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Abstract
A computer program, named MAPSEE, for Thus one focus of the current work i:
interpreting maps sketched freehand on a to explore the limits of the
graphical data tablet is described. The cue/descriptive model approach to visior
emphasis in the program is on discovering with particular emphasis on the modularity
cues that invoke descriptive models which that it buys. Another focus is an aspect
capture the requisite —cartographic and of the chicken-and-egg problem (Mackworth
geographic knowledge. A model interprets 1975b) namely, can one segment before
ambiguously the local environment of a interpreting? If so, how? - given that ¢
cue. By resolving these interpretations complete segmentation requires prioi
using a new network consistency algorithm interpretation. In this domain, and ir
for n-ary relations, MAPSEE achieves an many others | suspect, the semantics ar<
interpretation of the map. It is so rich that a partial segmentation thai
demonstrated that this approach can be is conservative in many different ways i!
made viable even though the map cannot sufficient to allow a bootstrap into ar
initially be properly segmented. A interpretation. By ‘'rich semantics' ]
thoroughly conservative, initial, partial mean simply that there exists a large
segmentation is described. The effects of number of partially independent but
its necessary deficiencies on the mutually confirming inference paths.
interpretation process are shown. The ways Furthermore, the initial interpretatior
in which the interpretation can refine the can then, in turn, refine the initial
segmentation are indicated. partial segmentation. (See, for example,
(Yakimovsky and Feldman, 1973), (Tenenbaun
1. Introduction and Barrow, 1976) and (Starr anc
Mackworth, 1976) for other approaches tc
The purpose of this paper is to this problem.)
report on a program, MAPSEE, that reads 5> The Maps
sketch maps. The intention is not to - Lhe Waps

discuss the overall goals of this research

nor how it fits into current computational The  maps chosen for this study were

vision concerns except insofar as it sketched free-hand on a graphical data
directly impinges on them. Those issues tablet. No great effort was made to dra_v
are tackled in detail in a companion paper th_e map Car_ef“"y- The map  shown n
(Mackworth, 1977).  Suffice it to say rigure 1 gives  many people pause before
here, by way of introduction, that one of they see that it depicts an island on
the goals is to understand how to exploit
the semantics of images designed for
communication as typified by sketches, in

general, and sketch maps in particular.
Another goal is to transfer some of
the current vision paradigm to other

domains. One of the useful concepts to (\(\
emerge from" earlier work was an approach
to vision as a task of understanding the /\

implications of local cues invoking models /\
that placed constraints on the
interpretation of picture elements in the
neighbourhood of the cue. The Huffman-
Clowes-Waltz approach (Waltz, 1972), for
example, used junctions as cues, and
corners as models with the constraints
placed on the edges at the corners, while
POLY (Mackworth, 1973, 1976) focussed on
edges and surfaces. One purpose in
designing MAPSEE was to demonstrate that
the constraint satisfaction approach has
much wider applicability than just the
blocks world. This required, in part,
further generalization of the so-called

network consistency algorithms Figure 1. A Typical Sketch Map
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which there are two towns connected by a
road which crosses a bridge over a river

which rises in a mountain range in the
north-west, and runs to a delta in a bay
on the southern shore. The only major
possible geographical elements allowed
by the current MAPSEE but missing from
that map are inland lakes. Moreover,
the land area need not be an island - it
could cover the entire map. The cart-
ographic elements may be arranged in any
of the legal ways their corresponding
geographic objects could.

3. Interpretation in Context: Cues and

Models

To understand the general nature of

MAPSEE the following experiment is
suggested. Cut a small hole in a piece of
paper and place it on the map. As you

move it around the map ask yourself "What
could that be?" Initially, if you're
looking at a line then clearly it could be
a road, a river (flowing in one direction
or the other), a bridge, a mountainside or
a shoreline (of a lake or of the sea, with
the water on one side or the other). If
on the other hand, you see a blank space,
an areal element, it could be land, lake
or sea. If you now temporarily remove the
paper with the hole in it and see the map
as a whole, you will notice that the
lineal elements appear to aggregate into
units of connected lines each with a
uniform interpretation. These are chains.
Similarly, the areal elements will
aggregate into regions that have uniform

interpretations.

As you resume moving the hole around
the map, you will further discover a wide
variety of interesting picture fragments
which constrain their parts. A sharp kink
in a chain, for example, rules out the
possibility that it is part of a bridge.
It could, on the other hand, be a mountain
top, in which case the chain is a mountain
and the regions on either side are both
land, or it could be part of a coast line,
in which case the region on one side is
land, the other being sea or vice versa,
or ... . If a chain stops abruptly with
no Other lines anywhere in the vicinity it
most certainly s not a shoreline;
furthermore, the region that it stopped in
must be a land region. The free end could
be a river source in which case the chain
is a river flowing away from the free end.
(Rivers may appear out of the ground but

they do not disappear into it. Rivers
also start at lakes and other rivers.
They empty into other rivers, lakes or the
sea. They may, however, temporarily

disappear under a bridge.) Or the free
end could be a mountainside or

These informative picture fragments

are called "primary cues" because they
invoke models that interpret the immediate
locale of the cue thereby putting

constraints on the lineal and areal
components of the cue. The initial
enormous ambiguity of interpretation is
reduced by these local models. It is

further reduced by allowing the models to
talk to each other and agree upon the
interpretations of picture elements that
they mutually interpret. This process is

handled by a network consistency algorithm

that progressively eliminates
interpretations of the picture primitives,
the chains and regions (not the
interpretations of the cues), until, if
the model information is strong enough,
the interpretation intended by the user
rema ins.

A wide variety of geographical and
cartographical knowledge, typified by the
sample inferences given above, is captured
in MAPSEE by the primary cue
interpretation catalogue. The varieties
of cue are shown in Figure 2, with names
for their relevant component parts.
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Figure 2, The Primary Cues Used by MAPSEE
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Cue

Interpretations of Parts

STEM-CHAIN BAR-CHAIN RA REB
{river}|{river*} {shore} {sea} {1and}
{river,river*} {shore} {take} {land}
{river,river~} {river,river*} {land} {land}
{road} {road} {land} {land}
{mountain} {mountain)} {land} {land}
{river,river~} {bridge} {land} {iand)

CHAIN R-LARGE R-SMALL
{shore} {1ake,seal {land}
{shoTel {1and} {lake,s
{road,bridge,river,river*} {land} {land}
CHAIN R-LARGE R-SMALL
{shore} {lake,seal {land}
{shore} {1and} {lake,s
{road,mountain,river,river*} {land} {land}
CHAIN REGTON-SURROUND
{river} |({river*} {1and}
{mountain,bridpe} {lang}
CHAIN REGION-SURRAOUND
{road} {land}
CHAIN
{shore}
THROUGH-CHAIN CHAIN] CHAINZ RA
{river,river>)} {river,river*} {river,river*} {land}
{road} {road} {road} {land}

RC
{landg}
{1and}
{land}
{1ana}
{land}
{land}

ea}

eal

RB RC RD
{land} {land} {land}
{land} {iand} {1land}

Figure 3. The primary cue interpretation catalogue

For each cue there is a set of models

TEE

OBTUSE L
ACUTE L
FREE END
CLUSTER
LINK

MULTI

as listed

constrains the interpretation of each part 4.1

in Figure 3. Each model

of the cue to belong to the set given. The

The lInitial Part

ial Segmentation

Representations

; : ; MAPSEE receives a map in the form of
L%ﬁilg&?:lug?ﬁve in of thatFlgur?f 3 ?gg a procedure for drawing it, created by the
; tati routines that track the stylus on the data
;ntfrﬁ;fgaég1nso;g gf|3?£;nfre éeparagzgiblzy tablet. That is, the input is a sequence
The directioyn of flow of a rr)iver is‘ of plotter commands where a command is
handled this way. A chain has  associated g?vix(5$n wym }ﬁe(éggen?rgggﬁiéﬁén down)
direction it is labelled ‘"river" else Picture description (more than 800 for
"river*". In the first interpretation of Figure 1) that one of the main priorities
the TEE, for example, the river can only of ilu. th? Se?{Peﬁta“O” {ﬂutlnes tls
flow into the TEE on the stem-chain computational = €fticiency. ;here are wo
In  order to use this catalogue of ways in  which this is achieved. In the
models we must segment the picture into ];:ersrzesepnltaact?énsa ngr'etx[he (i)éturedlfferzr:é
chains, regions, cue instances and the P tained Each i Pl ¢ £
bindings of their components. matntained. ach 1S apprggrgzshl or mﬁgﬁ
Unfortunately, that segmentation cannot be ©F ¢ more P“fp?se$-| N ¥’t' vnen
done perfectly, as we shall see, but it computing In a pictorial representation,
can be done with sufficient care that the Segmenter only works at a Ievgl of detail
models can start to make sense of the apprqﬁ%aterEZegjmﬁu”ainieZZitZﬁon ives
picture. That interpretation can then be P P . giv h
used to refine the segmentation. The Way to ~a network representation ﬁh]c
program MAPSEE, written in LISP, consists kgéwsgézuve gz;b?ﬁs IinéUStse men&zgﬂg
of the three phases: partial segmentation, segment end boints. ?n this
networkt rcon5|stency, and refining the representation, each chain undergoes a
segmentation. process of generalization, as the
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at each segmentation is possible. A  recursive

patches: subdividing a patch of space only
empty. This top-down

well

before it could

at a level whose patch

cartographers call whereby
level of detail the chain is represented algorithm partitions the image into empty
to within a certain tolerance.
Finally, there is an array if it is not
representation indexed by the X-y subdivision stops
coordinates of the end points. This is lead to trouble,
quite coarse (32x32) but allows quick size is much

answers to questions such as
near?" which uses a spiral
array. As discussed
the array representation

space occupation hierarchy

gre

"What are you unintentional gaps in
search in the empty adjacent patches are then merged to

ater than any
the sketch. The

in the next section, form the five regions shown in Figure 4.

is generalized in The conservatism guarantees no leakage; no

the process of region-finding to form a region so found will correspond to more
of arrays of than one 'intended' region. But some

intended regions may be represented by

four elements each.

4«2 Region Segmentation

If we were to define a

connected subset of a 2D

the picture, in our domain,

have exactly one

segment; this is

region!

segment until we can
interpret until we
the familiar
However, a

chicken-and-egg problem.

initial, partial,

conservative

region as a
Euclidean space,
would always
Whenever the
user intends to enclose a region he leaves
a small (or, sometimes,
relying upon the map
intention by reading his mind as
the map. We cannot
interpret but we cannot

not so small) gap,
reader to divine his

more than one found
connected land region has been split into
nd 5. Other intended
represented at all: the

regions 2, 3, 4 a
regions may not be
two small land reg
have been missed.
the found regions

these necessary

well as -
region segmenter.

their actual extent.
consistency process is

ions

region: the large

in the river delta

Moreover, the extent of

is somewhat less than
As we shall see, the

very tolerant of

idiosyncracies of the

ion

Al 4.3 Cue Segmentat

region

.:1ﬂh$i§!i

REGICN2

REGION3

REGION]

Figure 4,

The Initial Region Segmentation
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instances in the picture. They lean 4.4 Fleshing Out the Cues

heavily on the levels of detail in the

representations for efficiency. Moreover, Each cue instance needs to bind
they  all have ~ their —own brand of  yarious picture elements (chains and
conservatism.  Each is designed to reject regions) to its internal names. Again,
all ~border-line cue instances. As the the segmentation process is heavily biased
Jolly Green Giant says, "Only the best i3 favour of sins of omission rather than
will do!" A tentative free end, for commission. If, for example, it is
example, must be well in the clear |goking for the region associated in a
(relative to the minimum patch size of the  certain direction with a cue, it crawls
region segmentation) before it is accepted carefully in that  direction from the
as a free end. An obtuse angle must have initial ~point. | f it finds a region
arms  longer  than ~a  given  minimum,  within a very short distance, again,
straighter than a certain tolerance, angle determined by the minimum patch size, well
considerably less than pi ... . No false gand good. But it it does not it will give
cues can be found so, as a_result, many yp rather than risk returning the wrong
genuine ones are ignored. The cues found region. It it gives up it creates a

are indicated by the hexagons in Figure 5. region ghost (Bobrow and Winograd, 1977)

THE TEES THE DBTUSE-LS THE ACUTE-LS

THE FREE-ENDS THE CLUSTERS THE LINKS

THE MULTIS

Figure 5. The Cue Instances Discovered
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that stands for the region which has that
relationship to the cue but cannot yet be

identified. The region corresponding to
the ghost may or may not exist as a found
region. Eighteen region ghosts were

created during the
sample map.

segmentation of the

5. The Consistency Phase

The picture is now partially
segmented into chains, regions and
partially instantiated cues. In
describing the consistency process, | will

ignore, for the time being, the four types
of inadequacies in the segmentation (the
extra regions, the missing regions, the
missing cues and the region ghosts) and
assume that the segmentation is perfect.
Subsequently, we shall see how those
inadequacies affect the consistency
process.

Mackworth (1975a) discusses and
extends a class of algorithms typified by

Waltz's (1972) arc consistency algorithm
(called AC-2, there) and Montanari's
(1974) path consistency algorithm (called

PC-1), designed to satisfy a set of binary
relations among a set of variables each of

which must  be instantiated in an
associated domain. Network consistency
algorithms are often better than

backtracking for such a task in that, by
appropriate bookkeeping, they eliminate
several kinds of thrashing behaviour.

In Waltz's blocks world, for example,
the variables correspond to the junctions,
the domains to the set of possible corners
for each junction type and the binary
relations to the edges, in that each edge
must have the same interpretation imposed

on it by each of its two corners. His
network of relations was then isomorphic
to the perfect line drawing being

interpreted.
In MAPSEE, the "variables" are the
chains and the regions (which also must be

interpreted: everything need not, indeed
cannot, be packed into the chain
interpretations). The domains are their
context-free interpretations, that is
{road, river, river®, mountain, bridge,

shore) for <chains and {land, lake,sea)
for regions. The relations are the cue
instances, the constraint being the
disjunction of the set of models for each
cue instance.

The relations are now n-ary, not just

binary, because each model relates from
one to seven regions and chains. The
network consistency algorithm used in
MAPSEE given below is a suitably
generalized version of AC-3 (Mackworth,
1975a). Note that, in lieu of network
consistency, one could, of course,

backtrack on the values in the domains of
the chains and regions, failing back when
any cue ceases to have a model which
satisfied the current values; however, the

following algorithm, NC, is far more

efficient.

NC: An n-ary Relation Consistency
Algorithm

1. Construct a queue consisting of

(variable,relation) pairs in which each
variable is paired with every relation
that directly constrains it.

2. While the queue is not empty do steps
2.1 and 2.2.
2.1 Remove the first pair (x,R) from

the queue.
For each value, a, in the domain of
variable x, Dx, do step 2.1.1

2.1.1 Find at least one value in
the domain of each of the
other variables directly
constrained by relation R
such that all the values,
including a, simultaneously
satisfy R. If such values
cannot be found delete a from
Dx.

2.2 If any values were deleted from Dx

in step 2.1 then do step 2.2.1

2.21 Tf Dx is now empty then
return failure as the result
of this call else replace the

queue by the union of the
queue and the set of pairs
obtained from all the
relations other than R that

constrain x, each relation
paired with all the variables
other than X that it
constrains.
3. At this step there are
states of the network:
a) If every variable has exactly one
element in its domain return that set
of bindings as the result of this call.
b) If one variable, y, has k (k > 1)
elements in its domain and the rest
have exactly one element return the k
solutions formed by binding y to each
of its values and the other variables
to their unique values.
c) If more than one variable has more
than one element in its domain then
split the domain of one of those
variables approximately in half and
return the solutions obtained by
applying the algorithm recursively to
the two subproblems so generated.

three possible

The algorithm either returns failure
(because some domain was exhausted) or one
or more solutions each of which satisfies

all the relations. The solutions are
complete: no subsequent backtracking s
necessary. The algorithm can be trivially

modified to return just the first solution
if desired. Note that the ordering of the
queue is unspecified: the process
converges regardless; however, it may be
treated as a priority queue. For example,
sorting the queue SO that strongly

Viston=3: Mackworth
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interrelated variables are more likely to In the implementation of NC in MAPSEE

be adjacent in the queue speeds each cue has a list of models associated
convergence. with it. Each instance of that cue has a
Freuder (1976) independently set of bindings for its subparts to
generalized the consistency arguments various chains and regions (the
given, for binary relations, in "variables' it constrains). In step 2.1.1
(Mackworth, 1975a) to apply to n-ary of the algorithm, a structure matcher is
relations. His algorithm is very used to match the ~cue instance against
different from the one presented here in each model for the cue until a model is
that he explicitly constructs sets of all found all of whose parts match
the n-tuples of values of the variables successfully. A part of a cue instance
which satisfy each relation and deletes and the corresponding part of a mode
tuples from those sets. Furthermore, he match iff their domains have a non-NIL
constructs similar exhaustive intersection unless the instance part s
representations for all the implicit the particular variable x in which case
relations induced by the ones given up to the model part must have interpretation a
and including the global relation that in its domain
relates all the variables. As with the For the sample map the consistency
binary relation consistency algorithms algorithm, NC, converged to unique values
complexity analysis of these algorithms is for all but one region in a single pass
difficult (for anything other than worst The algorithm did not invoke itself
case) making explicit comparison recursively. The chain interpretations
impossible. Rest assured, though, that are as shown in Figure 6. The only
they are both inherently exponential, in remaining ambiguity is in the
the worst case, in that the problem is interpretation of the surrounding region,
NP-complete. For this task, however, NC regionl, as either sea or lake. The user
requires far fewer CONS cells and may have intended "sea" but the island
operations than Freuder's algorithm. could, of course, be in a large lake whose
Significant contributions to the shore is beyond the bounds of the map.
development of network consistency Regions 2, 3, 4 and 5 are all interpreted
algorithms have also been made by Gaschnig as land. The interpretations are,

(1974), Barrow and Tenenbaum (1976) and presumably, as intended by the user.
Rosenfeld, Hummel and Zucker (1976)

“ e

THE RIVERS.
ARROW MARKS RIVER SOURCE

e

THE BRIDGES

THE SHOREL INES

N
A\
THE RDADS AND TOWNS N

THE MOUNTAINS
Figure &. The Chain Interpretations
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6, Refining the Initial Segmentation

In this section we will consider the
effect of the segmentation deficiencies on

the consistency process and then see how
the results of that interpretation process
can be wused to refine the segmentation.
Recall that the deficiencies are: the
missing cues, the region ghosts, the
missing regions and the extra regions.

The missing cues have no serious
effect on the consistency process,
provided, of course, that sufficient
remain. A missing cue simply fails to
supply its extra constraints on the
possible interpretations of the chains and
regions. In this domain, however, there
is such a welter of cues invoking
consistent models that there is a
multitude of partially independent but
mutually confirming inference paths.
Breaking a few of those inference paths
causes no degradation in the
interpretation. It is tempting to
postulate that most perceptual tasks, in
the real world, have the rich semantic?
which give rise to this robustness
property if we can but discover the
appropriate language for the inferences
and appropriate mechanisms for carrying
them out. (The qualification "in the real
world" is added because psychological
experiments in the laboratory usually use
meaning-deprived stimuli that rule out
this phenomenon (Clowes, 1972).)

The region ghosts are, if you |like,
region intensions while the found regions
are (imperfect) region extensions (Woods,
1975). A ghost is an intension in that it
may be specified as, for example, "the
region on the reflex angle side of this
acute L". The intension/extension
distinction forms a spectrum rather than a
strict dichotomy here. Recall that a
ghost arises when a cue fails to find an
associated region; it may fail either
because it stopped looking too soon even
though there is a found region there or
because there is no found region. The
ghosts participate in the consistency
process just as do the found regions. The
single cue that created a region ghost
constrains it and it is quite possible for
interpretations of the ghost to be
progressively ruled out. After the
consistency process we still do not  know
the extension of a ghost but we may know
more about it than before; for example, it
may now be forced to have the
interpretation "land".

The missing regions, as in the river
delta, for example, also do not seriously
affect the consistency process. The cues
in the neighbourhood of a missing region
will have used ghosts in its stead. But,
standing in for a single missing region
there will be several ghosts SO the
constraining effect will be weakened
somewhat.

Similarly, the extra regions created
by the splitting of a single intended
region participate independently in the
consistency process thereby exerting a
weaker constraining effect than if the
region had not been split. However, the
semantic richness overcomes that weakening
and forces the four found regions
corresponding to the single intended land
region (regions 2, 3, 4 and 5) to have
that single interpretation. Again, as in
the other cases, if the region splitting
is so severe as to cut too many inference
paths then the process will degrade
gracefully (Marr, 1975). In that case the
various found regions would not have the
intended interpretation uniquely. It
would simply be in the intersection of the
possible interpretations of the found
regions.

The third phase of MAPSEE uses the

results of the consistency process to
refine the initial partial segmentation.
There are four ways in which this can be
done: a) establishing distinctghosts with
the same interpretation and location as
co-extensive b) considering the merge of
found regions with the same interpretation

the
same

a found region as
a ghost with the
and d) discovering a new
the extension of one or

involve revisiting the
picture and segmenting more purposefully,
more carefully and at a finer level of
detail in the particular areas concerned.
Figure 7 shows the final land region that
results from the successful proposed
merges  of the separate initial land
regions.

c) establishing
extension of
interpretation
found region as
more ghosts. These

REFINED REGIONZ IS LAND

Figure 7. The Final Land Region
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7 Conclusions Mackworth, A. K. (1975b) How to See A

Simple World. in Machine Intelligence

I cannot here discuss how this work 8, E. W. Elcock and D. Michie (eds.)
satisfies the goals of the project nor (in press) and TR 75-4, Dept. of Comp.
future directions such as a) integrating Sci., U. of B.C., Vancouver.
still further the segmentation and
interpretation phases, b) automating the Mackworth, A. K. (1976) Model-driven
generation of the primary cue Interpretation in Intelligent Vision
interpretation catalogue by the provision Systems. Perception 5, 349-370

of a language for describing the models so
that transfer to other sketch worlds is Mackworth, A. K. (1977) Vision Research

facilitated and c) the use of schemata as Strategy: Black Magic, Metaphors,

procedural models. Suffice it to say that Mechanisms, Miniworlds and Maps. Proc

MAPSEE is an existence proof of the power Workshop on Computer Vision Systems,

of semantics in the interpretation of Amherst, Mass. (in press)

pictures. It demonstrates that the

cue/descriptive model paradigm works in Marr, D. (1975) Early Processing of Visual

domains other than the blocks world, that Information. A. . Memo 340, MIT,

the network consistency algorithms can be Cambridge, Mass.

extended, that imperfect data can be

overcome by a thoroughgoing conservatism Montanari, U. (1974) Networks of

in the segmentation process, that a Constraints: Fundamental Properties

partial segmentation can yield an initial and Applications to Picture Processing

interpretation, and that the Information Sciences 7, 95-132

interpretation can sensibly refine the

initial segmentation. Starr, D. W. and Mackworth, A. K. (1976)

Interpretation-Directed Segmentation
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