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Abstract 

Several techniques for use in a stereo vision system are 
described. These include a stereo camera model solver, a high 
resolution stereo correlator for producing accurate matches with 
accuracy and confidence estimates, a search technique for using 
the correlator to produce a dense sampling of matched points 
for a pair of pictures, and a ground surface finder for 
distinguishing the ground from objects, in the resulting 
three-dimensional data. Possible ways of using these techniques 
in an autonomous vehicle designed to explore its environment 
are discussed. An example is given showing the detection of 
objects from a stereo pair of pictures. 

K E Y WORDS: Computer vision, Stereo vision, Matching 
algorithm, Robots. 

Introduction 

Th is paper describes a stereo vision system for use by a 
computer-controlled vehicle which can move through a cluttered 
environment, avoid obstacles, navigate to desired locations, and 
bui ld a description of its environment. One possible application 
of such a vehicle is in planetary exploration. Our experimental 
vehicle is described in [41 

As the vehicle moves about, it takes stereo picture pairs 
f rom various locations This could be done with two cameras 
mounted on the vehicle, but with our present vehicle with one 
camera, it is done with the vehicle at two locations. Each of 
these stereo pairs is processed to extract the needed 
three-dimensional information, and then this information from 
different pairs can be combined in further processing. 

The processing of the stereo pairs is done as follows. 
First, an interest operator finds small features with high 
information content in the first picture. Then, a binary search 
correlator finds the corresponding points in the other picture. 
(The interest operator and the binary search correlator were 
both developed by Moravec [41) Next, a high-resolution 
correlator is given these matched pairs of points. It tries to 
improve the accuracy of the match, and it produces an accuracy 
estimate in the form of a two-by-two covariance matrix, and a 
probabil ity estimate giving the goodness of the match. The 
coordinates of these matched points are corrected for camera 
distortion as described by Moravec [41 A stereo camera model 
solver then uses these matched pairs of points to find the five 
angles that relate the position and orientation of the two camera 
locations. The accuracy estimates are used by the camera model 
solver to weight the individual points in the solution and to 
compute accuracy estimates of the resulting camera model. A 
dense sampling of points is now matched over the pictures. The 
known camera model is used to restrict the search for these 
matches to one dimension, and by first trying matches 
approximately the same as neighboring points that have already 
been matched, often no search is needed. In any case, the 
precise matches are produced by the high-resolution correlator, 
and its probability estimates are used in guiding the search. 

After these matched points are corrected for camera distortion, 
distances to the corresponding points in three-dimensional space 
are computed, using the known camera model. The accuracy 
estimates of the matches and of the camera model are 
propagated into accuracy estimates of the computed distances. 
The three-dimensional information for all of the matched points 
is now transformed into a coordinate system approximately 
aligned with the horizontal surface. (The high-resolution 
correlator, the stereo camera model solver, and the technique for 
producing the dense sampling of matches are described later in 
this paper.) 

Information from more than one stereo pair can be 
combined to produce a more complete mapping of points over 
the area. A ground surface finder is then used to find the 
ground for portions of the scene, which may be tilted slightly 
relative to the assumed horizontal coordinate system. (The 
ground surface finder is described later in this paper.) Points 
which lie sufficiently above the ground surface can be assumed 
to he on objects. (In the process of finding the ground surface 
and f inding objects, the accuracy and probability estimates are 
useful.) 

Stereo Camera Model Solver 

If the image plane coordinates of several pairs of 
corresponding points in a stereo pair of images have been 
measured, it is possible in general to use this information to 
compute the relative position and orientation of the two 
cameras, except for a distance scale factor. Once this calibration 
has been performed, the distance to the object point represented 
by each pair of image points can be computed. 

A procedure that performs the above stereo camera model 
calibration by means of a least-squares adjustment has been 
written. It includes automatic editing to remove wild points, the 
use of a two-by-two covariance matrix for each point for 
weighting purposes, estimation of an additional component of 
variance by examination of the residuals, and propagation of 
error estimates into the results. 

Consider any point in the three-dimensional scene. Let 
the coordinates of the image of this point in the Camera 1 fi lm 
plane be X1,y1 and the coordinates of its image in the Camera 2 
f i lm plane be x2,y2. Image point X1,y1 corresponds to a ray in 
space, which, when projected into the Camera 2 film plane, 
becomes a line segment. The distance (in the Camera 2 fi lm 
plane) from image point x2,y2 to the nearest point in this line 
segment is the magnitude of the error in the matching of this 
point. Th is error is a function of the angles which define the 
relative position and orientation of the two cameras. (These 
angles are the azimuth and elevation of the position of Camera 
2 relative to the position of Camera 1, and the pan, tilt, and roll 
of Camera 2 relative to the orientation of Camera I.) The 
camera calibration is done by adjusting these angles to minimize 
the weighted sum of the squares of these errors for all of the 
points that are used. Since the problem is nonlinear, the 
procedure uses partial derivatives to approximate the problem 
by the general linear hypothesis model of statistics, and iterates 
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to achieve the exact solution. 

The automatic editing is done as follows. First, a 
weighted least-squares solution as described above is done using 
all of the points. Then the point which has the largest ratio of 
residual to standard deviation of the residual is found. This 
point is tentatively rejected, and the solution is recomputed 
without this point. If this point now disagrees with the new 
solution by more than three standard deviations, it is 
permanently rejected, and the entire process repeats. Otherwise, 
the point is reinstated, and the process terminates. However, if 
an F test comparing the computed and given values of the 
addit ional variance of observations shows the solution that 
includes the point to be bad, the point in question is rejected in 
any event. 

A more complete description of the camera model solver 
can be found in [1]. 

High-Resolution Correlator 

Consider the following problem. A pair of stereo pictures 
is available. For a given point in Picture 1, it is desired to find 
the corresponding point in Picture 2. It will be assumed here 
that a higher-level process has found a tentative approximate 
matching point in Picture 2, and that there is an area 
surrounding this point, called the search window, in which the 
correct matching point can be assumed to lie. A certain area 
surrounding the given point in Picture 1, called the match 
window, wil l be used to match against corresponding areas in 
Picture 2, with their centers displaced by various amounts 
wi th in the search window in order to obtain the best match. 

Thus when the matching process (correlator) is given a 
point in one picture of a stereo pair and an approximate 
matching point in the other picture, it produces an improved 
estimate of the matching point, suppressing the noise as much as 
possible based on the statistics of the noise. It also produces an 
estimate of the accuracy of the match in the form of the 
variances and covariance of the x and y coordinates of the 
matching point in the second picture, and an estimate of the 
probabil i ty that the match is consistent with the statistics of the 
noise in the pictures, rather than being an erroneous match. 
This probabil ity will be useful in guiding a higher-level search 
needed to produce a dense sampling of matched points. 

Let A1(x.y) represent the brightness values in Picture I, 
A2(x,y) represent the brightness values in Picture 2, X1,y1 
represent the point in Picture 1 that we desire to match, x2,y2 
represent the center of the search window in Picture 2, wm 
represent the width of the match window (assumed to be 
square), and wg represent the width of the search window 
(assumed to be square), where x and y take on only integer 
values. 

The following assumptions are made. A1 and A2 consist 
of the same true brightness values displaced by an unknown 
amount in x and y, with normally distributed random errors 
added The errors are uncorrelated with each other, both 
wi th in a picture (autocorrelation) and between pictures (cross 
correlation), and the errors are uncorrelated with the true 
brightness values. (The asuumptions concerning errors hold 
fair ly accurately for the usual noise content of pictures. The 
assumption concerning the true brightness values will be relaxed 
slightly below to allow bightness bias and contrast changes. 
However, another type of change is perspectve distortion, which 
can be important with large match windows, but it will not be 
discussed here.) 

We temporarily assume that the variance of the errors is 
known for every point in each picture. 

We now wish to f ind the matching point xm,ym which 

wil l produce the best match of A2(x+xm-X1,y+ym-y1) to A1(x.y) 
in some sense. Traditionally the match which maximized the 
correlation coefficient between Aj and A2 has been used [2] 
Indeed, this is a reasonable thing to do if one of two functions 
has no noise. However, here both functions have noise. This 
fact introduces fluctuations in the cross-correlation function 
which may cause its peak to differ from the expected value. Ad 
hoc smoothing techniques could be used to reduce this effect, but 
an opt imum solution can be derived from the assumed statistics 
of the noise. 

Let € represent the wm2 - vector of the differences 
A2(x4xm-x1y+ym-y1) - A1(x,y) over the wm by wm match 
window, for a given trial value of xm,ym, and let xc,yc represent 
the true (unknown) value of xm,ym. Let P represent a 
probabil i ty and p represent a probability density with respect to 
the vector c. Then by Bayes' theorem 

So far, the derivation is quite usual. If we simply wanted 
to maximize P (for the maximum likelihood solution), we would 
minimize the above sum (that is, use a weighted least-squares 
solution). However, because of the fluctations in w caused by 
the presence of noise in both images, the peak of P in general 
differs from the center of the distribution of P in a random way 
due to the random nature of the errors. 

Therefore, we define the optimum estimate of the 
matching position to be the mathematical expectation of xm,ym 
according to the above probability distribution. Thus, letting 
(X0'Y0) represent this optimum estimate, we have 
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and where €i denotes the components of €, α2 and α2 are the 
standard deviations of A1 and A2, and the product and sum are 
taken over the match window. "(Very often, the the variances 
α12 and α22 can be considered to be constant. In this case, the 
summation can be reduced to the sum of the squares of the 
differences over the march window, with the sum of the two 
variances factored out.) Thus, 

If we assume that the α priori probability P(xm.ym=Xc,yc) is 
constant over the search window and is zero elsewhere, this 
reduces to 

where k is any constant of proportionality. Since consists of 
uncorrected normally distributed random variables, 



7 he covariance matrix of x0 and y0 consists of and αX
2 and αY

2on 
the main diagonal and α XY on both sides off the diagonal. 

It might appear that the above analysis is not correct 
because of the fact that certain combinations of errors at each 
point of each picture are possible for more than one match 
posit ion, and the probability of these combinations is split up 
among these match positions However, this fact does not 
influence the results, as can be seen from the following 
reasoning The possible errors at each point of each picture 
fo rm a multidimensional space. When a particular match 
position is chosen, a lower-dimensioned subspace of this space is 
selected, in order to be consistent with the measured brightness 
values When another match is chosen, a different subspace is 
selected These two subspaces in general intersect, if at all, in a 
subspace of an even lower number of dimensions. Thus the 
hypervolurne (in the higher subspace) of this lower subspace is 
zero Therefore, the fact that the two subspaces intersect does 
not change the computed probabilities. 

Now suppose that the standard deviations α1 and α2 are 
not known It is possible to estimate them (actually, the sum of 
their squares, which is what is needed in the equation for w) 
f rom the data if it is assumed that they are constant, that is, the 
noise does not vary across the pictures Let v equal the constant 
value of α1

2 +α2
2 Then €.€/wm

2 (the mean square value of the 
components of €) is an estimate for v, where • denotes the vector 
dot product However, this value is different for each possible 
match position x m , y m . The method used to obtain the best 
value for v is to average all of these values for v, weighted by 
the probabi l i ty for each match position p(x

rn.yrn=Xc=yc I €) = w. 
T h u s a prel iminary variance estimate is computed by 

Then U is averaged over an appropriate local window and the 
results for the two pictures are added together to form the 
estimate of the upper limit of v. 

The overall variance estimate used in the above equations 
is obtained by an appropriate weighted combination of the a 
priori given value, the derived value, and the computed upper 
l imit . 

The probabil ity of a correct match is computed by 
comparing the derived variance to the a priori variance and the 
upper l imit (high-frequency variance) by means of F-tests. 

Because of the finite window sue, the computed 
covariance matrix wil l be an underestimate. An approximate 
correction for this effect is made by computing the eigenvalues 
and eigenvectors of the covariance matrix, applying a correction 
to the eigenvalues, and then reconstructing the covariance 
matr ix from the eigenvalues and eigenvectors. 

7 he above computations assume that the shift between 
the two pictures is always an integer number of pixels. In cases 
where the correlation peak is broad, the smoothing process 
inherent in the moment computation for X0, y0, αx

2 .αy
 2and 

αxy , cause a reasonable interpolation to be performed if the 
correct answer lies between pixels. However, when the 
correlation peak is sharp, this will not happen, and the answer 
wi l l tend towards the nearest pixel to the correct best match. 
This is not particularly serious insofar as it affects the position 
estimate, but it can have a serious effect on the probability 
estimate. Th is is because the € vector should be much smaller at 
the correctly interpolated point than it is at the nearest pixel, 
because of the sharp peak. Therefore, the probability may come 
out much too small, indicating a bad match, whereas the match 
is really good but lies between pixels To overcome this 
deficiency, linear interpolation adjustments are made to the 
variance and probability, and the covariance matrix is 
augmented to allow for interpolation error. 

Since there may be changes in brightness and contrast 
between the two pictures of the stereo pair, the correlator can 
adjust a bias and scale factor relating the brightness values in 
the two pictures. This requires modifying the mathematics 
given above Instead of actually using the sum of squares of 
differences ∑€i

2if, in the above equations, the moment about the 
pr inciple axis of the function relating the two sets of brightness 
values is used. However, the sum of the squares of the 
differences is still the main ingredient in this computation. 
Included in this computation are a priori weights on the given 
values of brightness bias and scale factor (contrast). Thus the 
bias and scale factor can be constrained according to the amount 
of knowledge about them from other sources, if any. 

As stated above, when the variance is assumed to be 
constant, a major portion of the computation is the sum of 
squares of differences € i f . This are computed by a very 
efficiently coded method developed by Moravec [4j. Its inner 
loop (each term of the summation) requires about one 
microsecond on the PDP KL10. 

Searching for Stereo Matches 

Once the stereo camera model is known, the search for 
matching points in the two pictures is greatly constrained. A 
point in Picture 1 corresponds to a ray in space, which, when 

where the sums are taken over the search window. The 
variances and covariance of x0 and y0 are given by the second 
moments of the distribution around the expected values; 

An estimate of an upper limit to the variance is also 
computed f rom the high-frequency content of the pictures. First, 

where the sums are taken over the search window. However, 
this averaging process introduces a bias because of the statistical 
tendency for the smaller values to have the greater weights. It 
can be shown that this effect causes the estimate of variance to 
be too small by a ratio that can be anywhere from .5 to I. 
Therefore, an empirically determined approximate correction 
factor is applied to the variance estimate as follows: 

where u is the minimum value of €.€/wm
2over the search 

window. Since the computation of w requires the value of 
( * v ^ t n e a D O V C process is iterative. 



projected into Picture 2, becomes a line segment terminating at 
the point corresponding to an infinite distance along the ray. 
Furthermore, by first trying a match with approximately the 
same stereo disparity as neighboring points that already have 
been matched, the search can be eliminated for many points. 
One criterion for deciding when to accept this tentative match is 
the probability value returned by the high-resolution correlator. 
Also, when a search is made, the likeliest correct match is 
indicated by the highest probability value. 

The method used here is similar in some ways to 
matching techniques used by others (for example, Quam [5] and 
Hannah [2]). However, there is no region growing in the sense 
of Hannah, since the equivalent operations are left until later in 
the processing. Instead, the stereo disparities are allowed to 
vary in an arbitrary way over the picture, subject to some local 
constraints discussed later. Furthermore, the acceptance of 
matches is guided by the probability values. Also, even in areas 
of low information content, the noise suppression ability of the 
high-resolution correlator often allows useful results to be 
obtained If the content is too low, the correlator indicates this 
fact by producing very large values for the standard deviations 
of the two position coordinates. When this happens, the 
searching can be inhibited to save computer time, but even if 
this is not done, the results are still as good as the standard 
deviations indicate. (Actually, the correct test to indicate no 
useful information is to see if both eigenvalues of the 
covanance matrix are large. Both standard deviations might be 
large, but if only one eigenvalue is large, an accurate distance 
can still be computed for this point unless the corresponding 
eigenvector is almost parallel to the projected line segment.) 

The method currently used is approximately as follows: 
1. Divide Picture 1 into square windows, denoted here as 
"areas", the center of each of which is considered to be a point 
to be matched to the center of a similar area in Picture 2 in the 
following steps. (These areas normally would be equal in sire to 
the match window of the high-resolution correlator.) 
2. Select a set of starting areas. (Currently a column near the 
edge of the Picture is used, but this will soon be changed to the 
points which were produced by the interest operator and 
binary-search correlator and were not rejected by the camera 
model solver.) 
3. Try areas adjacent (including diagonally adjacent) to areas 
already tried, where possible working in the direction of the 
projected line segments in Picture 2 towards the infinity points. 
4 If there are at least two already matched areas adjacent to 
the area in question and the disparities of all adjacent matched 
areas agree within a tolerance, apply the high-resolution 
correlator with the search window centered on the position 
corresponding to the average disparity of these neighbors. 
Otherwise, go to 6. 
5. If the probability returned by the correlator in step 4 is 
greater than 0.1, accept this match and go to 8. 
6. Starting at the infinity point, search along the projected line 
segment in Picture 2, applying the search window of the 
high-resolution correlator at points with a spacing of half of the 
search window width, but not at previously matched areas. 
7. Of those matches found in step 6, select the one for which 
the correlator returned the highest probability. If this 
probability is greater than 0.1 and at least one neighboring area 
(including these tentative matches) agrees in disparity and has a 
probability greater than 0.01, or vice versa, accept this match. 
Otherwise, of those matches found in step 6 with probability 
greater then 0.1, if any, accept the one whose disparity agrees 
most closely with its neighbors, if within the tolerance. 

8. When the current group of areas being tried is exhausted, go 

to 3. If there are no areas left, f inish. 

Some improvements can be made to this algorithm in the 
future. For example, another pass can be made over the data to 
clean things up, ut i l iz ing the fact that most areas have more 
matched neighbors than they did when things were progressing 
in a basically one-directional manner. Another possibility is to 
change step 7 in the following way. The best match from those 
found in step 6 would not be selected immediately. Instead, all 
of the potential matches with sufficiently high probability would 
be saved unt i l the entire picture had been processed. Then a 
cooperative algorithm similar to that discussed by Marr and 
Poggio [3] could be used to choose the best matches. This 
should produce more reliable matches, but with a large increase 
in computation time. 

Ground Surface Finder 

Once the three-dimensional positions of a large number of 
points in an outdoor scene have been determined, it is desired to 
determine which points are on the ground and which are on 
objects above the ground. By taking a sufficiently small portion 
of the scene the ground can be approximated by a simple 
surface whose equation can be determined, and the points which 
he above this surface by more than an appropriate tolerance can 
be assumed to be on objects above the ground. 

Such a procedure has been written, which assumes in 
general that the ground surface is a two-dimensional second 
degree polynomial. However, weights can be given to a priori 
values of the polynomial coefficients, to incorporate any existing 
knowledge about the ground surface into the solution. For 
example, the second degree terms can be weighted out of the 
solution altogether, so that the ground surface reduces to a 
plane 

To determine a ground surface from a given set of data, a 
set of criteria which define what is meant by a good ground 
surface is needed. These include the number of points within 
tolerance of the surface (the more the better), the number of 
points which lie beyond tolerance below the surface (the fewer 
the better, since these would be due to errors such as 
mismatched points in a stereo pair), and the closeness of the 
surface coefficients to the a priori values. Note that the number 
of points above the surface does not matter (other than that it 
detracts f rom the number within the surface), because many 
points can be on objects above the ground. A score for any 
tentative solution is computed based on these criteria, and the 
solution wi th the highest score is assumed to be correct, 
a l though a solution with a lower score can be selected by a 
higher level procedure using more global criteria The scoring 
funct ion currently used is 
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where N is the number of points within tolerance of the surface 
(these points were used to determine the surface by a 
least-squares f i t), n ishe a priori expected number of points in 
the surface, B is the number of points below the surface by 
more than the tolerance, b is the a priori approximate maximum 
number of points below the surface, the c iare the coefficients of 
the f i t ted surface, c i a r e their a priori v a l u e s , α i are the 
standard deviations of these a priori values, and m is the 
number of these coefficients which were adjusted. 

F ind ing the best solution (according to the scoring 
funct ion) out of all of the possible solutions is a search problem. 
Wha t is needed is a method which will be likely to f ind the 
correct solution without requiring huge amounts of computer 
t ime. T h e method used uses some heuristics to lead the search 



to the desired solution. Its main points can be described briefly 
as follows. 

First, a least-squares solution is done using; all of the 
points This fit is saved for refinement leading to one tentative 
solution. Then all points within tolerance of this fit or too low, 
but not less than half of the points used in this fit, are selected, 
and another least-squares fit is done on these points and saved. 
This process repeats until there are too few points left. (This 
portion of the algorithm drives downward to find the low 
surfaces, even though there may a large amount of clutter above 
them.) 

The refinement of each of the above fits is done as 
follows. The standard deviation of the points used in the fit 
about the fitted surface is computed. Then all points within one 
standard deviation (or within the original tolerance) of the 
surface are used in a new least-squares fit. This process 
continues until it stabilizes, in which case the score of the result 
is computed, or until there are too few points in the solution. 
(This portion of the algorithm rejects erroneous points and 
some clutter, in order to find well-defined surfaces.) 

Results 

Figure I shows a stereo pair of photographs taken from 
positions approximately 1.8 feet apart in a parking lot. Each 
digitized picture is 270 pixels wide and 240 pixels high. 

Figure 2 shows the points found in the left picture by the 
interest operator and the corresponding points (using the same 
arbitrary symbols) matched in the right picture by the binary 
search correlator. The points encircled were rejected because of 
low probability (<0.1) estimated by the high-resolution 
correlator. The points in squares were rejected by the editing in 
the camera model solver. The remaining points then 
determined the camera model solution. 

Figure 3 shows the matches produced by the searching 
algorithm, constrained by this camera model, using the 
high resolution correlator (with eight-by-eight windows). Notice 
that the algorithm made several incorrect matches, particularly 
in the left foreground. This is a result of the fact that there was 
very little contrast in the texture on the pavement, resulting in a 
low signalto-noise ratio Nevertheless, there are a sufficient 
number of correct matches so that the later stages of processing 
are not bothered by these errors. 

The left side of Figure 4 shows the component of distance 
(in feet) parallel to the optical axis, computed from the matches 
for all points that the algorithm matched, superimposed on the 
left picture. (Single characters are use for these plots, with 0 
through 9, A through B, and a through b representing 0 
through 61. The number sign represents values from 62 to 100, 
and the infinity symbol represents everything greater than 100. 
The right side of Figure 4 shows the relative standard deviation 
computed for these points, to the nearest foot (The relative 
standard deviation indicates only those errors which tend to 
differ for nearby points. The total standard deviation is larger 
and indicates the absolute accuracy of the distances.) 

Figure 5 shows the results of transforming the 
three-dimensional information represented by the distances into 
an approximately horizontal coordinate system. The Camera 1 
position is at the bottom center of the figure, looking towards 
the top Plotted are the heights above the reference plane in 
feet, using the single characters described above. 

The portion of the data between ranges of 10 feet and 50 
feet was given to the ground surface finder. The heights of 
these points above the resulting plane are shown in Figure 6. 

Figure 7 is the same as Figure 6, except that it shows only 

those points with a height of at least two feet. The points above 
this threshold are on the two vehicles in the pictures, the light 
poles, and some shrubbery near the light poles, with a few error 
points. 

Future Plans 

It is planned to use the stereo system in a system for 
operating an experimental exploring vehicle. Stereo pairs will 
be taken from various locations and their results will be 
combined. Points which lie sufficiently above the ground will 
be clustered into individual objects, and simple size and shape 
information will be computed for each object. A data structure 
containing a catalogue of objects, with their locations, sizes, and 
shapes, and properties of the ground, will be built up as the 
vehicle moves through its environment. By comparing this 
information to older portions of the data structure, the vehicle 
can determine if it is in a previously seen area. 

There are several opportunties for the previously 
described components of the system to cooperate and to pass 
information back and forth. For example, the high-resolution 
correlator has several parameters used to give it a priori 
information on the noise level in the data and changes in 
brightness and contrast between the two pictures. It also 
produces a posteriori estimates of these quantities. These results 
from early applications of the correlator (for example with the 
points used to obtain the camera model and not rejected by the 
camera model solver) can given to the correlator in later 
applications. Also, when the ground surface finder is given 
points from a certain portion of the scene, it can be given a 
priori values and weights for the surface, which can be obtained 
from ground surface solutions for adjacent areas. Furthermore, 
if its apparently best solution does not agree with those of 
adjacent areas, an alternate solution from the ground surface 
finder can be used which agrees better with neighboring areas, 
even though it may not be as good according to local criteria. 
Al l of these features may be implemented in the future. 

Other possibilities include an automatic segmenter to 
produce regions of complicated terrain for the ground surface 
finder to work on, and the addition of a priori knowledge about 
the environment, including models of objects expected. 
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