
FORMAL GRAMMARS AS MODELS OF LOGIC DERIVATIONS

Sharon Sickel
Information Sciences

University of California
Santa Cruz CA 95064

Keywords and phrases: Automatic theorem proving,
clause interconnectivity graphs, context-free
grammars, a t t r ibute grammars, proof theory.

This work supported in part by the Office of Naval
Research under contract 76-C-0681.

Abstract
Context-free at t r ibute grammars are proposed

as derivational models for proofs in the predicate
calculus. The new representation is developed and
i t s correspondence to resolution-based clause i n ­
terconnectivity graphs is established. The new
representation may be used to transform a predi­
cate calculus characterization of a problem into a
regular algebra characterization of the solutions.

The new representation can be used to simplify
the search for proofs. It allows us to express and
derive predicate calculus proofs as a constraining
function that serves as a f i l t e r to the set of
candidate proofs that ignore the arguments to
predicates. The effect of this is to separate the
underlying propositional structure from the re­
st r ic t ions imposed by the required unif icat ions.

While previous theorem proving methods have
been able to enumerate a l l proofs of a theorem,
the method reported here is unique in being able
to characterize a l l proofs of some theorems, re­
presenting even an i n f i n i t e set of proofs with a
f i n i t e formula. This work has implications for
proof theory as well as providing a useful tool in
the analysis of programs specified in logic.

1. Introduction
This section gives def ini t ions of clause

interconnectivity graphs and context-free grammars.
The def in i t ions have been extended where needed to
express the additional structure treated in this
paper. A more detailed description of clause
interconnectivity graphs is given by Sickel [4] .
Common def in i t ions in theorem proving used here
are given by Chang and Lee[l] ,

A substi tut ion 0 is a set of ordered pairs
[t l / x l , t 2 /x2 , . . . t n /xn] where each ti is an arb i ­
trary term and each xi is a d is t inc t variable.
For an arbi t rary l i t e r a l L, Lo denotes the l i t e r a l
L with a l l occurrences of xi replaced by ti for
l^ isn. Simil iar def in i t ions apply for terms to ,
and clauses C.

A directed substi tut ion is given by e , «
where 0 is a substitut ion [t l / x l , . . . , t n / x n] , and
si and s2 form a par t i t ion ing of the variables of
0. For example, [f (y) / x , 9 (a) / z J (x) (y , z) is a

directed subst i tut ion.
A variant o, . of a directed substitution

Theorem P r o v i n g - 3 : S lcke l
544

Theorem P r o v i n g - 3 : S lcke l
545

If we always use upper case Latin le t ters to
denote nonterminals and never to denote terminals,
and res t r i c t the star t symbol to be "S" , then the
production set w i l l f u l l y specify the grammar. We
sometimes use this shortcut notation.

For any set of characters C, the set of a l l
strings of those characters is denoted E.g.,
for the above grammar, equals a l l strings made
up only of symbols The empty s t r ing , a
str ing consisting of no symbols, is denoted

for a l l T.
If and are strings of symbols and there .

exists a production A Bl . . . Bn and by replacing
a single occurrence of symbol A in by the str ing
Bl . . . Bn we get then we say In the
preceding gramma 01A2. If and are
strings such that for f i n i t e

then we say can be de­
rived from and denote it . A special case of
this def in i t ion is that . 0111112 in
the previous grammar.

The language L(G) of a context-free grammar
G = is the set of a l l terminal strings
derivable from G, i . e . ,

A tree is a derivation tree[2] for G i f :
1) Every node has a label which is in N T.
2) The label of the root is S.
3) If a node s has at least one descendant,

and s has label A, then A must be in N.
4) If nodes s1, s2, . . . ,sk are the direct de­

scendants of node s, in order from the l e f t ,
with labels A l , . . . ,Ak respectively, then
A Al A2...Ak must be a production in P.

Denote by D(A) a derivation tree for a str ing de­
rivable from nonterminal A.

2. CIG's to Grammars

Grammars provide concise representations for
very r ich sets of objects. For example, a l l com­
putable functions are grammatically describable.
The functions that we are interested in are the
ones that take statements of theorems as input and
produce proofs of those theorems as output. This
paper attacks that problem by transforming the i n -
put into a grammar that w i l l generate exactly the
set of proofs to the theorem.
Ground case. In the ground case, a l l substitutions
are empty and are therefore a l l mutually compatible.
Ignoring substitutions simpli f ies the problem so we

Theorem P r o v i n g - 3 : S i k e l
546

Figure 4: Trees for abcdd
The str ing abcdd corresponds to the proof in

which the sequence of resolutions corresponding to
edges a, b, c, d, d are performed as shown in Fig­
ure 4 (i i) . A-G are merely labels, not the l i t e ra l s
themselves. Because edges represent complementary
pairs, A ^ E, D ^ F, B = G; dashed lines con­
nect these pairs in the proof for the convenience
of the reader. Each edge traversed is denoted at
the corresponding resolution step, also for con­
venience.
Thm 1. For the ground case, the set of deletion
trees for node N of CIG C is equivalent to the set
of derivation trees for strings derivable from non­
terminal N using the productions of the grammar G
derived from C.
Proof The proof is by induction on the depth of the
trees. Both cases contain a basis step as an i n ­
stance. There are two operations for constructing
each of the deletion trees and derivation trees.
We shall show that the two pair correspond. The
f i r s t production for G does not apply since we have
no way of generating S from any other nonterminal.
Part a Construction rule a for deletion trees
corresponds to production rule b of grammars
constructed from CIG's. Figure 5 shows the cor­
responding constructions.

Figure 6: A corresponding pair
of construction rules for de­
let ion and derivation trees

For k=0 the two trees are ident ica l . For k>0, we
assume that if T(Li) is equivalent to D(Li) for
l^isk then Figure 6(i) is equivalent to Figure
6 (i i) with the only required transformations being
a simple tree reshaping.

From parts a and b we conclude that for
any deletion tree we can construct a corresponding
derivation tree and vice versa. Q.E.D.
Thm 2 For the ground case, the set of solution
trees of a CIG is equivalent to the set of de r i ­
vation trees for the language of the grammar G
constructed from the CIG.
Proof Figure 7 shows the form of solution trees
and derivation trees for L(G). For each L i , l s i ^k ,
we can construct equivalent T(Li) and D(Li) . It is
therefore t r i v i a l to show that for any solution
tree we can construct an equivalent derivation tree
from S.

Theorem P r o v i n g - 3 : S icke l
547

Theorem P r o v i n g - 3 : S lcke l
548

The method for constructing a grammar in the
general case is basically the same as that in the
ground case except that we add attr ibutes to the
productions. Each at t r ibute corresponds to the
substitut ion that must be made at that step and i t s
compatibi l i ty with the substitutions that have a l ­
ready been made in the derivat ion.

derived str ing is of length
less than or equal to 6

Assume a given CIG. Find a l l merge loops.
Now construct a context-free at t r ibute grammar,

The indexing of the nonterminals is used to
keep track of d i f ferent copies of the same variable.
If more than one instance of a clause is used in
the proof then the variables in those clauses must
be distinguishable. We assume that variables in
di f ferent clauses already have di f ferent names, so
that the only possible ambiguity arises from mult­
ip le instances of a given cTause.

Production-attribute pairs are real ly temp-

The number of production templates is f i n i t e , but
the number of actual productions obtainable w i l l be
i n f i n i t e . It would have been possible, however, to
l im i t ourselves to a f i n i t e set of productions and
nonterminals by complicating the at t r ibutes.

Theorem P r o v f n g - 3 : S lcke l
549

Figure 9: Al l possible configurations
of derivation trees

Thm 6. (General case, Completeness and Soundness)
The set of solution trees of a CIG is equivalent
to the set of derivation trees for the language
of the at t r ibute grammar constructed from the CIG.
Proof Consider f i r s t the ground structure, i .e .
the CIG without substitutions and the grammar with
the attr ibutes ignored. In this case, productions
enjoy unrestricted use. Looking only at the
ground structure, we are reduced to the si tuat ion
of thms 1 and 2. Therefore the ground structure
of the two are equivalent. The general case puts
restr ic t ions on those ground structures. What we
need to show is that the restr ict ions allow the
equivalent structures to be admitted at the gener­
al leve l .

For the same case breakdown as before, we
shall show that the structures the two systems ad­
mit are equivalent and have equivalent subst i tu­
t ions. The proof w i l l be by induction on the
depth of the trees. The basic steps are the spec­
ia l instances of cases 1 and 2 in which k=0.

c) No sequence of symbols not sat isfying a)
or b) above is a regular expression.

Parentheses are used to enclose subexpressions,
"A|B" is used to denote the choice of A or B, "AB"
to denote concatenation of regular expressions
A and B, and "A*" denotes that A is repeated zero
or more times.

1) Back-substitution. If for any nonterminal
A a l l productions having A as the l .h .s . have no
nonterminals on the r . h . s . , then replace a l l ref­
erences to A by the alternative terminal strings
or expressions in R that A derives. Then remove
a l l productions having A as the l . h . s . . E.g.,

generates language: i .e . a l l strings
that consist of zero or more open parens followed
by "e" followed by the same number of close parens
as open parens. There is no way to express

s t r i c t l y as a regular expression since the
only repeti t ion operator, " * " , does not carry a
count that can be matched. E.g., (* e)* would
allow " (((e) " . In order to eliminate this d i f ­
f i c u l t y , we add to the regular expression notation
the posit ive integer exponent. We define a reg­
ular algebra R that admits the following expres­
sions:

a) Every terminal symbol 1s in R.
b) If A and B are in R, then (A), A|B, AB,

A* and An are in R.
c) No sequence not satisfying a) or b) is in R.

The addition of exponents is essential since the
inherent power of context-free grammars allows
balanced bracketing of expressions. Some context-
free grammars naturally create expressions in R.
Several simple operations can be used to generate
the expression in those cases.

has language such that the number
of O's equals the number of l ' s . We cannot,
s t r i c t l y speaking, represent that by our regular
algebra. However we can loosen the ordering re­
s t r i c t ion on the r .h.s. of productions since the
r .h .s . 's represent subgoals to be solved and the
order is unimportant. This allows us to represent
the language as A later paper w i l l
discuss this ordering relaxation and double recur­
sion, e.g. A 0 A 1 A.

Loosening the ordering res t r ic t ion also allows
the elimination of some redundancy. The f i r s t
grammar derived from a CIG that appears in th is
paper generates the following language: (abcdd,
c 'b 'a 'dd, abed, cbad). Allowina reordering and
representing edges and s imi la r ly , then
the set reduces to (abcdd, abed . For further
discussion of minimizing the set representing the
proof schemata, see [7] .

4. Conclusions

We have described a method that represents
proofs in predicate logic by a formal language.
This language includes the f u l l set of proofs for
a given theorem. If we can describe the language
with a regular algebra then we have a closed form
for a possibly i n f i n i t e set of proofs. This rep­
resentation gives an analysis of the flow of the
derivation. This analysis can be used on programs
specified in logic to describe required execution
flow of the program that leads to termination with
the proper resul t .

The regular algebra representation can also
be used to analyze the values that variables may
have if the derivation is to terminate. In the
logic program appl icat ion, this analysis w i l l be
used to c la r i f y the possible values of input and
output variables, i .e . the domain and range of the

References

1) Chang, C.L. and R.C.T. Lee, Symbolic Logic and
Mechanical Theorem Proving, Academic Press, New
York, 1973.
2) Hopcroft, J. and J. Ullman, Formal Languages
and Their Relation to Automata, Addison-Wesley,
Menlo Park, 1969.
3) Robinson, J.A., "A machine-oriented logic based
on the resolution pr inc ip le" , JACM 12, 1(Jan,1965).
4) Sickel , S.,"A search technique for clause
interconnectivity graphs", IEEE Transactions on
Computers, Aug. 1976.
5) Sickel, S., "Completeness of clause inter­
connectivity graphs", Technical Rpt., University
of Cal i forn ia, Santa Cruz, 1977.
6) Sickel, S., "A l ingu is t i c approach to automatic
theorem proving", CSCSI/SCEIO Summer Conference
Proceedings, 1976.
7) Sickel , S., "A proof description language for
f i rs t -order predicate calculus", Technical Rpt.,
University of Cal i forn ia, Santa Cruz, 1977.

function computed by the program.
Studies are underway to apply this regular

algebra representation of logic specif ications.
Some of the areas presently being considered are:

1) program synthesis
2) plan formation
3) question-answering
4) machine learning.

Theorem P r o v i n g - 3 : S icke l
550

3. Grammar G to Language L(G)

In the theorem proving application just des­
cribed, a context-free grammar is defined whose
language represents proofs of a theorem. A des­
cr ipt ion of that language is a description of the
set of objects we desire. We describe a concise,
closed form and discuss how to derive i t .

In the case of regular grammars (a special
case of context-free grammars), we can describe
the generatable language as a regular expression.
Regular expressions are defined as fol lows:

a) Every terminal symbol is a regular
expression.

b) If A and B are regular expressions, then
(A), A|B, AB, and A* are also.

c) No sequence not satisfying a) or b) is in R.
The addition of exponents is essential since the
inherent power of context-free grammars allows
balanced bracketing of expressions. Some context-
free grammars natural ly create expressions in R.
Several simple operations can be used to generate
the expression in those cases.

1) Back-substitution. If for any nonterminal
A a l l productions having A as the l .h .s . have no
nonterminals on the r . h . s . , then replace a l l ref­
erences to A by the alternative terminal strings
or expressions in R that A derives. Then remove
a l l productions having A as the l . h . s . . E.g.,

Replace every reference to A in other productions
by this expression representing strings derivable

Context-free grammars sometimes generate
languages that are not representable by regular
expressions. For example, grammar:

c) No sequence of symbols not sat isfying a)
or b) above is a regular expression.

Parentheses are used to enclose subexpressions,
"A|B" is used to denote the choice of A or B, "AB"
to denote concatenation of regular expressions
A and B, and "A*" denotes that A is repeated zero
or more times.

has language such that the number
of O's equals the number of l ' s . We cannot,
s t r i c t l y speaking, represent that by our regular
algebra. However we can loosen the ordering re­
s t r i c t ion on the h.s. of productions since the

.h .s . 's represent subgoals to be solved and the
order is unimportant. This allows us to represent
the language as A later paper w i l l
discuss th is ordering relaxation and double recur­
sion, e.g. A 0 A 1 A.

Loosening the ordering res t r ic t ion also allows
the elimination of some redundancy. The f i r s t
grammar derived from a CIG that appears in this
paper generates the following language: abcdd,
c 'b 'a 'dd, abed, cbad . Allowing reordering and
representing edges and s imi la r ly , then
the set reduces to abcdd, abed . For further
discussion of minimizing the set representing the
proof schemata, see [7] ,

References

1) Chang, C L . and R.C.T. Lee, Symbolic Logic and
Mechanical Theorem Proving, Academic Press, New
York, 1973.
2) Hopcroft, J. and J. Ullman, Formal Languages
and Their Relation to Automata, Addison-Wesley,
Menlo Park, 1969.
3) Robinson, J.A., "A machine-oriented logic based
on the resolution pr inc ip le" , JACM 12, 1(Jan,1965).
4) Sickel, S.,"A search technique for clause
interconnect!"vity graphs", IEEE Transactions on
Computers. Aug. 1976.
5) Sickel, S., "Completeness of clause inter-
connectivity graphs", Technical Rpt., University
of Cal i fornia, Santa Cruz, 1977.
6) Sickel, S., "A l i ngu is t i c approach to automatic
theorem proving", CSCSI/SCEIO Summer Conference
Proceedings, 1976.
7) Sickel , S., "A proof description language for
f i rs t -order predicate calculus", Technical Rpt.,
University of Cal i forn ia, Santa Cruz, 1977.

function computed by the program.
Studies are underway to apply this regular

algebra representation of logic specifications.
Some of the areas presently being considered are:

1) program synthesis
2) plan formation
3) question-answering
4) machine learning.

3) Internal recursion. If for any nonterminal A,
the only productions having A as the 1.h.s. are of
the form:

The above three replacement rules w i l l not
suff ice for a l l context-free grammars. For example
the grammar

