
FORMAL GRAMMARS AS MODELS OF LOGIC DERIVATIONS 

Sharon Sickel 
Information Sciences 

University of California 
Santa Cruz CA 95064 

Keywords and phrases: Automatic theorem proving, 
clause interconnectivity graphs, context-free 
grammars, a t t r ibute grammars, proof theory. 

This work supported in part by the Office of Naval 
Research under contract 76-C-0681. 

Abstract 
Context-free at t r ibute grammars are proposed 

as derivational models for proofs in the predicate 
calculus. The new representation is developed and 
i t s correspondence to resolution-based clause i n ­
terconnectivity graphs is established. The new 
representation may be used to transform a predi­
cate calculus characterization of a problem into a 
regular algebra characterization of the solutions. 

The new representation can be used to simplify 
the search for proofs. It allows us to express and 
derive predicate calculus proofs as a constraining 
function that serves as a f i l t e r to the set of 
candidate proofs that ignore the arguments to 
predicates. The effect of this is to separate the 
underlying propositional structure from the re­
st r ic t ions imposed by the required unif icat ions. 

While previous theorem proving methods have 
been able to enumerate a l l proofs of a theorem, 
the method reported here is unique in being able 
to characterize a l l proofs of some theorems, re­
presenting even an i n f i n i t e set of proofs with a 
f i n i t e formula. This work has implications for 
proof theory as well as providing a useful tool in 
the analysis of programs specified in logic. 

1. Introduction 
This section gives def ini t ions of clause 

interconnectivity graphs and context-free grammars. 
The def in i t ions have been extended where needed to 
express the additional structure treated in this 
paper. A more detailed description of clause 
interconnectivity graphs is given by Sickel [4] . 
Common def in i t ions in theorem proving used here 
are given by Chang and Lee[ l ] , 

A substi tut ion 0 is a set of ordered pairs 
[ t l / x l , t 2 /x2 , . . . t n /xn ] where each ti is an arb i ­
trary term and each xi is a d is t inc t variable. 
For an arbi t rary l i t e r a l L, Lo denotes the l i t e r a l 
L with a l l occurrences of xi replaced by ti for 
l^ isn. Simil iar def in i t ions apply for terms to , 
and clauses C. 

A directed substi tut ion is given by e , « 
where 0 is a substitut ion [ t l / x l , . . . , t n / x n ] , and 
si and s2 form a par t i t ion ing of the variables of 
0. For example, [ f ( y ) / x , 9 ( a ) / z J ( x ) ( y , z ) is a 

directed subst i tut ion. 
A variant o, . of a directed substitution 
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If we always use upper case Latin le t ters to 
denote nonterminals and never to denote terminals, 
and res t r i c t the star t symbol to be "S" , then the 
production set w i l l f u l l y specify the grammar. We 
sometimes use this shortcut notation. 

For any set of characters C, the set of a l l 
strings of those characters is denoted E.g., 
for the above grammar, equals a l l strings made 
up only of symbols The empty s t r ing , a 
str ing consisting of no symbols, is denoted 

for a l l T. 
If and are strings of symbols and there . 

exists a production A Bl . . . Bn and by replacing 
a single occurrence of symbol A in by the str ing 
Bl . . . Bn we get then we say In the 
preceding gramma 01A2. If and are 
strings such that for f i n i t e 

then we say can be de­
rived from and denote it . A special case of 
this def in i t ion is that . 0111112 in 
the previous grammar. 

The language L(G) of a context-free grammar 
G = is the set of a l l terminal strings 
derivable from G, i . e . , 

A tree is a derivation tree[2] for G i f : 
1) Every node has a label which is in N T. 
2) The label of the root is S. 
3) If a node s has at least one descendant, 

and s has label A, then A must be in N. 
4) If nodes s1, s2, . . . ,sk are the direct de­

scendants of node s, in order from the l e f t , 
with labels A l , . . . ,Ak respectively, then 
A Al A2...Ak must be a production in P. 

Denote by D(A) a derivation tree for a str ing de­
rivable from nonterminal A. 

2. CIG's to Grammars 

Grammars provide concise representations for 
very r ich sets of objects. For example, a l l com­
putable functions are grammatically describable. 
The functions that we are interested in are the 
ones that take statements of theorems as input and 
produce proofs of those theorems as output. This 
paper attacks that problem by transforming the i n -
put into a grammar that w i l l generate exactly the 
set of proofs to the theorem. 
Ground case. In the ground case, a l l substitutions 
are empty and are therefore a l l mutually compatible. 
Ignoring substitutions simpli f ies the problem so we 
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Figure 4: Trees for abcdd 
The str ing abcdd corresponds to the proof in 

which the sequence of resolutions corresponding to 
edges a, b, c, d, d are performed as shown in Fig­
ure 4 ( i i ) . A-G are merely labels, not the l i t e ra l s 
themselves. Because edges represent complementary 
pairs, A ^ E, D ^ F, B = G; dashed lines con­
nect these pairs in the proof for the convenience 
of the reader. Each edge traversed is denoted at 
the corresponding resolution step, also for con­
venience. 
Thm 1. For the ground case, the set of deletion 
trees for node N of CIG C is equivalent to the set 
of derivation trees for strings derivable from non­
terminal N using the productions of the grammar G 
derived from C. 
Proof The proof is by induction on the depth of the 
trees. Both cases contain a basis step as an i n ­
stance. There are two operations for constructing 
each of the deletion trees and derivation trees. 
We shall show that the two pair correspond. The 
f i r s t production for G does not apply since we have 
no way of generating S from any other nonterminal. 
Part a Construction rule a for deletion trees 
corresponds to production rule b of grammars 
constructed from CIG's. Figure 5 shows the cor­
responding constructions. 

Figure 6: A corresponding pair 
of construction rules for de­
let ion and derivation trees 

For k=0 the two trees are ident ica l . For k>0, we 
assume that if T(Li) is equivalent to D(Li) for 
l^isk then Figure 6( i ) is equivalent to Figure 
6 ( i i ) with the only required transformations being 
a simple tree reshaping. 

From parts a and b we conclude that for 
any deletion tree we can construct a corresponding 
derivation tree and vice versa. Q.E.D. 
Thm 2 For the ground case, the set of solution 
trees of a CIG is equivalent to the set of de r i ­
vation trees for the language of the grammar G 
constructed from the CIG. 
Proof Figure 7 shows the form of solution trees 
and derivation trees for L(G). For each L i , l s i ^k , 
we can construct equivalent T(Li) and D(Li) . It is 
therefore t r i v i a l to show that for any solution 
tree we can construct an equivalent derivation tree 
from S. 
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The method for constructing a grammar in the 
general case is basically the same as that in the 
ground case except that we add attr ibutes to the 
productions. Each at t r ibute corresponds to the 
substitut ion that must be made at that step and i t s 
compatibi l i ty with the substitutions that have a l ­
ready been made in the derivat ion. 

derived str ing is of length 
less than or equal to 6 

Assume a given CIG. Find a l l merge loops. 
Now construct a context-free at t r ibute grammar, 

The indexing of the nonterminals is used to 
keep track of d i f ferent copies of the same variable. 
If more than one instance of a clause is used in 
the proof then the variables in those clauses must 
be distinguishable. We assume that variables in 
di f ferent clauses already have di f ferent names, so 
that the only possible ambiguity arises from mult­
ip le instances of a given cTause. 

Production-attribute pairs are real ly temp-

The number of production templates is f i n i t e , but 
the number of actual productions obtainable w i l l be 
i n f i n i t e . It would have been possible, however, to 
l im i t ourselves to a f i n i t e set of productions and 
nonterminals by complicating the at t r ibutes. 
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Figure 9: Al l possible configurations 
of derivation trees 

Thm 6. (General case, Completeness and Soundness) 
The set of solution trees of a CIG is equivalent 
to the set of derivation trees for the language 
of the at t r ibute grammar constructed from the CIG. 
Proof Consider f i r s t the ground structure, i .e . 
the CIG without substitutions and the grammar with 
the attr ibutes ignored. In this case, productions 
enjoy unrestricted use. Looking only at the 
ground structure, we are reduced to the si tuat ion 
of thms 1 and 2. Therefore the ground structure 
of the two are equivalent. The general case puts 
restr ic t ions on those ground structures. What we 
need to show is that the restr ict ions allow the 
equivalent structures to be admitted at the gener­
al leve l . 

For the same case breakdown as before, we 
shall show that the structures the two systems ad­
mit are equivalent and have equivalent subst i tu­
t ions. The proof w i l l be by induction on the 
depth of the trees. The basic steps are the spec­
ia l instances of cases 1 and 2 in which k=0. 



c) No sequence of symbols not sat isfying a) 
or b) above is a regular expression. 

Parentheses are used to enclose subexpressions, 
"A|B" is used to denote the choice of A or B, "AB" 
to denote concatenation of regular expressions 
A and B, and "A*" denotes that A is repeated zero 
or more times. 

1) Back-substitution. If for any nonterminal 
A a l l productions having A as the l .h .s . have no 
nonterminals on the r . h . s . , then replace a l l ref­
erences to A by the alternative terminal strings 
or expressions in R that A derives. Then remove 
a l l productions having A as the l . h . s . . E.g., 

generates language: i .e . a l l strings 
that consist of zero or more open parens followed 
by "e" followed by the same number of close parens 
as open parens. There is no way to express 

s t r i c t l y as a regular expression since the 
only repeti t ion operator, " * " , does not carry a 
count that can be matched. E.g., (* e )* would 
allow " ( ( ( e ) " . In order to eliminate this d i f ­
f i c u l t y , we add to the regular expression notation 
the posit ive integer exponent. We define a reg­
ular algebra R that admits the following expres­
sions: 

a) Every terminal symbol 1s in R. 
b) If A and B are in R, then (A), A|B, AB, 

A* and An are in R. 
c) No sequence not satisfying a) or b) is in R. 

The addition of exponents is essential since the 
inherent power of context-free grammars allows 
balanced bracketing of expressions. Some context-
free grammars naturally create expressions in R. 
Several simple operations can be used to generate 
the expression in those cases. 



has language such that the number 
of O's equals the number of l ' s . We cannot, 
s t r i c t l y speaking, represent that by our regular 
algebra. However we can loosen the ordering re­
s t r i c t ion on the r .h.s. of productions since the 
r .h .s . 's represent subgoals to be solved and the 
order is unimportant. This allows us to represent 
the language as A later paper w i l l 
discuss this ordering relaxation and double recur­
sion, e.g. A 0 A 1 A. 

Loosening the ordering res t r ic t ion also allows 
the elimination of some redundancy. The f i r s t 
grammar derived from a CIG that appears in th is 
paper generates the following language: (abcdd, 
c 'b 'a 'dd, abed, cbad). Allowina reordering and 
representing edges and s imi la r ly , then 
the set reduces to (abcdd, abed . For further 
discussion of minimizing the set representing the 
proof schemata, see [ 7 ] . 

4. Conclusions 

We have described a method that represents 
proofs in predicate logic by a formal language. 
This language includes the f u l l set of proofs for 
a given theorem. If we can describe the language 
with a regular algebra then we have a closed form 
for a possibly i n f i n i t e set of proofs. This rep­
resentation gives an analysis of the flow of the 
derivation. This analysis can be used on programs 
specified in logic to describe required execution 
flow of the program that leads to termination with 
the proper resul t . 

The regular algebra representation can also 
be used to analyze the values that variables may 
have if the derivation is to terminate. In the 
logic program appl icat ion, this analysis w i l l be 
used to c la r i f y the possible values of input and 
output variables, i .e . the domain and range of the 
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3. Grammar G to Language L(G) 

In the theorem proving application just des­
cribed, a context-free grammar is defined whose 
language represents proofs of a theorem. A des­
cr ipt ion of that language is a description of the 
set of objects we desire. We describe a concise, 
closed form and discuss how to derive i t . 

In the case of regular grammars (a special 
case of context-free grammars), we can describe 
the generatable language as a regular expression. 
Regular expressions are defined as fol lows: 

a) Every terminal symbol is a regular 
expression. 

b) If A and B are regular expressions, then 
(A), A|B, AB, and A* are also. 

c) No sequence not satisfying a) or b) is in R. 
The addition of exponents is essential since the 
inherent power of context-free grammars allows 
balanced bracketing of expressions. Some context-
free grammars natural ly create expressions in R. 
Several simple operations can be used to generate 
the expression in those cases. 

1) Back-substitution. If for any nonterminal 
A a l l productions having A as the l .h .s . have no 
nonterminals on the r . h . s . , then replace a l l ref­
erences to A by the alternative terminal strings 
or expressions in R that A derives. Then remove 
a l l productions having A as the l . h . s . . E.g., 

Replace every reference to A in other productions 
by this expression representing strings derivable 

Context-free grammars sometimes generate 
languages that are not representable by regular 
expressions. For example, grammar: 

c) No sequence of symbols not sat isfying a) 
or b) above is a regular expression. 

Parentheses are used to enclose subexpressions, 
"A|B" is used to denote the choice of A or B, "AB" 
to denote concatenation of regular expressions 
A and B, and "A*" denotes that A is repeated zero 
or more times. 



has language such that the number 
of O's equals the number of l ' s . We cannot, 
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.h .s . 's represent subgoals to be solved and the 
order is unimportant. This allows us to represent 
the language as A later paper w i l l 
discuss th is ordering relaxation and double recur­
sion, e.g. A 0 A 1 A. 

Loosening the ordering res t r ic t ion also allows 
the elimination of some redundancy. The f i r s t 
grammar derived from a CIG that appears in this 
paper generates the following language: abcdd, 
c 'b 'a 'dd, abed, cbad . Allowing reordering and 
representing edges and s imi la r ly , then 
the set reduces to abcdd, abed . For further 
discussion of minimizing the set representing the 
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3) Internal recursion. If for any nonterminal A, 
the only productions having A as the 1.h.s. are of 
the form: 

The above three replacement rules w i l l not 
suff ice for a l l context-free grammars. For example 
the grammar 


