ¢ of grammars con-
structed from CIG's. Figure 6 shows the corres-
ponding constructions,

N N

I L\
/\ o(L1) ... b(Tk)

T{L1) ... T{Lk)

(i1} a construction
rule for derivation
trees

(i) a construction
rule for deletion
trees

Figure 6: A corresponding pair
of construction rules for de-
letion and derivation trees

For k=0 the two trees are identical. For k>0, we
assume that if T(Li) is equivalent to D(Li) for
INisk then Figure 6(i) is equivalent to Figure
6(ii) with the only required transformations being
a simple tree reshaping.

From parts a and b we conclude that for
any deletion tree we can construct a corresponding
derivation tree and vice versa. Q.E.D.

Tm 2 For the ground case, the set of solution
trees of a CIG is equivalent to the set of deri-
vation trees for the language of the grammar G
constructed from the CIG.

Proof Figure 7 shows the form of solution trees
and derivation trees for L(G). For each Li, Isi’k,
we can construct equivalent T(Li) and D(Li). It is
therefore trivial to show that for any solution
tree we can construct an equivalent derivation tree
from S.

Sickel

547

5

TiL1) ..}k} D(LT) ...\L'i(Lk]

(i) The form of (ii) the form of a
a solution tree derivation tree for
an element of L{G)

figure 7: Forms of solutfon trees
and derivation trees for L{G).

Thm 3 Every proof by resolution of the unsatisfi-
abTTity of a set S of ground clauses can be mapped
onto an element in the language L(G) where G is
the grammar constructed from the CIG C construc-
ted from 5.

Proof Any proof by resolution of the unsatisfi-
abiTity of S car be mapped onto a solution tree
for ¢, [5]. By Thm 2 we know that every sotution
tree for C can be mapped onto a derivation tree of
an element of G, Every derivation tree can be
mapped onto the element of L(G) that consists of
the leaves of the tree in the same left-to-right
order,

Thm 4 {(Soundness) Suppose G is the grammar deriv-
ed from CIG C, derived in turn from the set of
¢lauses 5. If L(G) is non-empty, then S is unsat-
isfiable and any element of L{G) can be mapped onto
a proof of the unsatisfiability of 5.

Proof Suppose L(G) contains some string 5. Every
member of L(G) has a derivation tree that describes
the process of deriving 5. Let d be a derivation
tree for s. From Thm 2 we can map d onto a solu-
tion tree of C. That solution tree maps onto a
rgof by resolution of the unsatisfiability of 5,
5].

Thm & {(Completeness) IFf a set S of clauses is
unsatisfiable then the language L(G} is nonempty
and any element of L{G} can be used to construct
a proof of the unsatisfiability of 5.

Proof Assume S unsatisfiable. Then there exists a
refutation r of 5 by resolution[3]. By Thm 3 we
know that v can be mapped onto an element s of
L{G) and L{G) must therefore be nonempty. Further-
more, by Thm 4, s can be used to find a proof of
the unsatisfiability of S.

Note: The terminals making up the string s
are edge names. Those edge names may be used to
represent resolution steps that collectively will
generate the empty clause,

General case In deriving a string in a context-
free Vanguage, any production may be applied when-
ever the current, derived string contains the non-
terminal that is the 1.h.s. of that production.

We shall now define a similar type of grammar in
which application of productions is further re-
stricted.

A context-free attribute grarmar is a context-
free grammar 1n which the productions are replaced
by production-attribute pairs: (P,A) where P is a
production and A is a predicate. When applying a
production the corresponding attribute must be
true.

Theorem Proving-3:
548

E.g., G = <{5}, {0,%}, P_A, 5> where P_A consists
of the two elements:

P A

1} S » 051 derived string is of length

less than or equal to 6

2} S+ 01 True
Then L{G) = {07, 0011, Q0D%17, QOOOL111}

The method for constructing a grammar in the
general case is basically the same as that in the
ground case except that we add attributes to the
productions. Each attribute corresponds to the
substitution that must be made at that step and its
compatibility with the substitutions that have al-
ready been made in the derivation.

Assume a given CIG. Find all merge loops.
Now construct a context-free attribute grammar,
<Nonterminals, Terminals, P_A, 5> where:

S is a new symbol, j.e., S # Nodes U Edges

Nonterminals = {S} U {Ni| N ¢ Nodes, {0}

Terminals = Edges

P A= (P,A)

1) Pis S~ L1, .., Lk, for each start clause
(LV,....Lx¥ A is Jtrue. The empty substi-
tution is the substitution of the newly de-
rived string, or
2) P s 81 +e (1,...Ck, where e = <B,(> ¢

Edges, Residual 1iterals(C) = {C1...Ck}
A is true iff g7 = aou” 1s defined where

8 denotes the accumulated substitution of
the current, derived string and n= Subst(e}.
g8' is the substitution of the newly derived
string, or

3} P is B_i > m l.lj...Lk. where m 1{s a merge

Tpop, (L1,...Lk) are the undeleted literals
of m. A is as in case 2 except that
a = Sub(m).

The indexing of the nonterminals is used to
keep track of different copies of the same variable.
If more than one instance of a clause is used in
the proof then the variables in those clauses must
be distinguishable. We assume that variables in
different clauses already have different names, so

hat th | ibl biguit i fi It-
B IhStaRids 5P ghvanhiige, 2riees from mu

Production-attribute pairs are_really temp-
Jates.t If nonterminal Bh appears in a derive

string, then we may use the template
Bi-» e C'IJ...ij
to create
Bh+ e (‘.'ln...(:krI
where n is an integer constant not previously used

+ The number of production templates is finite, but
the number of actual productions obtainable will be
infinite. It would have been possible, however, to
limit ourselves to a finite set of productions and
nonterminals by complicating the attributes.

Slckel

as a nonterminal subscript. This production may Sub{D{S}) = Sub{D(LY,))C...« Sub{0(Lk,)).
now be applied to the derived string s if the J . A

attribute of the production is true, i.e., if Bi B1
5ubst1tut10n(5)()ahn is defined. j
For example, consider the CIG C of Figure 8. ‘
Again, ff e is edge <X,¥> let o' denote <Y, X>; if e D(C1,)...0(Ck;) m D(L1j)"'D(LkJ)
Subst(e) = a o1 sp then Subst(e') = a ., . The (1) (11)
rammar constructed from £ is G = <{5,A,8,C,D,E,F, 5
.H’Il‘]}‘ {1 !2!314|5’1'n2'Q3I'4'l5I}|P_A|S$ Where H
P A:
- P A: true if B' = 8 Oc defined
where o s D{L1,)...D(Lk;)
1} S+ A, B, (144)
) A, »% E, [f(x}/y](x}() Figure 9: All possible configurations
3) B1 1 J [a/x] ')y of derivation trees
j {x
4) Ei + 3 G, H, Ly/ z]{ (2) Tm 6. (General case, Completeness and Soundness)
5) G, + 4 33 [f{a)fﬁ The set of solution trees of a CIG is equivalent
] 5 z)(-) to the set of derivation trees for the language
6) H1 +5 [b/w,a/v (v)(w] of the attribute grammar constructed from the CIG.
7) €, + 1" A, [a/x] Proof Consider first the ground structure, i.e.
8) 01 o 2t BJ {f(x];(' } the CIG without substitutions and the grammar with
i i y (y)(x) the attributes ignored. In this case, productions
9) 3 [y/z]
F. + 3' D, y/z enjoy unrestricted use. Looking only at the
10) I1 . 4 FJ H {f(a)ﬁz}(” ground structure, we are reduced to the situation
i i S-)(z} of thms 1 and 2. Therefore the ground structure
1} Ji + 5! Fj Gj [b/w,a/v (w) (v) of the two are equivalent. The general case puts
restrictions on those ground structures. What we
Edge e Subst(e) need to show is that the restrictions allow the
equivalent structures to be admitted at the gener-
! [a/x]{x}(_) al level.
2 [f(x)/y {x){y} For the same case breakdown as before, we
3 [y/z]((z) shall show that the structures the two systems ad-
4 [‘F(a)fﬁ z mit are equivalent and have equivalent substitu-
Sz){-) tions. The proof will be by induction on the
5 [b/w,a/v depth of the trees. The basic steps are the spec-
{v){w)
ial instances of cases 1 and 2 in which k=0.
Case 1
N N
Figure 8: A CIG with variable L (<N,L> = E}QI\\\
lists attached to clause ’
partitions S D(L1)..DLky)
T{L1} ... T(Lk)

L{G) equals the single element set {23451},
Assume by the induction hypothesis that T{L1),...,

The productions in our constructed attribute
grammar tell us how to generate strings, their Iééggci?geugL;lééé.'Egtklh::esng}%E:?)bz their
corresponding derivation trees and associated sub- Sub{D(Lh,)) \{‘ith a' ossible change of variables
stitutions, top-down, In order to prove the com- P 9
pletengss theorem for the general case, we need to for I= hs k., Then let
define the bottom-up construction of substitutions a = Sub(T{N}) =

of derivation trees. The following fs such a def-
inition. Proof of equivalence of this to the orig- Subst(<N,L>}_ . OSub (T(L1)}C)...f‘SubJ(T(LkJ)
inat definition is simple and left to the reader. +J J
For the derivation tree shown in Fig. 9(1), g* SUb(D(N1)) B
Sub(D(B }) = Subst(e) OSub{D(Uj)}o . O Subst{cN,L'-»)i J.(:’Sub(D(LTJ.))('J'...(EJSt;lb(D(ij)}.

SUb(D(Ck .) For 1= hs k, all variables in Suh(D(LhJ}) are
For the der"lvatwn tree shown in Fig. 9(ii
- ’ subscripted since every substitution applied un-
Sub(D(B) Sub(m) Osub{pit1;h e - © der the grammar is fully subscripted; furthermore,
Sub{D{ij)J all va;iab1es of{l.?é ?ge subscripted bﬁ j. AN
variables of Sub{T(th}) are subscripted except
For the derivation tree shown in Fig. 9(111), for those in Lh, since by the definition of dele-

Theorem Provfng-3: Slckel
549

tion tree, before forming Sub{T{Lh}) we subscript
all unsubscripted variables. Subj(T(Lh}) then

equals Sub(T{Lh}) with aTl variables of Lh now sub-
scripted. Therefore, if by the induction hypothe-
sis, Sub(D(th)) equals Sub{T(Lh)} up te a change,

cv, of variables, then Sub(D(th)} equals
SubJ(T(Lh)} up to cv', which is equal to cv minus
the changes involving unsubscripted variables.

Therefore, Sub(D{N}) and Sub{T(N)} are either
bath or neither defined, and Sub{D(N}) = Sub{T(N}}
with ¢v' plus change in Sub(T(N)) the unsubscripted
variables x of N to X

Case 2 N ﬂ
| - |\\‘x\\

m (m = e) D(Lij)...D(ij)

T(LT)...T{Lk)

e = Sub({T(N}} =
Suh(m}_’jOSubj(T(Ll})GJ...*"7Subj{t{Lk)} and
B = Sub{D(N)} =

Sub(n’r)'i ,jﬁ Sub(D[L'Ij})O ven mSub{D(LkJ))

Sub(D(LhJ.)) = Subj(T{Lh)) with change cv' for

1zhsk as in Case 1. Therefore Sub(D(N}} and
Sub(T(N})) are either both or neither defined, and
Sub(D(N)}) = Sub{T{N}) with cv' plus change in
Sub{T(N)) the unsubscripted variables x of m to X

S
\\ e \

T(L1)...T(LK) D(L1j)...D{ij)
a = Sub{Ts{C)} = Suhj(T(L1))tx...Q)Subj(T{Lk}) and
8 = Sub{D(S)} = Sub(D(L1j]}tJ...tJSub(D(ij))

Case 3

Suh(D(th]) = Subj{T{Lh)) with change cv' for

1h%k as in Case 1. Therefore Sub(D(5)) and
Sub{Ts(L)) are either both or neither defined, and
Sub(D(S)) = Sub{Ts{C)) with change cv'.

3, Grammar 6 to Language L{G)

In the theorem proving application just des-
cribed, a context-free grammar is defined whose
language represents proofs of a theorem. A des-
cription of that language is a description of the
set of objects we desire. We describe a concise,
closed form and discuss how to derive it.

In the case of regular grammars {a special
case of context-free grammars), we can describe
the generatable language as a regular expression.
Regular expressions are defined as follows:

a) Every terminal symbol 1s a regular

expression.

b} If A and B are regular expressions, then

(A}, A|B, AB, and A* are also.

c) No sequence of symbols not satisfying a)
or b) above is a regular expression.

Parentheses are used to enclose subexpressions,
"A|B" is used to denote the choice of A or B, "AB"
to denote concatenation of regular expressions

A and B, and "A*" denotes that A is repeated zero
or more times.

E.G, for grammar G:

$-+05 A-1E8
S+TA B-+2
A+T1A B3

L{G) is represented by the regular expression

0* 17 1*% (2|3), i.e. any element of L(G) consists
of zerp or more “"0"'s followed by two or more
"1"'s followed by either a "2" or a "3".

Context-free grammars sometimes generate
languages that are not representable by reguiar
expressions. For example, grammar:

S+ (S)
5+ e

generates language: (" e), nz0, i.e. all strings
that consist of zero or more open parens followed
by "e" followed by the same number of close parens
as open parens. There is no way to express

{" e)" strictly as a regular expression since the
only repetition operator, "*", does not carry a
count that can be matched. E.g., (* e)* would
allow "(((e)". In order to eliminate this dif-
ficulty, we add to the regular expression notation
the positive integer exponent. We define a reg-
ular algebra R that admits the following expres-
sions:

a) Every terminal symbol 1s in R.

b) If A and,hB are in R, then (A), A|B, AB,

A* and A" are in R

c) No sequence not satisfying a) or b) is in R.
The addition of exponents is essential since the
inherent power of context-free grammars allows
balanced bracketing of expressions. Some context-
free grammars naturally create expressions in R.
Several simple operations can be used to generate
the expression in those cases.

1) Back-substitution. If for any nonterminal
A all productions having A as the l.h.s. have no
nonterminals on the r.h.s., then replace all ref-
erences to A by the alternative terminal strings
or expressions in R that A derives. Then remove
all productions having A as the I.h.s.. E.g.,

A-+a

A-+Db*c =
B+rahAc

2) Simple recursion. If for any nonterminal

A the only productions having A as the 1.h.s. are
of the form:

B+ a {ab*)c

Etype 1) A - ti, lsish or
type 2) A > 11 A, isisk or
{type 3) A - A ri, 1215]

where ti, 11, and ri represent expressions in R,
where n21, k., Jj &£ 0, then _
As (1] 00 (t).]tn) (ry]s .. ed)x

Replace every reference to A in other productions
by this expression representing strings derivable

Theorem Proving=3: Sicke!

550

from A. Eliminate all productions haying A as the
1.h.s.. E.g.,
A+AD
Aa+bY*A
A2 A
A+a =
A-+b
S+0A

3) Internal recursion. If for any nonterminal A,
the only productions having A as the 1.h.s. are of
the form:

(type 1; A > ti, 1sizn

(type 2) A+1ATr
where ti, 1 and r represent expressions 1n R, where
rel, and there is a single production of type 2,

ther 4" (311, |tn) .

Replace A as before and eliminate the above pro-
ductions. E.g.,
A+ (alb)

A 1*2
A+0AT1
Bob Al
The above three replacement rules will not
suffice for all context-free grammars. For example

the grammar G:

$+051 $+53
$+25 S~+a

has language {0|2}* a {1]|3)}* such that the number
of O's equals the number of I's. We cannot,
strictly speaking, represent that by our regular
algebra. However we can loosen the ordering re-
striction on the r.h.s. of productions since the
r.h.s.'s represent subgoals to be solved and the
order is unimportant. This allows us to represent
the language as {01]2)* a 3*. A later paper will
discuss this ordering relaxation and double recur-
sion, e.g. A= 0A 1A

S >0 (b 1% | 2)* (alb) O*

Babo" (1*2 (alb}) 1M1

Loosening the ordering restriction also allows
the elimination of some redundancy. The first
grammar derived from a CIG that appears in this
paper generates the following language: (abcdd,
c'b'a'dd, abed, cbad). Allowing reordering and
representing edges <X,Y* and <¥,X*» similarly, then
the set reduces to (abcdd, abed}. For further
discussion of minimizing the set representing the
proof schemata, see [7].

4. Conclusions

We have described a method that represents
proofs in predicate logic by a formal language.
This language includes the full set of proofs for
a given theorem. If we can describe the language
with a regular algebra then we have a closed form
for a possibly infinite set of proofs. This rep-
resentation gives an analysis of the flow of the
derivation. This analysis can be used on programs
specified in logic to describe required execution
flow of the program that leads to termination with
the proper result.

The regular algebra representation can also
be used to analyze the values that variables may
have if the derivation is to terminate. In the
logic program application, this analysis will be
used to clarify the possible values of input and
output variables, i.e. the domain and range of the

Theorem Preving-3:
551

function computed by the program.

Studies are underway to apply this regular
algebra representation of logic specifications.
Sore of the areas presently being considered are:

1) program synthesis

2) plan formation

3) question-answering

4) machine learning.

References

1) Chang, C.L. and R.C.T. Lee, Sxmbolic Logic_and

Mechanical Theorem Proving, Academic Press, New
York, 1973.

2) Hopcroft, J. and J. Ullman, Formal Languages
and Their Relation to Automata, Addison-Wesley,
Menlo Park, 1969.

3) Robinson, J.A., "A machine-oriented logic based
on the resolution principle", JACM 12, 1(Jan,1965).

4) Sickel, S.,"A search technique for clause
interconnectivity graphs", I[EEE_Transactions on
Computers, Aug. 1976.

5) Sickel, S.,
connectivity graphs", Technical
of California, Santa Cruz, 1977.

6) Sickel, S., "A linguistic approach to automatic
theorem proving", CSCSI/SCEIO Summer Conference
Proceedings, 1976.

7) Sickel, S.,
first-order predicate calculus", Technical
University of California, Santa Cruz, 1977.

"Completeness of clause inter-
Rpt., University

"A proof description language for
Rpt.,

Sickel

tion tree, before forming Sub{T{Lh}) we subscript
all unsubscripted variables. Subj(T{Lh}) then

equals Sub(T{Lh)) with all variables of Lh now sub-
scripted. Therefore, if by the induction hypothe-
sis, Sub(D(th)} equals Sub({T{Lh}) up to a change,

cv, of variables, then Sub(D(th}) equals
Subj(T(Lh)] up to cv', which is equal to cv minus
the changes involving unsubscripted variables.

Therefore, Sub{D{N)) and Sub{T{N)) are either
both or neither defined, and Sub{D(N)) = Sub{T{N})
with cv' plus change in Sub{T(N)) the unsubscripted
variahles x of N to X; -

{ase 2 N ﬂ
| I

m (m = e) D(Lij)...D(ij)

T(L1). .. T{LK)

a = Syb{T(N}) =
Sub(m)_’ijSubj{T(L1)}G)...aaSubj(t{Lk}) and
8 = Sub(D(N)) =
Sub{m)i’jC)Sub[U(Llj))C)...VASub(D{ij)}

Sub(D{th)) = Subj(T{Lh)) with change cv* for

1shgk as in Case 1. Therefore Sub(D(N}} and
Sub(T(N)) are either both or neither defined, and
Sub(D(N}) = Sub{T(N)) with cv' plus change in
Sub(T(N}) the unsubscripted variables x of m to X; -

Case 3 ‘ S
\ N

T{L1},..T{Lk) D(Llj]...D(LkJ.)

sub{Ts(C)) = Subj(T(Ll))tJ...Q)Subj(T(Lk)) and

Sub{D(S)) = Sub(D(Llj}}uJ...t)Sub(D(ij))

-

o

B

]

Sub(D(LhJ)) = Subj(T(Lh)) with change cv' for

12h%k as in Case Y. Therefore Sub{D(S}} and
Sub(Ts(C)) are either both or neither defined, and
Sub(D({5))} = Sub(Ts(C}) with change cv'.

3. Grammar G to Language L(G)

In the theorem proving application just des-
cribed, a context-free grammar is defined whose
language represents proofs of a theorem. A des-
cription of that language is a description of the
set of objects we desire. We describe a concise,
closed form and discuss how to derive it.

In the case of regular grammars (a special
case of context-free grammars), we can describe
the generatable language as a regular expression.
Regular_expressions are defined as follows:

a) Every terminal symbol is a regular

expression.

b) If A and B are regular expressions, then
(A), AIB, AB, and A* are also.

Theorem Proving-3:
550

c) No sequence of symbols not satisfying a)
or b) above is a regular expression.

Parentheses are used to enclose subexpressions,
"A|B" is used to denote the choice of A or B, "AB"
to denote concatenation of regular expressions

A and B, and "A*" denotes that A is repeated zero
or more times.

E.G. for grammar &:

S+0S A+-TEB
S+T1A B+ 2
A-T1TA B+ 3

L(GY is represented by the regular expression

0* 11 1* (2]|3), i.e. any element of L(G) consists
of zero or more "0"'s followed by two or more
""'s followed by either a "2" or a "3",

Context-free grammars sometimes generate
languages that are not representable by regular
expressions. For example, grammar:

5 + {5)
S~+e

generates language: (n e)". re0, f.e. all strings
that consist of zero or more open parens followed
by "e” followed by the same number of close parens
as open parens. There is no way to express

(" &)" strictly as a regular expression since the
only repetition operator, "*", does not carry a
count that can be matched. E.g., (* e)* would
allow "({{e)". 1In order to eliminate this dif-
ficulty, we add to the regular expression notation
the positive integer exponent. We define a reg-
uiar algebra R that admits the following expres-
sions:

a} Every terminal symbol is in R.

b) If A and B are in R, then {A), A[B, AB,

A* and A" are in R.

c) No sequence not satisfying a) or b) is in R.
The addition of exponents is essential since the
inherent power of context-free grammars allows
balanced bracketing of expressions. Some context-
free grammars naturally create expressions in R.
Several simple operations can be used to generate
the expression in those cases.

1) Back-substitution. If for any nonterminal
A all productions having A as the |.h.s. have no
nonterminals on the r.h.s., then replace all ref-
erences to A by the alternative terminal strings
or expressions in R that A derives. Then remove
all productions having A as the I.h.s.. E.g.,

A oa
A""‘b*c =
B+adc

B +a {& b*)c

2) Simple recursion. If for any nonterminal
A the only productions having A as the 1.h.s. are
of the form:

type 1] A+ ti, 1sizn or
type 2) A -+ 1§ A,. 1sisk or
type 3) A+ Ari, 1=is]

where ti, 1i, and r{ represent expressions in R,
where nzl1, k,j 2 0. then
A% “1 -..hk)* (t1|...}tn} (l"llf...lf'j}*.

Replace every reference to A in other productions
by this expression representing strings derivable

Sickel

from A. Eliminate all productions having A as the
1.h.s.. E.qQ.,
A+AD
A+b v A
A+2A
A~+a -
A-+b
S+0A

3) Internal recursion. If for any nonterminal A,
the only productions having A as the 1.h.s. are of
the form:

{type 1) A -+ ti, l=izn

(type 2) A= 1AT
where t1, 1 and r represent expressions in R, where
ne1, and there is a single production of type 2,

then , 4 4n (t?l...ltn) e,

Replace A as before and eliminate the above pro-
ductions. E.g.,
A= (a|b)

A 1% 72
A-0Rn1
B+b A1
The above three replacement rules will not
suffice for all context-free grammars. For example

the grammar G:

$+0581 S+ 513
$+25 S+a

has language (0]|2)}* a {1]3)* such that the number
of O's equals the number of I's. We cannot,
strictly speaking, represent that by our regular
algebra. However we can loosen the ordering re-
striction on the r.h.s. of productions since the
r.h.s.'s represent subgoals to be solved and the
order is unimportant. This allows us to represent
the language as {€1]|2)* a 3*. A later paper will
discuss this ordering relaxation and double recur-
sion, e.g. A= 0A 1A

S0 (bi*] 2)* (alb) 0*

= B-b0" (12 (alb)) 1"

Loosening the ordering restriction also allows
the elimination of some redundancy. The first
grammar derived from a CIG that appears in this
paper generates the following language: {abcdd,
c'b'a'dd, abed, cbad}. Allowing reordering and
representing edges <X,Y> and <¥,X> similarly, then
the set reduces to {abcdd, abed}. For further
discussion of minimizing the set representing the
proof schemata, see [7],

4. Conclusions

We have described a method that represents
proofs in predicate logic by a formal language.
This language in¢ludes the full set of proofs for
a given theorem. If we can describe the language
with a regular algebra then we have a closed form
for a possibly infinite set of proofs. This rep-
resentation gives an analysis of the flow of the
derivation. This analysis can be used on programs
specified in 1ogic to describe reguired execution
flow of the program that leads to termination with
the proper result.

The regular algebra representation can also
be used to analyze the values that variables may
have if the derivation 1s to terminate. In the
logic program application, this analysis will be
used to clarify the possible values of input and
output variables, i.e. the domain and range of the

Theoram Proving~3:
551

function computed by the program.

Studies are underway to apply this regular
algebra representation of logic specifications.
Sore of the areas presently being considered are:

1) program synthesis

2) plan formation

3) question-answering

4) machine learning.

References

1) Chang, CL. and R.C.T. Lee, Symbolic Logic_and
Mechanical Theorem Proving, Academic Press, f@
York, 1973.

2) Hopcroft, J. and J. Ullman, Formal Languages
and Their Relation to Automata, Addison-Wesley,
Menlo Park, 1969.

3) Robinson, J.A., "A machine-oriented logic based
on the resolution principle", JACM 12, 1(Jan,1965).

4) Sickel, S.,"A search technique for clause
interconnect!"vity graphs", |[EEE Transactions on

Computers. Aug. 1976.

5) Sickel, S., "Completeness of clause inter-
connectivity graphs", Technical Rpt., University
of California, Santa Cruz, 1977.

6) Sickel, S., "A linguistic approach to automatic
theorem proving", CSCSISCEIO Summer Conference
Proceedings, 1976.

7) Sickel, S., "A proof description language for
first-order predicate calculus", Technical Rpt.,
University of California, Santa Cruz, 1977.

Sickel

