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A system called CENTAUR has been implemented to interpret data derived from pulmonary function tests
using a knowledge representation that combines the advantages of both production rules and frames. The
system uses a hypothesis-directed approach to problem solving, in which hypotheses are suggested by the
Initial data, further Information is acquired, and then more specific hypotheses are selected. The hypotheses
are represented as PROTOTYPES, frame-like data structures each of which characterizes some pulmonary
disease. The prototypes guide the invocation of the production rules and focus the search for new
information. Some of the advantages afforded by representing knowledge as both prototypes and rules are

also presented.

1 Introduction
Much of Artificial Intelligence research has focused on

determining the appropriate knowledge representations to use
in order to achieve high performance from knowledge-based
systems. The principal Artificial Intelligence theme being

explored in this present research"” is that there are many
advantages to a system that uses both frame-like structures and
production rules to perform problem-solving tasks In
knowledge-intensive domains

In order to test this theme, a knowledge representation was
designed using a combination of frames and production rules.
The frames are called Prototypes because they represent
stereotypical situations which can be used as a basis for

comparison to the actual situation given by the data.®® The
domain chosen was that of pulmonary physiology. The task
was to interpret a set of pulmonary function test results,
producing a set of interpretation statements and a diagnosis of
pulmonary disease In the patient. A system called CENTAUR
has been written to perform this task using prototypes that
characterize the typical features of each pulmonary disease.
Each feature is called a Component of the prototype.
Associated with each component are production rules used to
infer a value for the component. These production rules are a
form of procedural attachment with a constrained, stylized
syntax that makes them easier to examine than general
procedures. This constrained syntax leads to other advantages,
such as ease of acquisition and modifiability as discussed in [2].
The prototypes focus the search for new information by
guiding the invocation of the production rules and eliciting the
most relevant information from the user. These prototypes are
linked together in a network in which the links specify the
relationships between the prototypes.

This research developed out of the MYCIN project [9],

which uses a knowledge base of production rules to perform
infectious disease consultations. Initially, a MYCIN-Ilike
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" The term prototype has been given the same meaning by
other researchers, for example in KRL [l], a prototype is a
special kind of unit representing a hypothetical individual that
Is the typical member of a class.

production rule system called PUFF [4] was written to perform
pulmonary function test interpretations. Problems with the
production rule formalism In PUFF and similar rule-based
systems, such as a need to focus the search for new information
and the desire to represent characteristic patterns of disease,

motivated the creation of a prototype-directed system.

2 The CENTAUR System

CENTAUR produces an interpretation of data and a
pulmonary diagnosis based on a set of pulmonary function test
results. The inputs to the system are the pulmonary function
test results and a set of patient data including the patient's
name, sex, age, and a referral diagnosis. The output consists of
both a set of interpretation statements that serve to explain or
comment on the pulmonary function test results and a final
diagnosis of pulmonary disease in the patient.

CENTAUR wuses a hypothesis-directed approach to
problem solving where the possible hypotheses are represented
by the prototypes. The goal of the system Is to confirm some of
the prototypes as matching the data in an actual case. The
final set of confirmed prototypes is the system's solution for
classifying the data in that case. The prototypes represent the
various pulmonary diseases, their degrees and subtypes, with
the result that the set of confirmed prototypes represents the
diagnosis of pulmonary disease in the patient.

In the example below, the prototype representing a
pulmonary function consultation itself, the PULMONARY -
DIS EASE prototype, has been selected as the initial Current
Prototype, the system's best hypothesis about how to classify
the data in the case. The Initial data is requested and the user
responses (preceded by a double asterisk **) are recorded. Data
entered In the system suggests or "triggers" disease prototypes.
The triggered prototypes are placed on a Hypothesis List and
ordered according to how closely they match the data. The
system attempts to fill in values for the components of the
current prototype, which may cause rules to be invoked; or, if
no rules are associated with the component, the system will ask
the user for the value When all of the prototype components
have values, a decision is made by the system as to whether the
given data values match those expected for the prototype.
Another prototype is then selected as the Current Prototype,
and the process repeats. The system moves through the
prototype network confirming or disproving indicated disease
prototypes. Matching data and prototypes continues until each
piece of data has been accounted for by some confirmed
prototype or until the system has concluded that it cannot
account for any more of the data.



3 CENTAUR Example

The following is an example of an interpretation of a set of
pulmonary function test results for one pulmonary patient.
Comments are in italics.

“CENTAUR? 14-Jan-79 13:54:07

........ PATIENT-7. . . ... ..
1) Patient's identifying number. ** 7446
Z) referral diagnosis: ** ASTHVA
3) FEV1/FVC ratio: ** 40
[Trigger for OAD and CM 900]

(Prototype OAD Is Metered by the value 40 for the FEVIIFVC
ratio. The Certainty Measure (CM) indicates on a numerical
scale the degree of certainty with which the prototype is indicated
by the data.)

4) TIC observed/predicted: <* 139

5) FVC/FVC-predicted: ** 81

[Trigger for NORVAL and CM 500] _
(The questioning continues and other prototypes are triggered by

the data values.)
I\/I'o.reSpeCific Prototypes chosen: NCRVAL OAD

(Although there are five possible, more specific disease prototypes

for the PULMONARY-DISEASE prototype, only the two that
were triggered by the initial data are selected as possibilities to
pursue. These prototypes are filled in with the data values that

are already known in the case.)

ISurprise Value! 261 for RV in NORVAL, CM: 700
ISurprise Value! 139 for TLC 1n NORMAL, CM: 400

(Any data values that are not consistent with the values expected
forthat disease prototype are noted as Surprise Values, andthe
CM for that prototype is lowered. Two of the data values that
are not consistent with the NORMAL pulmonary function

prototype are shown here.)

Hypothesis List: (QAO 990) (NORVIAL -699)
(The Hypothesis List of triggered prototypes is then ordered

according to the CM of the prototypes and a new Current

Prototype, OAD, is chosen.)
F25 DRV/TLC

Components of QX0 to trace:
(In order to instantiate the OAD prototype, two more components

must have values. These are then asked of the user ifthere are
no rules that can be used to deduce their values. The OAD
prototype is confirmed as matching the data in this case. Control
information associated with the prototype specifies that the
Degree of OAD should be determined next, followed by the
Subtype of OAD.)

Confirmed: ASTHVA SEVEREQAO QO
(Eventually SEVERE-OAD and ASTHMA are also confirmed.

Data values that can be accounted for by one of the confirmed
prototypes are marked. Ifthere are data values remaining that
cannot be accounted for by the confirmed prototypes, the system
will attempt to determine if there are multiple diseases in the
patient. Refinement Rules associated with the confirmed
prototypes are executed to further refine the diagnosis and

conclusions which are then printed.)
Conclusions:
Smoking probably exacerbates the severity
of the patient's airway obstruction.
Good response to bronchodilators 1s consistent

with an asthmatic condition.

Pﬁlmonary Function Diagnosis:
Severe Obstructive Airways Disease.
Asthmatic type.

4  Prototypes and Components

Following frame terminology, each prototype contains
SLOTS of information associated with it. One of these is the
slot COMPONENTS that lists the substantive characteristics
of the prototype. Each component may, in turn, have slots of
iInformation associated with it In the OAD prototype in
Figure 4.1, there are components for many of the pulmonary
function tests that are useful in characterizing a patient with
OAD For example, the TOTAL LUNG CAPACITY of a
patient with OAD is typically higher than that of a person
with normal pulmonary function. Thus there is a component,
TOTAL LUNG CAPACITY, with a range of PLAUSIBLE
VALUES that are characteristic of a person with OAD.

Some control information is represented explicitly in slots
associated with the prototype. These slots contain a set of one
or more clauses that express some action to be taken by the
system in order to instantiate the prototype (CONTROL slot),
upon confirmation of the prototype (IF-CONFIRMED slot), in
the event that a prototype is disproved (IF-DISPROVED slot),
and in a clean-up stage after the system processing has been
completed (ACTION slot).

PROTOTYPE Obstructive Airways Disease

Author: Aikins

Date: 27-OCT-78
Source: Dr. Fallat
Pointers:

(degree MILD-OAD)...
(subtype ASTHMA)...
Hypothesis: There is an
interpretation of OAD."

GENERAL SLOTS
—Bookkeeping Information

—Pointers to other
prototypes
(link prototype)
—English phrases

CONTROL SLOTS f-Confirmed:

Control Deduce degree of OAD
If-Confirmed Deduce subtype of OAD
If-Disproved Action:
Action Deduce OAD findings
Print OAD findings
COMPONENTS TOTAL LUNG CAPACITY

Plausible Values: > 100
Importance: 4

Plausible Values
Default Value
Possible Error Values
Rules

Importance of value
to this prototype

REVERSIBILITY
Rules: 19, 21, 22, 25
Importance: 1

FIGURE.4.1 A sample prototype with possible slots on
the left and values for OAD on the right.

4.1 Production Rules

The CENTAUR knowledge base also includes sets of
production rules. Many of the production rules are classified as
INFERENCE RULES, rules used to infer information in the
domain. They refer to values for components in their premise
clauses and make conclusions about values of components in
their action clauses. An example of one of the Inference Rules
Is given in Figure 42. The RULES slot associated with a
component contains a list of all Inference Rules that make a
conclusion about that component. These may be applied when
a value is needed for the component.



If: 1) A: The mmf/mmf-pred 1$ less than 20, and
B: The fvc/fvc-pred 1s greater than 80, or
2) A: The mmf/mmf-pred 1s less than 15, and
B: The fvc/fvc-pred 1s less than 80
Then: 1)

There 1s evidonce that the degree
of OAD is severe, and
Z) One of the OAD findings 1s:
Low mid-expiratory flow 1s consistent
with severe airway obstruction.

FICURE 4 2 A Sample Production Rule-English Version

5 Control Structure

The control information used by CENTAUR is contained
either in slots associated with the individual prototypes or in a
simple interpreter. Control strategies specific to an Individual
prototype are represented In slots associated with that prototype,
with more general system control being expressed In the
interpreter.

The control structure can be broken into three stages. a
hypothesis-formation stage in which data values are acquired
and an attempt is made to match prototypes to data, resulting
In a list of confirmed prototypes; a refinement stage in which a
set of REFINEMENT RULES are applied to the list of
confirmed prototypes to "debug” this list and further refine the
recommendations that will be made; and a final "clean-up"
stage in which, for example, findings associated with the
prototype are printed.

6 Advantages of the Prototype-Directed Approach

The use of this approach for the pulmonary function
interpretation task, as compared to the purely rule-based
approach used in PUFF, results in two categores of
advantages: those dealing with the knowledge base
representation Itself and those dealing with the system's
reasoning and performance. Advantages in knowledge
representation occur partly because some knowledge previously
represented in rules is now represented more clearly In
prototypes. For example, the prototypes explicitly represent
control information formerly represented In the PUFF inference
rules. In the PUFF system, there are rules whose purpose it is
to guide computation by controlling the invocation of other
rules. This feature can be very confusing to the medical
experts since they do not know which rules are those intended
to represent descriptive medical expertise and which rules are
those serving a necessary computational function. New
knowledge is also being represented in prototypes; for example,
plausible ranges of values for each of the pulmonary function
tests for each disease can be listed, as well as the relative
Importance of each measurement In a particular disease
prototype. Advantages in system reasoning and performance,
that Is, the questions that are asked and the order in which
Information is acquired, include the following:

(A) Consultation flow more closely follows physician's
reasoning. The process of medical problem solving has been
discussed by many researchers (e.g., [3]) and it is widely felt that
a sequence of suggesting hypotheses, acquiring further
information, and then revising the hypotheses, as is used In
CENTAUR, is, in fact, the problem-solving process used by
most physicians. Thus CENTAUR offers increased conceptual
clarity, in that the user can understand what the program is
doing, and this factor leads to other advantages, for example,
the system can offer the user a more intelligible explanation of
its performance during the consultation.

(B) Questions are asked in a reasonable order. In a rule-
based system such as PUFF, questions are asked of the user as
rules are invoked containing dauses referring to information
not yet known. The expert can control the order in which the
questions are asked only by writing rules to enforce some order.
As has been discussed, this procedure results in a potentially
confusing rule base where some rules guide computation. In
the prototype-directed system, the expert can specify the order
iIn which information is acquired for each prototype in the
control slot.

(C) Only relevant questions are asked. Another advantage
of CENTAUR over PUFF is that only those hypotheses
suggested by the initial data are explored. For example, if the
Total Lung Capacity (TLC) for the patient is 70, then
CENTAUR would begin exploring the possibility of Restrictive
_ung Disease (RLD) because a low TLC would trigger the
RLD prototype. (A low TLC is consistent with a hypothesis of
RLD; a high TLC is consistent with OAD.) In the PUFr
program, the first disease tried is aways OAD, so the PUFF
program would begin asking questions dealing with OAD.
These questions would seem irrelevant considering the data,
and, Indeed, if there were no data to indicate OAD, such
questions would not be asked by CENTAUR.

/  Summary

CENTAUR was designed in response to problems that
occurred while using a purely rule-based system. By changing
the knowledge representation to include prototypes as well as
production rules, new knowledge was represented. Further,
knowledge that had been represented rather awkwardly In rules
was represented more clearly in prototypes. The production
rules were retained as a stylized form of procedural attachment
that could be easily examined or modified. By altering the
control structure so that a best-fit matching process of
prototypes to data produced a current best hypothesis to guide
further search, a more focused consultation resulted which more
closely followed the way physicians reason. Control knowledge
was explicitly labeled and made prototype-specific so that
control of the consultation was adapted to the current best
hypothesis. In  summary, the prototype-directed system
achieved better reasoning and performance than the rule-based
system. In addition, although representing knowledge in
production rules alone did not seem adequate for this task, the
ability to represent knowledge In prototypes as well did provide
the needed flexibility.
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Fig. 1 An environment EV;

therefore,

structures,

which is constructed
unorganized set of infor-
The problem to be solved in the design
system is,

how to
the set of
and how to

realize the
algorithm to
create,reorga-
nize and uti-
lize the know-
ledge struc-
ture. In order
to solve this
problem, the
learning sys-
tem LS/0 IS
designed and
Implemented on
a computer.
The aim of
this paper is
to explain the
outline of the

reorganizes the knowledge structure to ex-

the network-like structure called label net plays an impor-

LS/0. The details of the LS/0 and the basic
theory of the learning systems will be reported
In the subsequent papers.

2. THE LEARNING SITUATION

We shall consider the sequence of question-
answer pairs. This is called an environment (EV).

EV - [ (Qv,A1),(Q2,A2),(Q3,A3), .... 1]

where Qt and A; are strings on the alphabet E,
the set of alphanumeric characters except "#",
and are called the question and the answer,
respectively. Fig. 1 shows a typical example of
the environment. We shall denote the environment
by EV4, hereinafter.

The interaction is an information exchange bet-
ween the learning system and the  environment.
It consists of three phases: Q, R and A. In the
phase Q, the environment gives a question string
Q; to the system. In the phase R, the system
must reply a response string R; to the question
Q:;. In the phase A, the environment shows the
system an answer string A; as the correct resp-
once to the question Qt. An interaction at time
t can be represented by (Q:, R, A ).

The system infinitely iterates the interactions
with the environment. The infinite sequence of
iInteractions is called the gquestion-response-
answer process (Q-R-A process) or the learning
process (LP).

LP- [(Qi,Ri,A1),(Q2,R2,A2),(Q3,R3,A3), ... ]
Fig. 2 shows an example of the learning process,



which is the sequence of interactions between
the LS/0 and the EV4 and is called LP{ herein-
after.

The interaction is said to be successful when
the response and the answer strings are the
same. The system is evaluated by the rate of
successful interactions in the Q-R-A process.

3. THE LEARNING SYSTEM

A system which operates under the situation
described in section 2 is designed In this
paper. This is called LS/0 and is implemented on
a computer as a FORTRAN program. The system LS/0
iIs composed of three elements: the execution
element, the learning element and the memory
element. The execution element receives a ques-
tion string and generates a response string by
utilizing the knowledge acquired so far in the
memory element. The learning element makes spec-
ific changes in the knowledge in the memory
element to improve the future responses. The
memory element stores the I|earned knowledge,
which is often called the state of the system.

The learned knowledge in the memory element of
the LS/0 is mainly represented by the network-
like structure called the label net. The exam-
ples of the label net is shown in Fig. 3 (I)-(8)
The label net is reviewd briefly In  what
follows. The details were reported in [1]. The
label net can represent much wider variety of
structures than the Fig. 3 shows.

The label net consists of finite vertices and
finite labels. Each vertex corresponds to a set
of strings and each l|abel represents the rela-
tion between the set of strings. Strictly speak-
Ing, the label net s a set of equations with
the variables of sets of strings.

QUESTION RESPONSE ANSWER
1 DOG=? X DOG=DOG
2 CAT=? 277 CAT=CAT
3 LION=? LION=LION LION=LION
4 L(12,4)=7  L(12,4)=L(12,4) 12
5 L(34,45)=7  L(34,45)=L(34,45) 34
6 L(876,6)=? 876 876
7 R(34,67)=? R(34,67)=R(34,67) 67
8 WHATISCAT 777

ITISANIMAL

Fig. 2 The learning process LP;
between the LS/0 and the EV,

The meaning of the label net is well explained
by the following example. The label between VI
and V2 in Fig. 3 (4) means that the set of VI
contains the string "a=?#a=a" if the set of V2
contains the string "a". The two labels pointing
toward V2 in Fig. 3 (4) means that the set of V2
contains "DOG" and "CAT". These relations deter-
mine the set of VI, S(V1), and the set of V2,
S(V2).

S(V1) - { DOG-?//DOG-DOG, CAT-?//CAT-CAT }

S(V2) - { DOG, CAT }

The knowledge stored in the lable net is utiliz-
ed during the —course of the learning process
through the vertex VI. when there exists a

in the set of VI, the structure
correct

string "a#B"
implies that the string "3" may be the
response to the question string "a

4. THE LEARNING PROCESS OF THE LS/0

In order to show how the LS/0 interacts with the
environment and how tt improves Its knowledge
structure, the learning process LP; in Fig. 2
and the state change of the LS/0 during the
learning process are described in the following.

The system LS/0 starts with the initial state

shown in Fig. 3(1).

(1-Q). . . . DOG*?

The first question is given to the LS/0 by the
EV,. The qu?,%stion s "DOG-?".

The state (1) in Fig. 3 indicates the LS/0 has
no knowledge on the EV,. The LS/0 was designed
to reply "?7?7?" when it fails to find any strings
to the given question.

(1-A). . . . DOG-DOG

The string "DOG-DOG" is given to the LS/0 as the
answer. After this interaction, the LS/0 changes
the state from (1) to (2) in Fig. 3. The state
(2) means that "DOG-DOG" is the correct response
to "DOG-?".

(2-Q). . . . CAT-?

(2-R) ??7?

The clue which the LS/0 has at this point s
only the knowledge (2). The LS/0 replies "7?7?7?"
again.

(2-A). . . . CAT-CAT

The interaction at time 2 causes the state
change from (2) to (3). The structure (3) stores
information gained from the interactions at
time 1 and 2 separately. The learning element of
the LS/0 further tries to organize the structure
and gains the state (4). The vertex V2 was newly
generated. The learning element assumes that the
set of V2 might be equal to the set £*, the set
of all strings of any Ilength Including zero



length one. This changes the state from (4) to

(9).

(3-Q) . . . LION-?
(3-R). . . . LION-LION
I

[he state (5) enables the LS/O to reply the st-
ring "LION-LION".

(3-A). . . . LION-LION

The response is found to be correct. The state
changes to (6).

(4-Q). . . . L(12,4)=7

(4-R). . . . L(12,4)-L(12,4)

This response is generated by the execution
element utilizing the structure (06).

(4-A). . . . 12

The answer string at time 4 shows the correct
response is not "L(12,4)-L(12,4)" but "12". The
LS/O stores this information in (7).

(5-Q). . . . L(34,45)="

(5-R). . . . L(34,45)=L(34,45)

(5-A). . . . 34

After storing the new information to (7) by

adding the labels "L(34,45)'?#34" and
"L(34,45)" to VI and V4, respectively,the LS/O

tries to reorganize it and constructs the
structure (8).
(6-Q). . . . L(876,6)-7
(1) v1i
(2) V1 o DOG=?#DOG=DOG
DOG= 7#D0OG=DOG
(3) V1 ¢
CAT=?#CAT=CAT
a=?#a=q
(6) VI “ Qa .

a=?fa=a
s V2
(7)) vl

a=?fa=q
a

L(a,B)=1fa
afg

(8) V1 o

(6-R). . . . 876

The LS/O utilizes the structure (8) and
generates the response "876".

(6-A). . . . 876

This interaction is found to be successful.
The information gained at time 6 is stored
by adding the same label "876#6" to both V5
and V0.

(7-Q). . . . R(34,67)«?
(7-R). . . . R(34,67)=R(34,67)
(7-A). . . . 67

The answer string of the EV; again forces
the LS/O to reorganize its knowledge struc-
ture. The learning process between the LS/O
and the EV, continues infinitely in this
manner.
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TOWARDS UNDERSTANDING COLOR OCULAR FUNDUS IMAGES
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We have studied some fundamental problems on the way of understanding color
ocular fundus images by computer. They are the extraction of blood vessels
from the retinal background and labeling them arteries and veins. We analyze
the chromatic characteristics of color ocular fundus images to get the signal
level knowledge on them which is used in the stages of extracting blood vessels
and most reliable labeling of initial line segments. We propose a dynamic
threshold selection scheme for binarization of gray images that have an amount

of shadings or uneveness of gray
deterministic procedure which takes

values. In the Ilabeling stage we use a
iInto account the physical level knowledge

on blood vessels. Some other methods are also discussed.

1. INTRODUCTION

Color ocular fundus 1images are used In
the mass diagnosis of adult diseases such as
hypertension and diabetes. Since the photo-
graphing system of them is simple and cheap,
if the automatic understanding system of them
Is realized, the mass health management by
them together with chest X-ray images will be
much more popularized. There are a few exam-
ples of computer analysis of ocular fundus
images [1],[2],[3],[A],[5].

For color ocular fundus photographs, as
far as we know, there has been only one exam-
ple of computer analysis. It Is the pattern
recognition of color fundus iImages by Yokouchi
et al. [A],[%9], They Investigated the possi-
bility of automatic diagnosis of arterio-venous
crossing phenomena. But their method is inter-
active In the sense that they indicate the
cross points manually before the computer
analysis. The change of venous caliber before
and after its crossing was measured along its
course and the minimum value of each normalized
caliber measurement was utilized to grade the
crossing signs. The researches mentioned
above stay in the phase of analysis. The ob-
jective of our research is the understanding

This work has been supported by Pattern
Information Processing System Project of the
Agency of Industrial Science, and Technology of
the Ministry of International Trade and Industry
of Japan.

of color ocular fundus images by computer, which
IS inevitable for the automatic mass diagnosis
of hypertension and diabetes. The theme in
this paper is to locate blood vessels and iden-
tify arteries and vains automatically. This
process is fundamental for the analyses of not
only arterio-venous crossing phenomena but also
other symptoms of adult diseases [9].

We have to make clear the levels of knowl-
edge [10] that can be used in each stage of the
process.

For the first step we analyze the chromatic
characteristics of color ocular fundus images.
We get the signal level knowledge on them which
is utilized in the stages of extracting blood
vessels and most reliable labeling of initial
line segments.

We propose a dynamic thresholding scheme

for the extraction of blood vessels. It is
very effective against images which have shad-
INgsS oOr unevenness of light intensities.

Thirdly a deterministic labeling algorithm of
blood vessels is proposed in which the physical
evel Kknowledge on them is implemented. The
ables of some vessel segments from which the
abeling starts are determined by the signal
evel knowledge and some positional con-
straints.




2. CHARACTERISTICS OF COLOR FUNDUS IMAGES

The first step of understanding color
ocular fundus images is the analysis of their
photographic and chromatic properties. They
are taken on the 35 mm color reversal films by
the fundus camera. It requires some skill to
take the fundus photos of good quality. Since
the state of fundus is individually different,
they have some variation of color tone. More
specifically, there are two main causes of the
variation—the photographic system and the
individual. The former involves the spectral
characteristics of color films, the condition
of photo processing, the optical property of
the fundus camera and the amount of light. It
IS comparatively easy to prescribe these con-
ditions and they do not have so much influence
on changing color tone. The latter comes from
the age, the size of pupil and other conditions
of a person [1]. It changes color tone of
photos remarkably. Therefore, it is very im-
portant to select parameters that are not
influenced by each photograph, in other words
we should use relative (not absolute) color
information.

2-1. Diqitization of Film Images

In our experiment we used a high-speed
drum scanner which had the Wratten No.25, No.
47B, and No.58 filters for tricolor decomposi-
tion. The photo density was quantized to 256
levels.

The color fundus images on films were
scanned by the drum scanner with the sampling
pitch of 50 umn, and digitized to 255 x 256
pixels (i.e. 12.8mm x 12.8mm on film).

2-2. Chromatic Analysis of Diqitized
Fundus Images

A fundus image consists of four portions;
Retina, Disc, Artery, and Vein. We plotted
the chromatic information of the digitized
data in the sample areas of each portion onto
the UCS color coordinate system (u, v, V).

The distribution in u-v plane shows that
it is parallel to the wu-axis, which means the
chromatic information of this sample fundus
Image is approximately represented by the u-
coordinate. Furthermore the distribution of
retina is roughly separated from that of blood
vessels. But the distributions of artery and
vein can't be distinguished.

From the distribution of those data in
V-u coordinates we see that arteries cant' be

completely separated from veins also in this
case.

Certainly some confirmed artery or vein
pixels are determined by (u, v, V) values.

The analysis tells us that the labeling of
blood vessels requires not only signal level
knowledge mentioned above, but also physical
level knowledge which will be introduced in
section 4.

3. A DYNAMIC THRESHOLD SELECTION
FOR EXTRACTING BLOOD VESSELS

The extraction or distinction of blood
vessels from the retinal background is a mile-
stone of understanding fundus Iimages.

Color ocular fundus images contain an
amount of shading or unevenness of light inten-
Sity. So the ordinary global threshold selec-
tion methods fail to extract Dblood vessels.
Dynamic threshold selection schemes are desira-
ble In such circumstances. Chow and Kaneko's
method [6] Is a well-known one which has been
applied to the extraction of blood vessels In
fluorescence fundus images with some modifica-
tion by some researchers [3] with fairly good
results.

The contrasts of fluorescence fundus images
are much higher than those of color fundus
images. The shortcomings of this method when
applied to the extraction of low contrast blood
vessels are as follows. The thresholds of all
subimages cannot necessarily be obtained and
the distribution of them is non-uniform in the
image because of the irregular pattern of blood
vessels. Therefore, the error of interpolating
the threshold at each pixel is often bigger
than the contrast between blood vessels and the
retinal background, resulting in noisy binary
images. We abandoned applying Chow and Kaneko's
method to color fundus images because of their
low contrasts and unevenness of light intensity.
We have developed our own method.

3-1. A Dynamic Threshold Selection Scheme

The gray image is splitted into a set of
blocks (subimages) as in the case of Chow and
Kaneko's method to eliminate the influence of
shading. In each block it is examined whether
the boundary of blood vessels and the background
IS included or not by taking the derivative and
binarizing it with variable thresholds. When
boundaries are detected in a block, the histro-
gram of pixels only around boundaries is made
to determine the threshold for this block. If
a block does not include any boundary, It is



classified into the background. The size of a
block which is given in advance is large enough
to contain full width of a vein or an artery.
The flow of this scheme is the following.

(1) Split the image into N blocks. For
each block, do the next steps.

(2) Apply the Laplacian operator to the
block. The result will be called the
Laplacian subimage.

(3) Binarize the Laplacian subimage by
varying the threshold and check
whether there is a connected compo-
nent whose size satisfies some con-

ditions. If not, then set the flag
of this block to 0 representing that
it belongs to the background. If it

exists, the flag is set to 1 showing
that this block includes some parts
of vessels.

(4) For each block whose flag is equal to
1, the histogram of pixels only around
boundaries is made to determine the
threshold by Otsu's method [7] and
the block is binarized. In the binary
block the size of each connected com-
ponent is measured and if it is less
than a given value, the component is
eliminated as a noise.

We should add some words on step (3).
When the Laplacian sublmage is binarized, the
threshold is decremented first from the given
upper value, until the size of maximum connected
component satisfies a certain condition. If
any line segment which corresponds to a part of
a boundary exists, then the threshold is iIn-
cremented next from the given lower value until
the size of maximum connected component satis-
fies another condition. This procedure is Iim-
portant in order not to miss Ilow contrast
boundaries which also exist in the block.

For the conditions mentioned above we can
set some constraints on the size and the shape
of the extracted boundary in the subimage.

A. LABELING BLOOD VESSELS

The second stage of fundus image under-
standing is the labeling of blood vessels.
There are two kind of vessels; arteries and
veins. Our aim here is to locate them, which
leads to the detection of crossing points and
to the measurement of arterio-venous crossing
phenomena such as tapering, banking, Salus'
sign, S-shaped bend and parallel-Gunn [9].

The physical level knowledge on Dblood
vessels that can be used at this stage is as

follows.

(i) Arteries (Veins) do not intersect
each other. In other words arteries
(veins) intersect only veins (ar-
teries) .

(ii) Arteries (Veins) branch off only from
arteries (veins).

In order to use this knowledge positively
we have adopted the following procedure for
locating arteries and veins.

(1) Make the thinned image from the binary
vessel image.

(2) Detect characteristic points in the
thinned Image and make the Iline
segments list.

(3) Label each line segment, namely
determine whether it is a part of an
artery or a vein.

4-1. Skeleton Patterns of Binary Blood Vessels

The state of blood vessels such as branch-
ing, crossing and meandering is simply repre-
sented by that of their medial axises or
skeletons. The direct results of thinning
binary blood vessel Iimages contain small
circles, isolated points and prickles that act
as noises. We first eliminate them and start
with thinned images. In order to analyze blood
vessel networks we detect characteristic points
and list up Iline segments. We define three
kinds of characteristic points: end point,
branch point and cross point. A line segment
is defined as a segment of medial axis whose
head and tail are characteristic points.
Therefore, there are nine situations of a line
segment. Several parameters on a character-
Istic point and a line segment are measured and
are written into the characteristic points list
(CP-LIST) and the line segments list (LS-LIST),
respectively. These lists are very useful to
activate the physical level knowledge mentioned
above.

* Characteristic Points List (CP-LIST)

It includes several parameters of each
characteristic point. They are the (x, y) co-
ordinate, the characteristic index which repre-
sents whether the point is an end Pt. or a
branch Pt. or a cross Pt., the numbers of the
line segments which meet at this point, and so
forth.



Line Segments List (LS-LIST)

The parameters of each line segment in the
LS-LIST are the characteristic point numbers of
the head Pt. and the tail Pt., the length, the
directions of this line segment at the head Pt.
and the tail Pt., the chain code and others.

4-2. Labeling Algorithm

The goal of Ilabeling is to decide that
each line segment belongs to an artery or a
vein or the retinal background. The labeling
starts with some line segments that have most
reliable initial labels determined by the
signal level knowledge.

4-2-1. Initial Labeling

values of arteries are smaller
than those of veins in a broad sense. If we
limit the area In the V-image and set two
thresholds 8L, GU in the gray levels, we can
expect with certainty that the pixels whose
gray values are less than 8L belong to arteries
and the pixels whose gray values are greater
than OU belong to veins. 9U and OL may be set-
tled by some clustering approaches. The most
reliable line segments with which the labeling
starts are determined as follows. On every
line segment of the skeleton pattern in the
certain limitted area the number of pixels with
a certain label (or no label) is counted and
divided by the I|line length. There are three
ratios, PA, PV, and PN which represent the
probabilities that the line segment is a part

The gray

of artery, vein and unknown, respectively.
Hence PA + Pv + PN = 1.0. If a line segment
has the probability of PA or Py higher than a
given value, it is chosen as one of the most

reliable line segments.

4-2-2. Labeling Procedure

The labeling starts from the line segments
which have the most reliable initial labels.
If a non-labeled line segment is connected to
other labeled line segments, it will be labeled
as follows using the physical level knowledge
mentioned before. The procedure also takes into
account the natural directions of blood streams.

Since the full program structure of the
procedure is lengthy to be described here, only
the essence of it is presented.

At the head point (H.Pt.) and the tail
point (T.Pt.) of a non-labeled and non-isolated

line segment |, the next steps are taken.

1) When the H.Pt. is a branching Pt., let the
other two line segments be LH1 and LHZ2.

\ /
(D Label(LH1l) = Label(LH2) R S
=C+¢ 0 LA LH1
+ Label(I) = C, go to 3).
(@ Label(LH1) # O, 1 / H.Pt.
Label(LH2) # O and )
Label(LHl1) # Label(LH2) /

+ Select the line segment whose angle
between I is nearest to 180° and call

it LHI. Let Label(I) = Label(LHl),
and Conflict-Flag(l) 1s incremented
by one., Go to 3).

(3 Label(LH1) # 0 or Label(LH2) # O

+ Label(I) = Label (LHl)
go to 3).

or Label(LH2),

(:) Otherwise, go to 3).

2) When the H.Pt. is a crossing Pt., let the
other three line segments be LH1l, LH2 and
LH3.

(:) Choose the line segment (4, f
whose angle between 1 1is “\ ,231

®
®

nearest to 180° and call
it LH1. 1If Label(LHl) ¢
0, then let Label(I) = Y
Label(LH1) and go to 3). I, n.pe. s
Otherwise do the next ~° LH3
steps.

Label(LH2) = Label(LH3) = artery (vein)
+ Label(I) = vein (artery), go to 3).
Label(LH2) # 0, Label(LH3) ¢ O and
Label(LH2) # Label(LH3)

+ Conflict Flag(I) 1is 1incremented by
one and no label is given to I. Go
to 3).

Label(LH2) = artery (vein) or Label(LH3)
= artery (vein)

+ Label(I) = vein (artery), go to 3).
Otherwise go to 3).

3) When the T.Pt. is a branching Pt., let the
other two line segments be
LTl and LT2.

’
(:) Label(LT1) = Label(LT2) s
T.Pt. 1
=C 40 .
+ If Label(I) = 0, then
let Label(I) = C. LTl
1f Label(I) ¢ O and LT2
$ C, Conflict Flag(I) ! \

is incremented. Exit. ' \

(:) Label(LTl) ¢ O, Label(LT2)

# 0 and Label(LTl) # Label(LT2)
+ If Label(lI) = O, then choose the line



segment whose angle between | s
nearest to 180° and «call it LT1.
Label(l) = Label(LTIl). Exit.

If Label(l) # 0, increment Conflict
Flag(l) by one and exit.

Label(LTI) # 0 or Label(LT2) # O

+ |f Label(l) = 0, then let Label(l) =
Label(LTlI) or Label(LT2), and exit.
If Label(l) # 0 and # Label(LTI) and
# Label(LT2), increment Conflict Flag

by one and exit.

(1)
@ Otherwise,

exit.

4) When the T.Pt. IS a crossing Pt., let the
other three line segments be LTI, LT2, and
LT3.

@ Choose the line segment /
whose angle between | T.Pt. /'I
IS nearest to 180° and _
call it LTI. -m%

f Label(LTI) # 0, and ) N
_abel(l) « 0, then 7 LT3
_abel(l) = Label(LTI) < L1

and exit.

If Label(LTI) # O and Label(l) # 0 and
# Label(LTI), increment Conflict Flag(l)
by one and exit. Otherwise do the next
steps.

(2) Label(LT2) = Label(LT3) =
-> |f Label(l) = 0,

artery (vein)
then let Label(l) =

vein (artery).
If Label(l) = artery (vein), increment
Conflict Flag by one. Exit.

(3 Label(LT2) # 0, Label(LT3) # 0 and

Label(LT2) # Label(LT3)

-> Increment Conflict Flag(l) by one and

exit.
@ Label(LT2) » artery (vein) or Label(LT3)

m artery (vein)

-. If Label(l) - 0, then let Label(l) =
vein (artery).
If Label(l) # 0 and Label(l) = artery
(vein), increment Conflict Flag by
one. EXxit.

The labeling procedure terminates when the
number of non-labeled I|ine segments does not
decrease anymore by iteration.

The isolated line segments which have no
reliable initial labels are left to be non-
labeled. They need another analysis. The con-
flicts are caused by artifactitious Iline
segments or by disappearance of true blood

vessel line segments. Since the binary blood
vessels Dbefore thinning have widths at cross
points, artifacts are made after thinning. |In
other words a cross point before thinning is

splitted into two branch points after thinning.
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Another example of artifacts is a Dbridge
caused by noise. The disappearance of a true
vessel line segment has the same effect as a
bridge. We need more details of the image in
order to distinguish the disappearance from
noise. From this analysis we know that the

conflict flag gives us
tion on crossings,
true vessel

very important informa-
noises and disappearance of
segments.

Another useful physical Ilevel knowledge
which was not taken into account in our ex-
periment is that there should be no isolated

blood vessel pieces except concealments. This
tells us that the interpolation of line seg-
ments could be done before labeling.

5. DISCUSSION

Here we consider some additional methods
that might be useful for our problems.

1) On the extraction of blood vessels:
Another approach is to apply line detec-

tion or ridge following algorithms which are
often used to find linear features in LANDSAT
Images. We have applied one of them to our

case and got some promising results.

2) On the labeling of blood vessels:
The relaxation Il|abeling [8] might be ap-
plied to our case. Since the pixelwise relax-

ation spends a great amount of time, we should
use it in the stage of Iline segment labeling.
We have to define neighbor relationships of
line segments, compatibility functions, and
weights. The arithmetic updating rule may be
used.

3) From the view point of diagnosis:
In case of the analysis of arterial-venous

crossing phenomena, some specified retinal
areas are inspected. The area around the fovea
which includes only very thin vessels and the

area within some radius of the disc are out-
side the inspection. This will go a long way
iIn overcoming the difficulty of noise elimina-
tion.

On the other hand
phenomena on arteries

there are Iimportant
which might be neglected

or erased by careless noise elimination. They
are light streaks on arteries (copper wire
arteries) which serves much for the diagnosis

of arteriosclerosis but often acts as obstacles
to labeling. This problem was not dealt with
In our experiment.



6. CONCLUSIONS

The difficulty of
fundus images lies on
qualities are not so
medical images and the variety of colors and
blood vessel shapes is very large. There is
still a long distance to get the full automatic
understanding of color ocular fundus images.
We did not discussed the automatic diagnosis of
arterio-venous crossing phenomena. In that
process we will have to Iimplement semantic
level knowledge on symptoms of them into diag-
nostic algorithms.

understanding ooior
the fact that the image
good as those of other
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The present paper proposes a mathematical theory of self-organizing nerve nets,
which is applicable to various types of supervised and unsupervised learning, such

as learning decision, concept formation, association, etc.

Given an environmental

information source, a neural system automatically forms a number of separate routines

to process the signals in it.

This kind of unsupervised self-organization underlies

commonly in formation of categories, feature extractors, and content addressable

memories.

This problem is analyzed mathematically, as well as models of topographic

organization of nerve fields and of associative memories, by the proposed method.

1. INTRODUCTION

The brain needs a long period of evolution to
get the present information processing manner.
Although artificial intelligence is recently
investigated rather independently of the behav-
lor of nerve nets, it is plausible that artifi-
cial and natural intelligence have some common
logic of realizing intelligence at a higher
abstract level. They have something to suggest
to each other. Neural systems seem, especially,
to yield good models of parallel and distributed
information processing with self-organizing
capabilities of adapting themselves to the en-
vironmental information structure.

The present paper proposes a unified mathemati-
cal treatment of neural self-organization
applicable to wide classes of learning with and
without teacher, by summarizing the author's
recent researches [1-5], We also present a
model which elucidates the mechanism of unsuper-
vised and automatic formation of various routines
for processing the signals in the environment
[cf. 4, 6, 7], and analyze the model by the
proposed method. Recent developments of neuro-
physiology have revealed the importance of such
self-organization. We also touch upon the models
of topographic organization of nerve fields [3,
8] as well as of associative memories [9. 10].

2. A GENERAL THEORY OF SYNAPTIC MODIFICATION

We consider a simple mathematical model of a
neuron, which receives a vector input signal x =
(X-4, ..., X ) from its environment S, and emits
one output signal z. These signals in general

take analog values between 0 and 1, representing
the normalized pulse emission rates (they may
take on 0 and 1). Let us denote by w = (wy, ...,
w,) the synaptic efficiencies or weights of the
inputs. The input-output relation Is given by

z = f(w.x - h) (1)

where h is a threshold, f is a monotonically
increasing function transforming the average
membrane potential u = w.x into the output pulse
emission rate z (Fig.l).

Information
Source S

Fig.1

Model of neuron

The neuron self-organizes and adapts to its
environment S, by modifying w based on an input
time sequence x(t) from S. In some cases, the
so called teacher signal y(t) is associated with
X.(t). Hence we regard S as an erqodic informa-
tion source producing (x(t), y(t)), where teacher
signal y(t) is absent in the case of unsupervised
learning. We consider a simple environment S
represented by a probability (density) p(x, y).
It chooses a pair (X, y) of signals with the
probability p(x, y), each time independently, and
outputs it for a fixed time duration, and then
choose another, repeating this process.

We propose the following general rule of synapse
modification, w being changed based on x(t) as

Tw(t) = - w(t) + cr(t)x(t) (2)



where T is a large time constant, "<" denotes
the time derivative d/dt, ¢ is a constant, and
r is the reinforcement or learning signal which
the neuron produces depending on w, x and y (when
it exists) at that time, r(t) = r[w(t), x(t),
y(t)]. This is a generalization of Hebbian type
learning, which Iis obtained by putting r = z,
Perceptron type learning is obtained by r = y -
f(w-x_ - h). Most of the neural learning rules
proposed so far are obtained by chosing appro-
priate signals .

By replacing rx in (2) by its average, we obtain

™ = -w +C (r(!’_’ X .V)>59 (3)

where < D¢ denotes the average with respect to
p(x, y) of S, where w is considered as constant.
This is not a random equation. Since S is
ergodic, we can expect that the real behavior of
w(t) of (2) is closely approximated by that of
(3). This really is proved by the method of
stochastic approximation or by the theorem of
Geman [11]. Hence, we consider the average
learning equation (3) as the fundamental of
neural self-organization.

When r depends on w and x through w-x only, r =
r(w-x, y), (3) is rewritten in the form

W= -3L(w)/aw
where

L(w) = w?/2-c y)du)s. (5)

We call L(W) the potentlal of learning under S.
The synaptic weight w converges to one of the
minimum of L. In most supervised cases, L has
only one minimum, w converging to it. However,
in most unsupervised cases, L has a number of
minima corresponding to various aspects of S,
and w converges to one of them. However, when
a pool of neurons receive common inputs from S,
every minimum of L is occupied by some neurons
in the pool, so that the pool of neurons adapts
as a whole to the environment S.

(4)

!.5.

r(u,

3. FORMATION OF CATEGORY DETECTING CELLS

Information processing routines are formed in
the brain to be compatible with the environment
by learning. This kind of learning without
teacher underlies commonly in the problem of
concept formation,
etc. Recent developments of neuroohysiology
have revealed that the feature detecting cells
are really formed depending on the visual ex-
periences of an animal. We propose a simple
model, and analyze its capabilities.

The model consists of a set of neurons receiv-
iIng a common input signal x from the environment
S = (p(x)}. They also receive an inhibitory

formation of feature detectors,
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Fig.2 Category formation

input of constant intensity xo (Fig.2). Let us
take one neuron, and let w be the modifiable
synaptic weights of the neuron. Let -W, be the
modifiable synaptic weight for the inhibitory
iInput Xg.

We assume the following learning rule that the
learning signal r is equal to 1 when the neuron
Is excited (z > 0) and 0 otherwise (z = 0), i.e.,

r=1(w-x - woxg), (6)
wherel(u) is 1 when u > 0 and 0 otherwise, and

we pnt h = 0. The average learning equation is
_W_ = -W + C <l(\_~_'§* - W0x0)5>59 (7)

The equations are in general multi-stable, hav-

iIng a number of equilibria.

Let us consider a subset A of the signals in S.
A nerve cell i1s said to be a detector or a repre-
sentative cell of A, when it is excited by any
signal in A but not excited by any others in S.
We say that a subset A forms a category under S,
when a detector of A is obtained as a stable
equilibrium by self-organization. In other words,
a subset A is a category, when a set of weights
wA Woh satisfying

wA-x - WOAXO > 0

for all x € A but not for any x € S - A, is
obtained as stable equilibrium of (7) and (8).

Many categories are formed by learning under S.
When the neuron pool includes many neurons of
different initial weights, they differentiate
automatically to be detectors (representatives
or processors) of these categories. Mutual
interaction among the neurons of lateral inhibi-
tion type prevents a large number of neurons
becoming the detector of one and the same cate-
gory. The problem is to know which subsets
become categories under S. We give a n.a.s.
for a subset A to be cateqory under S. Let xA
be the average of signals in A. x* = J/p(x)xdx.

Let 2g/A( ) = xAx be the inner product , and A =
c'X,° C.

Theorem. A necessary and sufficient condition
that A is a category under S is



min g,(x) > A > max gy (y).
X €A y€S-A

The theorem shows that a cluster of signals of
an adequate diameter forms a cateqory, where
the diameter is specified by the parameter x.

In other words, X specifies the resolution of a
category, where A can be controlled by changing
XQ. This yields a primitive mechanism of forma-
tion of information processing routines by
learning.

4. TOPOGRAPHC ORGANIZATION

Topographic organization is found in many parts
of nerve fields in the brain. For example, the
continuous projection from the retina to the
striate cortex is known as the retinotopy. It
is known that, when part of the retina (or
striate cortex, or both) is removed, the regen-
eration of connections takes place such that the
topological map is completed between the remain-
iIng parts. This suggests that topographic
organization is formed based, at least partly,
on the self-organizing ability of nerve cells.

Let us consider a simple model consisting of a
presynaptic nerve field X and postsynaptic nerve
field Y connected by modifiable synapses.
Stimuli are supplied from the environmental in-
formation source S to the presynaptic field X,
exciting neurons of X, and then those of Y. The
self-organization takes place based on these
excitations. In this case, S brings the topo-
logical information of X, in such a way that two
nearby neurons of X are frequently stimulated

at the same time. When the neurons in Y have
fixed mutual connections of lateral-inhibition
type and when they have additional modifiable
inhibitory synapses, we can prove that continu-
ous connections from X to Y (topographic
organization) is formed by Hebbian type unsuper-
vised learning. Moreover, we can prove that some
microstructures are also formed in some cases,
as Is shown in the columnar structures in the
cerebrum. The fundamental equations of the model
are much complicated, because we should solve

the field equations of neural excitation together
with the average learning equations. We can
solve them.

5. PRIMITIVE MODH. OF ASSOCIATION

Let us consider a pool of neurons, which

receive a common input signal x and output a
vector signal z (the i-th neuron emitting the i-
the component z;). We consider such an envi-
ronment S that consists of a finite number of
signal pairs (X,, Y;), where the i-th component
Yji of y; acts as the teacher signal to the i-th
neuron. The problem is to modify the synaptic

weights w; of the i-th neuron (or synaptic
weight matrix W = (wj)) such that, receiving an

input x;, the neuron pool outputs the associated
signal—ﬂq. In this case, one many say that the
net rec

alls y; from the associated x;, and that
the associate& pairs (xs, xj)'s are &emorized in
the synaptic weights N"Qn a distributed and
superimposed manner [10].

The correlation learning [10] is obtained, if
each neuron self-organizes with r = y. In this
case, W converges to W = I yiTxj, T denoting

the transposition. This learning works well
only when x;'s are mutually orthogonal. The
synaptic welights converges to W = g xgﬁj* by
orthogonal learning [2] with r = y - %-x, where
{xj*} is the dual orthogonal system of Txj)
(1.e., x4*-xjy = 655), and associative recall can
be done even when x;'s are not orthogonal. We

can also treat the"ﬁynamic recall of signal

SEQUENCES Xys Xos oo Xy [9].
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Abstract

ACT la a computer simulation program that uses a propositional network to represent knowledge of facts and a set of productions (condition

- action rules) to represent knowledge of procedures.
modifications to its set of productions:
productions to call for the creation of new productions.
will be allocated to its processing.

There are currently four different mechanisms by which ACT can make additions and
designation, strengthening, generalization, and discrimination.

Designation refers to the ability of

Strengthening a production involves adjusting the amount of system reaourcea that
Finally, generalization and discrimination refer to complementary processes that produce better

performance by either extending or restricting the range of situations in which a production will apply. Theae learning mechanisms are uaed

to simulate experiments on prototype formation.

ACT successfully accounts for the effects of distance of instances from a central

tendency, frequency of individual instances, and the family resemblance structure of categories.

Introduction

ACT is a theory that combines ideas from cognitive psychology and
artificial intelligence. It is both a performance theory and a learning
theory. As a performance theory ACT is concerned with the factors
that determine how quickly, how reliably, and in what ways humans
can perform a cognitive task. As a learning theory it it concerned with
how the knowledge needed to perform such a task is acquired and
properly integrated.

The behavioral domains we have tried to model with the performance
aystem include memory, inference, and language. This work is
described in Anderson (1976), Anderson, Kline, and Lewis (1977),
Anderson and Kline (1977). Our learning research has concentrated in
the past on language acquisition, but more recently we have also
become interested in modelling learning of high school geometry and
learning of LISP by programming novices. Preliminary reports of this
work are Anderson, ine, and Beasley (1977, 1979a, 1979b). This
paper focuses on how the ACT theory would apply to prototype
formation. There is a considerable body of empirical research on this
topic in cognitive psychology.

The ACT system falls at the intersection between cognitive
psychology and artificial intelligence. Many of the concepts described
in this paper can already be found in the fields of knowledge

representation and knowledge acquisition but there are some new
concepts developed out of detailed consideration of human behavior.
The ACT system architecture provides a novel synthesis of these
individual concepts. With these concepts and architecture we are able
to account in detail for some important psychological phenomena.
Thus, we hope that this paper will provide researchers in Al with a
few new concepts but mainly a new perspective on familiar concepts
and their possible combination. We also hope that the paper will
indicate to researchers in cognitive psychology new potentials for
some of the conceots in artificial intelligence.

The ACT System

In ACT knowledge is divided into two categories: declarative and
procedural. The declarative knowledge is represented in a
propositional network, which is similar to other semantic network
representations (Ouillian, 1969; Anderson and Bower, 1973 Norman
and Rumelhart, 1975; Shapiro, 1971; Simmons, 1973). While the
network aspects of this representation are important for such ACT
processes as spreading activation, they are not important to the
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current learning discussion. For present purposes we will consider
ACT's declarative knowledge as a set of assertions or propositions and
ignore the technical aspects of its network representation.

ACT represents its procedural knowledge as a set of productions. The
ACT production system can be seen as a considerable extension and
modification of the production systems developed at Carnegie-Mellon
(Newell, 1972, 1973; Rychener and Newell, 1978). A production is a
condition-action rule. The condition is an abstract specification of a
set of propositions in the network. To be matched to the condition,
the propositions must be active. ACT's activation mechanism is
designed such that the only active propositions are those that have
recently been added to the data base or that are closely associated to
such propositions. Propositions are added to the data base either
through input from the environment or through the execution of
productions. Thus, this activation system gives ACT the property of
being responsive to changes in its environment or in its internal state.

ACT's basic control structure is an iteration through successive eyeles,
where each cycle censists of a production selection phase followed
by an execution phase. On each evete an APPLVLIST is computed
which is a probabilistically defined subset of the productions whose
conditions have all their constants active in the data base. The
probability that a production will be placed on the APPLYLIST depends
on the strength (s) of that production relative to the sum (S) of the
strengths of all the productions whose conditions mention active
elements; that is. this probability vanes with s/S. Discussion of the
process of assigning a strength to a production will be postponed until
a later section; all that needs to be said here is that this strength
reflects just how successful past applications of this production have
been. Thus one component of the production-selection phase consists
of choosing those productions which are the most likely to apply
successfully.

Il Learning In ACT

ACT can learn both by adding propositions to its data base and by
adding productions. It can also learn by modifying the strengths of its
propositions and productions. We will concentrate here on the learning
that involves productions. Production learning tend* to involve the
more significant events of cognitive restructuring. It is also through
production learning that ACT accounts for prototype formation.
Productions can be added to the data base in one of two ways. They
can be added by detiberate designation as in the encoding of



instructions or they can be added through the spontaneous restructuring
of productions in response to experience. Our focus in this paper will
be on spontaneous restructuring. The designation process plays only a
small role in our modelling of the prototype formation literature.

Generalization
A very important component of the spontaneous Ilearning process
iInvolves generalization, ACT wuses an algorithm which finds the
maximal common generalization of two productions in the sense
developed by Vere (e.g. 1977) and Hayes-Roth (e.g. 1976). The
basic idea behind this generalization technique is to compare pairs of
similar productions Py and P, and to form new productions P3; which
have the following characteristics:

(a) P3; will apply in the circumstances that either

P, or P, did and possibly new circumstances)

(b) P3 will have the same effect as P; or

P, in the circumstances that P4, or P, applied

(c) There is no production P4 that satisfies (a)

and (b) and only applies in a subset of the

circumstances that P; does.
The maximal common generalisation is not always unique; in which
case ACT selects in a random fashion. These generalizations are
formed basically by deleting clauses in the conditions of P. and P, and
by replacing constants by variables.

We have a number of heuristics to help direct the generalization
process, but obviously have no general solution to the NP-complete
partial matching problem embedded in the process of generalization
(see Hayes-Roth, 1977). Most of the examples we run into seem to
be computationally tractable. Examples can be designed that push the
computational limits of the system but they do not seem particularly
easy generalization problems for humans either. We have been
concerned in ACT with developing (a) principles for deciding when to
attempt forming generalizations in a realistically large system with
very many productions; and (b) principles of caution for integrating
generalizations (there is always a danger of overgeneralization) into
the operation of the system.

An example will help to illustrate ACT'S automatic generalization
mechanism. Figure 1 illustrates the stimuli studied by subjects in
Experiments 3 and 4 of Franks and Bransford (1971). We will assume
that subjects designate productions to recognize each stimulus. So
for the first stimulus item subjects would designate the following
production:
P1: IF a ftriangle is to the right of a circle
and a square is to the right of a heart
and tha first pair la above the second pair

THEN this is an instance of tha study material
For the third stimulus the following production would be designated:

P2: IF a circle is to the right of a triangle
and + square Is to tha right of a heart
and the first pair is above tha second pair
THEN this is an Instance of the study material
From these two productions a generalization can be formed that
captures what these two productions have in common. This involves
deleting terms on which the two productions differ and replacing these
terms by local variables. Thus, we have the following generalization.
P3: IF a LVshape) is to the right of a LVshapeZ2
and a squaro Is to the right of a heart
and the first pair is above the second pair
THEN this is at instance of the study material
The local variables in mis generalization aie -prefaced by LV. This
generalization can be thought of as an attempt on ACT's part to arrive
at a more general characterization of the study material. Nolo that
ACT's generalization mechanism needs only two examples to propose a

The actual syntax of ACT productions is considerably more
complex than this. We present them in a pseudo-English to facilitate
readability.

generalization. This generalization does not replace the original two
but rather co-exists with them as an alternate means of characterizing
the stimulus set. Which production will actually produce the response
depends on the strength mechanism that we will describe shortly.

Restrictions are needed on how many elements can be deleted in
making a generalization. Consider. ACT's representation for the sixth

stimulus from the Franks and Bransford set:
P4. It- a vcircle is to the right of a triangle

and a heart is to the right of a blank
and the first pair is above the second pair
THEN this It an Instance of the stimulus Material

If we allowed this stimulus to be generalized with stimulus 1 (P1) we
would get a production that would accept any array of four geometric
objects as an instance of the study material. While it is conceivable
that any such array may be an experimental stimulus, this seems like
too strong a generalization to make just on the basis of these two
examples. Therefore, a limit is placed on the proportion of constants
that can be replaced by variables in forming a generalization. Of the
two productions from which the generalization is formed, the one with
the least number of constants is used as a reference. The number of
constants in the generalization can bo no fewer than half this quantity.
The terms that ACT considers constants are italicized. There are five
constants in productions P1, P2, and P3. Production P3 is an
acceptable generalization from P1 and P2 because it only involves
replacement of two of the constants. P1 and P4 are prevented from
forming a generalization because this would require replacing four of
the five constants with variables.

Even with this restriction on the proportion of constants deleted it is
likely that unacceptably many generalizations will be formed. A
realistic simulation of an adult human's entire procedural knowledge
would requiro hundreds of thousands of ACT productions. Under these
circumstances it seems infeasible to attempt to generalize all possible
pairs of productions. ACT only attempts to form generalizations when
a new production has been designated. Also, generalizations are
attempted only for pairings of newly-designated productions with the
productions on the APPLYLIST. Since a production is on the
APPLYLIST only if the constants it references are active and it has
met a strength criterion, this implies that attempts to generalize will be
restricted to productions that are relevant to the current context and
which have enough strength to indicate a history of past success.
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Discrimination

Even with mese restrictions placed on it, ACT'S generalization
mechanisms will produce productions that are overgeneralizations of
the desired production. However, given our goal of a psychologically
realistic simulation, such overgeneralizations on ACT'S part are
actually desirable since it can be shown that people make similar
overgeneralizations. For example, children learning language (and, it
appears, adults learning a second language--see Bailey, Madder, and
Krashen, 1974) overgeneralize morphemic rules (Brown, 1973). Thus
a child will generate mans, glved, etc. ACT will do the same.

Use of a discrimination mechanism seems relatively unique in the
knowledge acquisition literature--Winston's (1972) use of "near
misses" being the only related mechamsm we are aware of. The use
of discrimination is motivated by the fact that any system that tries to
improve itself by making generalizations must, occasionally, make
overgeneralizations. Discrimination provides an automatic means for
"debugging" such errors. To correct overgeneralizations ACT must
create more discriminate productions.

The discrimination mechanism will only attempt to discriminate an
overgeneral production when it has both a correct and an incorrect
application of that production to compare. (Productions place new
propositions into the data base and emit observable responses; either
of these actions can be declared incorrect by a human observer or by
ACT Itself. In the absence of such a declaration an action is
considered correct.) Basically, this algorithm remembers and compares
the variable bindings in the correct and incorrect applications. It
attempts to find a variable that had different bindings in these two
applications. In forming the discrimination, restrictions are placed on
that variable to prevent the match that led to the unsuccessful
application while still permitting the match that led to the successful
application. In the simulations of schema abstraction that will be
discussed, a new production was formed from the old production simply
by replacing the variable by the constant it was bound to during the
successful application. in some of our other work (e.g. Andorson,
Kline, & Beasley, 1979a) the variable was kept but an additional
clause was added to restrict what the variable could match.

As an example of the discrimination process, we will consider a
categorization experiment from Medim and 5chaffer (1978). We will
focus on two instances they presented from category A. One was
two largo rod trltnglos and the other was (two Jlarge bluo circles.

From these two examples, ACT would designate the following
categorization productions.-

Po6t IF a stimulus has two large red triangles
THEN it it in category P
P7. IF a stimulus has two large blua circlet

THEN It is In catenary ft
From these two ACT would form the following generalization:

P8» IF a stimulus has two larq« LVcolor LVshapes
THEN It is in Category R

However, this turned out to be an overgeneralization. To be In
category A the stimulus had to be either red or a circle or both. Thus,
the counter-example was presented of two large blue triangles which
was a stimulus in category B. Generalization PS misapplied in this
circumstance. By notina what distinguished the circumstances of
correct applications of generalization P8 from the circumstances of
incorrect application, both of the following productions would
eventually be formed by the discrimination mechanism. These

productions will always produce correct classifications.
PS: IF a stimulus has two large red LVshapes
THEN it is in category R

P10: IF a stimulus has two large LVcolor circlet
THEN it It In cateqory. R

These produetiom were formed from P8 by replacing one of its
variables (either IVcolor or IVshapes) by the binding that variable had
during a successful application -i.e. an application to a stimulus that
was actually from category A. (As an aside, these two productions
illustrate how ACT can encode disjunctive concepts by the use of
multiple productions).

Production Strength and Specificity

When a new production is created by the designation process there is
no assurance that its condition is really the best characterization of
the circumstances in which its action is appropriate. For this reason,
generalization and discrimination processes exist to give ACT the
opportunity to evaluate alternative conditions for this action. It is the
responsibility of ACT's strength mechanisms to perform the evaluation
of these alternative productions.

Through experience with the ACT system we have created a set of
parameters which, although somewhat arbitrary, appear to yield
human-like performance. Tee first time a production is created (by
designation, generalization, or discrimination) it is given a strength of
. 1. Should that production be recreated its strength is incremented by
.05. Furthermore, a production has its strength incremented by .025
every time it applies or a production consistent with it applies. (One
production is considered consistent with another if its condition is more
general and its action is identical.) Finally, whenever a production
receives negative feedback, its strength is reduced by a factor of 1/4.
Productions consistent with the misapplied production also have their
strength reduced by a factor of 1/4. Since a multiplicative adjustment
produces a greater change in strength than an additive adjustment, a
"punishment” is more effective than a "reinforcement”. Since
increments and decrements in strength propagate to more general
productions and since qgeneral productions can have a number of more
specific productions consistent with them, they tend to reflect quite
rapidly and sensitively the weight of experience.

Recall that a production's strength determines the probability that it
will apply. If s is the strength of a production and S the total strength
of all active productions, the probability of that production being
chosen on a cycle for application is 1-0 where o is a parameter
currently set at 15. If a production passes this probabilistic hurdle it is
placed on the APPLVUST. of course, if a production is not applied one
cycle and the circumstances do not change, it can apply on a later
cycle. Thus, strength affects both the Ilatency and reliability of
production application.

While selection rules based on strength can make some of the required
choices among competing productions, it is clear that strength cannot
be the sole criterion for conflict resolution. For example, people
reliably generate irregular plurals (e.g., mon) under circumstances in
which the "add s" rule for regular plurals is presumably also applicable.
This reliable performance is obtained despite the fact that the
productions responsible for generating regular plurals are applied much
more frequently than those for irregulars and therefore should bo much
stronger. ACT has a specificity ordering on its productions which
makes it possible to deal with exceptions to strong rules: If two
productions both have enough strength to be placed on the APPLVLIST
but the condition of one of them is a more specific version of the
condition of the other (i.e. satisfied in a subset of the situations that
satisfy the other), then the more specific production will apply and will
block out the more general production. This principle accounts for the
execution of a production generating an irregular plural since its
condition presumably contains all of the requirements for generating the
regular plural and must, in addition, make reference to the specific noun
to be pluralized. This special case principal can be traced back to
Waterman (1970) and variants of it can be found in many current
production systems (e.g. Rychener ft Newell, 1978).

The precedence of exceptions over much stronger general rules does
r>ot imply that exceptions always apply. In order to benefit from the
specificity-ordering principle exceptions must first have achieved the
amount of strength necessary to be placed on the APPLYLIST. This
property of the ACT model is consistent with the fact that words with
irregular inflections have high frequencies of occurrence.

Product ion strength is another important way in which ACT differs from
moat other computer-based learning systems (e.g., Anderson, 1978;
Vere, 1977; Hayes-Roth & McDermott, 1976; Sussman, 1975;



Winston, 1970; Waterman, 1970. The learning of all these systems
has an all-or-none character that ACT would share if creating new
productions were its only learning mechanism. The strength
mechanisms modulate the all-or-none character of production creation
enabling ACT to cope with the kind of world that people have to cope
with--a world where data is not perfectly reliable and contingencies
change in such a way that even being as cautious as possible it it
certain that occasional errors will be made.

Il Applications to Prototype Formation

There is a growing literature concerned with the process by which
humans form concepts by detecting regularities among stimuli (e.g.,
Franks & Bransford, 1971; Hayes-Roth & Hayes-Roth, 1977;
Newmann, 1974: Posner & Keole, 1970; Reed, 1972; Reitman &
Bower, 1973; Rosch 8. Menvis, 1975). This literature is often
referred to rs studying protrtype formation, but for various reasons
we also refer to it as studying schema abstraction.

In the remainder of this paper we describe how ACT's automatic
learning mechanism can be used to model schema abstraction. In
outline, this application is as follows: For each instance presented,
ACT designates a production that recognizes and/or categorizes that
instance alone. Generalizations occur through the comparison of pairs
of these productions. If feedback about the correctness of these
generalizations is provided then the discrimination process can be
evoked. Our working definition of a concept will be this set of
designations, generalizations, and discriminations.

Franks and Bransford: Illustration of Basic
Phenomena

We have already introduced (gure 1) the material used by Franks and
Bransford in one of their experiments on schema abstraction. Subjects
studied the 12 picture® in Figure 1 twice and then were transferred to
a recognition phase in which they rated test pictures according to
whether they had been studied or not. The test pictures could be
classified according to how many transformations separated them from
the central tendency of the study stimuli. There were test stimuli O,
1, 2, or 3 transformations from the study stimuli and some "non-cases"
which were still further removed. Some of the test figures were
actually studied and some were not. Franks and Bransford report that
confidence ratings forecognition generally decreased with the number
of transformations from the base and was lowest for the non-cases.

To simulate the Franks and Bransford experiment we ran ACT through
propositional encodings of the items in the study set twice, designating
a recognition production for each stimulus it saw. Then at test ACT
was again presented with a prepositional encoding of each stimulus and
the production which applied to this encoding (if any) was noted.
Sufficient generalization had occurred so that most of the stimuli were
recognized by at least one of the productions.

Since most experiments in this literature report data on subjects
confidence in their judgments, a critical question was how to map the
production selected onto a confidence rating. We assumed that ACT's
confidence would be a function of the number of consfants in the
stimulus (and therefore an inverse function of the number of
variables). This procedure for assigning confidence will be used
throughout this paper. This is a reasonable procedure tor assigning
confidence, since the more constants in the recognizing production the
closer it is to an encoding of an actual tost item. In the extreme, if
the stimulus is recognized by a production with no variables the subject
can be sure that the item was studied since a non-vahabilized
production is an encoding of a study dem.

To obtain predictions for this experiment we ran a series of ACT
simulations. Altogether we obtained fifty ratings for each test stimulus
and the data we report will be based on averages of these fifty
ratings.

O-transformation test stimuli were given a mean rating of 1.66 (i.e.
mean number of constants in matching productions)] the
one-transformation test stimuli were rated 1.24; the
two-transformation stimuli were rated 1.11; the three-transformation
stimuli were rated 1.13; and the non-cases were rated .65. This
corresponds to Franks and Bransford's report of an overall correlation
between closeness to base and rating. (They do not report the actual
ratings.) Neumann (1971) performed a replication of Franks and
Bransford and he did report mean ratings for each of the five
categories of test stimuli. The confidences assigned to the stimuli by
his subjects corresponds exactly in rank ordering to the results
obtained from ACT.

This experiment serves to illustrate that ACT can account for one of
the basic phenomena of schema abstraction -- namely that confidence
falls off with distance of the stimuli from the central tendency
(prototype) of the category. The generalizations ACT forms represent
what various stimuli will have in common. Therefore, there will be
more generalizations formed that match central stimuli than ones that
match peripheral stimuli. it /s this greater density of generalization
that give central stimuli this advantage.

Hayes-Roth and Hayes-Roth: Variation of
Instance Frequency

Hayes-Roth and Hayes-Roth (1977) report a study, one function of
which was to obtain data relevant to the issue of memory for
instances. They presented subjects with three-attribute descriptions
of more than one hundred people. One attribute was age and could
have values 30, 40. 50, and r>0. Another was education and could
have values junior high, high srhool, trade school, and college. The
third was marital status which could have values single, married,
divorced, and widowed. The descriptions also included proper names
and hobbies but this information was not critical. Thus, a subject might
hear the description "John Doe, 30 years old. Junior high education,
single, plays chess." Subjects' task was to learn to classify these
individuals as members of club 1, members of club 2, or neither club.

We will assume that for each individual encountered, subjects
designated a production mapping that individual's features into a
prediction about club membership. So, for instance, a subject might
form the following production:

If a person is forty years old

and ha has gone to high school
and ha it single
Then he is a member of club 1

Hayes-Roth and Hayes-Roth varied the freguency with which various
instances were studied. Some instances were presented 10 times
while others only once. A study trial consisted of first presenting the
subject with an instance, asking him to classify it, and then providing
feedback as to which club the instance came from. Some instances
received equivocal feedback in the sense that half the time the
feedback for those instances specified club 1 and half the time club 2.

After studying a set of stimuli, subjects were shown a critical test set
of 28 stimuli. Subjects were first asked to categorize each of the
stimuli and then they were asked to decide whether each of the stimuli
had been studied or not. The recognition judgment was assigned a
confidence from 1-5 as was the categorization Judgment.

This exporiment was simulated with the same parameter settings as
the Franks and Bransford experiment. The one significant difference
was that ACT was given feedback about the correctness of its
classifications. This meant that productions would not simply increase
in strength with every application, but rather would either increase or
decrease in strength depending on their success in classification.
Providing feedback also meant that it was possible for ACT to compare
variable-bindings on successful applications in order to proouce more
discriminating versions of its overgeneral productions.

As in the Franks and Bransford experiment, confidence was based on



the number of constants in tho production that recognized the stimulus.
In this experiment that number would vary from 1 to 3. A value of 0
was assigned if no production was evoked to categorize the stimulus.
The categorization scores for a test stimulus were calculated by
weighting negatively the confidences of incorrect -classifications,
weighting positively tho confidences of correct classifications, and
ignoring the confidences of classifications to the neither-club
category. Figure 2 presents the actual and predicted recognition and
classification confidences for the soven categories of test stimuli.
The confidence scale used by subjects and the match scale used by
ACT have been adjusted to cover approximately equal ranges. As can
be seen the ACT predictions closely correspond to the data obtained
by Hayes-Roth and Hayes-Roth.
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Figure 2, Comparison of ACT's predictions with
the results from Hayes-Roth and Hayes-Roth.

Class 1 in Figure 2 is formed from two prototypes which, in fact, were
never studied. However, they received the highest categorization
rating and a relatively high recognition rating indicating that subjects
havo extracted the central tendencies of the categories. Class 2
items, while not as similar to the prototypes as Class 3 items, had
categorization ratings second only to the prototypes themselves.
Since each item in Class 2 was studied ten limes while items in Class
3 were only studied once, it appears that frequency of exposure has
an effect on categorization that can compensate for lack of similarity
to the prototypes. A comparison of categorization ratings for Class 3
versus Class 4 holds frequency of exposure constant and the effect of
similarity to prototypes re-emerges: Class 3 is closer to the
prototypes and receives higher ratings.

Items in the last three classes were neutral with regard to category
membership so that correct categorization is undefined and only
recognition confidences can be reported. Whereas the data reviewed
earlier from Classes 1-4 showed that frequency of exposure affects
categorization ratings when we might have expected it only to affect
recognition ratings; the data from Classes 5-7 shows that similarity to
prototypes affects recognition when we might have expected it only
to affect categorization. Class 5 has the same exposure as Class 2 so
only its distance from the prototypes can explain its lower recognition
ratings. Similarly, no instances of either Class 6 or Class 7 was ever
studied by subjects, but Class C received higher recognition ratings and
this must be due to the fact that, although very far from the

prototypes. Class 6 is not as far from them as is Class 7.

In summary, this experiment serves to illustrate how ACT correctly
models the combined effects of frequency of exposure and closeness
to prototype. Stimuli that are frequently studied will have fairly strong
specific productions to recognize them. Stimuli which are close to the
prototype will have many generalizations that can recognize them.

Comparison of ACT with Other Prototype

Theories

There are three basic types of theories for prototype formation. One
type proposes that subjects form a single characterization of the
central tendency of the category. A frequent suggestion is that they
distinguish a particular instance (it need not be one they have actually
seen) as the prototype for the concept. Other instances are members
of the category to the extent that they are similar to this prototype.
This class of theories would include Franks and Bransford (1971),
Bransford and Franks (1977), Ro.sch and Mervis (1975), Posner and
Keele (1968), and Reed (1972). In order to account for the effects
of instance frequency demonstrated by Hayes-Roth and Hayes-Rotr
the prototypes would have to be augmented by some memory for the
individual instances studied. However, it is much more difficult for
prototype theories to accomodate the recent results of Medin and
Schaffer (1978) that indicate that subjects are sensitive to similarities
among individual instances. On the other hand ACT is able to simulate
this data (Anderson, Kbne, & Beasley, 1979b).

A second class of theories (e.g. Medin & Schaffer, 1978) are those
that propose subjects store individual instances only, and make their
category judgments on the basis of the similarity between the test
instance and the stored instances. In a certain sense, any results that
can be accounted for by a theory that says that subjects store
abstractions can also be accounted for by a theory that says subjects
only store instances. The instance theory could always be made to go
through a test process equivalent to calculating an abstraction from the
stored instances and making a judgment on the basis of the abstraction.
However, a difficulty for the instance theory is that subjects
frequently report having abstract characterizations or prototypes (e.g.,
Reed, 1972).

The third class of theories proposes that subjects store co-occurrence
information about feature combinations ACT »s an instance of such a
theory as are those proposed by Reitman and Bower (1973),
Hayes-Roth and Hayes-Roth (1977), and one aspect of Neumann's
(1974) model. These models can potentially store all subsets of
feature combinations. Thus, they store instances as a special case.
The Hayes-Roth and Hayes-Roth experiment showed this model has
advantages over many versions of the instance-only or prototype
models.

It is very difficult to find empirical predictions that distinguish ACT
from the various other feature-set theories. Perhaps it would be best
to regard them as equivalent given the current state of our knowledge
and simply conclude that subjects respond in terms of feature-sets.
However, there are a number of reasons for preferring ACT's version
of the feature-set theories. First, it is a fully specified process

model. It is often difficult to see in any detail how some of the
feature-set theories apply to particular paradigms or produce particular

results.

Second, ACT has a reasonably efficient way of storing feature-sets.
It only stores those subsets of properties and features that have
arisen because of generalization or discrimination rather than
attempting to store all possible subsets of features from all observed
instances. While there are empirical consequences of these different
ways of storing feature-sets, the differences are so subtle that
existing experiments havo failed to test them. However, if there is
very little difference in behavior, that would seem to be all the more
reason to prefer the more efficient storage requirements of ACT.



Third, it needs to be emphasized that the ACT learning mechanisms
were not fashioned to account for schema abstraction. Rather they
were designed in light of more general considerations about the nature
of the rules that need to be acquired And the information typically
available to acquisition mechanisms in real world situations. We were
particularly concerned that our mechanisms should be capable of
dealing with language acquisition and acquisition of rules for making
Inferences and predictions about one's environment. The mechanisms
were designed to both be robust (in being able to deal with many
different rules in many different situations) and to be efficient. Their
success in accounting for schema abstraction represents an
independent confirmation of the general learning theory.

Before concluding, we would like to discuss one characteristic of
feature-set models which may seem unappealing on first encounter.
This is the fact thnt they store so many different characterizations of
the category. ACT may not be so bad as some of the other theories,
yet having a set of productions for recognizing instances of a category
still seoms far less economical than having a single prototype.
However, two remarks need to be made here. The first remark is that
the complexity of the representation of a category depends on one's
production system implementation. This can be quite complex if each
production is represented separately. However, the representation
can be quite economical in a data-flow system like Forgy's (1977).
Here a single discrimination net is constructed to encode the conditions
of all productions. This allows overlapping productions to share the
same net tests in encoding their conditions.

A second remark is that natural categories defy economical
representation. This has been stressed in discussions of their family
resemblance structure by Wittgenstem (o.g. Wittgenstein, 1953) and
more recently by Rosch (c.g. Rosch 8. Mervis, 1975). The important
fact about many natural categories (e.g., games, dogs) is that there is
no set of features that define the category nor is there a prototypical
instance that functions as a standard to which all other category
members must be compared. On the other hand, these categories dc
not seem to be unstructured; they are not merely a list of instances. It
is interesting to note here that Dreyfus (1972) has claimed that
computer implementations are not capable of representing the family
resemblance structure of categories. ACT shows Just the opposite to

be true.
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The paper summarizes a system that understands, solves, and learns how to solve geometry
problems. The system is represented homogeneously as production rules of Labelled Production
System. A Dbrief introduction to the system architecture is given, followed by an example of how
the system works. Then the paper discusses briefly some theoretical problems focused upon in
design and implementation of the system.

1. INTRODUCTION is only for an experimental use, but all the
features described here are already implemented
Recent development of cognitive science has in it.
revealed that problem solving is a total activi-
ty of understanding, solving, and learning how 2. SYSTEM ARCHITECTURE
to solve problems, controlled on a unified know-
ledge base. This paper summarizes an effort The system comprises four components: the
toward building a system that encompasses such a Natural Language Understander, Problem Solver,
broad range of Kknowledge-based problem solving, Post-solution Analyzer, and factual knowledge
taking elementary geometry as a task domain. about geometry. Understander transforms a (Japa-
nese) problem sentence to a set of semantic
Our fundamental assumption is that Kknowledge primitives such as geometric objects and rela-
acquisition exerts a considerable influence on tions, and goals for the proof. Solver works on
problem-solving behavior. This leads to our this set toward solving the problem. It is able
emphasis on post-solution analysis for acquisi- to try drawing additional line segments by using
tion of new knowledge from the solution process. a partial-match algorithm and knowledge acquired
It also leads to a homogeneous representation of through solving similar problems. Analyzer
the system as production rules of Labelled undertakes Solver's output, and tries to create
Production System (LPS): knowledge acquisition possibly helpful productions. First Analyzer
on a well-structured knowledge base of geometry generates a hypothesis of a proposition. If the
requires a representation which has capability proposition was tested successfully by Solver,
to represent structured knowledge and high Analyzer adds it to the knowledge base. Inter-
learnability at the same time. Also we believe action of subgoal-oriented and pattern-directed
that all information necessary in solving a processes is realized by ACTIVATE as seen later.
given problem is not always available when the
problem was understood.  Some information might The above process proceeds by utilizing factual
be necessarily inferred through subgoals, or knowledge about geometry. All the four compo-
popped up by demon-like procedures during the nents of the system are represented homo-
solution process. So interaction of subgoal- geneously as production rules of LPS. LPS is, in
oriented and pattern-directed processing is one short, a production system in which knowledge
of our concerns in designing a knowledge-based elements are /labelled. Although global control
problem solver. of LPS is basically similar to 'recognize-act
cycle' type production systems [4], its labelled
The above assumptions and thus motivations make structure greatly facilitates dealing with
our system different from traditional geometry structured knowledge and reorganization of it.
theorem provers (e.g., [6]). Our main concern is For example, labels such as CAIEGORY and A-PART-
to theorize problem solving from a broader view- OF <can be wused for inference, similarly to
point. The current version of LPS is written in slot-names in frame systems [2]. Also we can use
INTERLISP, and running on DEC-20. The version labels for referring to a knowledge element in
another production directly without using work-
* Presently at SONY Corporation. ing memory (WM). See [1] for the details of LPS.
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3.KNOWLEDGE-BASED PROBLEM SOLVING: AN EXAMPLE

An example outlines the system's behavior most
explicitly. Fig.1 shows a simple geometry prob-
lem. First of all, Understander transforms the
sentence to a set of semantic primitives,
which are shown in Fig.2.

Problem: Senbunno chuutenwo toori, koreni
suichokuna chokusenjouno tenwa senbunno
ryoutankara toukyorini aru. (A point on
the line through the midpoint L
of a line segment and D
perpendicular to it is

equally distant from

the endpoints of the A B

line segment.) C
Fig. 1 Example problem.

((PGOAL(LEQUAL(LS D A)(LS D B)))(LS D A)(LS D B)

(EP A (LS A B)) (EP B (LS A B)) (PERP (LS A B)
(LS C D)) (ON (LS C D) (LINE L)) (LS C D) (ON D
(LINE D) (PT D) (PERP (LS A B) (LINE L)) (ON C

(LINE D) (LINE L) (ON C (LS A B)) (LEQUAL(LS A C)
(LSCB))(LSAC)(LSCB)(MP C (LS A B)) (PTC)

(PT A) (PT B) (LS A B) (READNIL) (READ-START))
Fig. 2 Understander's output
for the example problem. (For
simplicity, 'notation IS
slightly different from the
original output.)

Evoked by the goal (PGOAL(LEOUAL(LS D A)(LS D B)
)), meaning to prove equality of some quantity
(length here) of the same type of objects (line
segments here), Solver tries to ACTIVATE the
pattern (CONGRUENCE) to WM. ACTIVATE collects
productions related to (CONGRUENCE) by chaining
productions backwards, and executes production-
firing only on the collected subset of produc-
tions. One of collected productions, TRIANGLE,
pops up two new triangles, (TRIANGLE D A C) and
(TRIANGLE D B C). Then these triangles make the
production CONGRUENCE executed, and (CONGRUENCE)

deposited into WM. Note that the two triangles
did not exist in WM when Solver started to work
(Fig.2). They were necessarily recognized N
the ACTIVATE function mode. Solver needs to
recognize some more relations to attain the
goal. It is the end of the problem-solving
process when the geometric relation, (LEOUAL(LS
D A)(LS D B)), PGOAL's argument, is placed in WM

The current version of Analyzer intends to con-
struct new propositions from Solver's output Dby

means of three different ways. First, note that
Solver concludes not only the conclusion for the
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problem, but also other two relations generated
by a side-effect: (1) line segments DA and DB
have equal length, (2) angles ADC and CDB have
equal degrees, and (3) angles DAC and DBC have
equal degrees. So Analyzer builds three separate
productions, 'if conditions of the problem hold,
then (k) is true,' for k=I,2 and 3.

Productions generated In this manner can deal
only with problems that have essentially the
same conditions as the original problem. Ana-
lyzer's second way of knowledge acquisition is
to build a production: for a given problem X,
'if most of geometric objects, relations and
goals generated by Solver for solving the
example problem matched WM for the problem X,

then try to apply to solve X geometric concepts
and propositions used iIn solving the example
problem.’ 'Most of implies that, if this pro-
duction can be executed, X is similar to the
example problem if not totally the same. Hence
conditions of this production should match
partially.

Analyzer's last way of restructuring Solver's

output 1S to use task-dependent heuristics to
extract some small amount of mutually related
objects and relations, and construct a 'specu-

lative' hypothesis. Fig.3 shows an example of
such hypothesis. It needs to be tested by
Solver, which goes successfully in this case,
and the production in Fig.3 is registered as a
new production. Testing the hypothesis Dby

Solver, in this case, happens to involve drawing
an additional line segment. Analyzer searches
for a production already acquired and similar to
the hypothesis, and here draws the segment which
connects D with C, the midpoint of AB, in Fig.lIl.

Analyzer builds up several productions consecu-
tively in the above manners. It is the end of
the system's problem-solving process: after
Analyzer worked out, the system waits for
another problem, which is to be fed first to the
understander.

(G0900

#A0901 (PGOAL(LEQUAL(ANGLE $A0906 $A0909 $A0907)
(ANGLE $A0906 $A0907 $A0909)))
$A0907)
$A0909)

$A0907)

#A0902
#A0903
#A0904
#A0905

(LS $A0906
(LS $A0906
(LS $A0909
(LEQUAL(LS $A0906
(LS $A0906
(RESULT(LEQUAL(ANGLE
(ANGLE
(LEQUAL(ANGLE $A0906
(ANGLE $A0906
(TRIAL))

$A0909)

$A0907))

$A0906 $A0909 $A0907)
$A0906 $A0907 $A0909)))
$A0909 $A0907)

$A0907 $A0909))

ACT

CATEGORY
Fig. 3 A hypothesis produc-
tion created by Analyzer.



4. ISSUES IN KNOWLEDGEBASED PROBLEM SOLVING

4.1 Partial-match and drawing additional line
segments

Some work on geometry problem solving is con-
cerned with drawing additional line segments [13]
It is a tempting task for Al because it is a
good example of generating new appropriate
representations.

'Drawing additional line segments, » in our case,
IS a process of finding a once-solved similar
problem, and generating a set of new geometric
objects and relations that reduces the
difference of the once-solved and currently-
attacked problems. Selecting a similar problem
corresponds to deciding a best-match between the
current WM and condition sides of some learned
productions. We have tried to avoid the curse
of computational explosion inherent Iin partial-
match by introducing a few heuristics: only
geometric objects and relations are taken into
account, and an object which is A-PART-OF ano-
ther object is neglected. This kind of semantic
categorization and inference uses the labelled
structure of LPS, and saves a fair amount of
computation time.

4.2 Interaction of subgoal-oriented and pattern-
directed processing

Psychological research [5] tells us that elemen-
tary geometry problem solving involves organiza-
tion of subgoals. This basic problem-solving
structure Is represented In our system by the
function ACTIVATE. ACTIVATE tries to achieve a
specified subgoal by organizing related produc-
tions as exemplified in the last section.

ACTIVATE is a powerful function for our purpose
because knowledge of geometry is well-structured
enough to activate reasonable subsets of produc-
tions. However, popping up objects or relations
iIn a pattern-directed manner also plays a key
role in solving problems, as it might generate
useful but formerly unrecognized objects or
relations. But since bottom-up processing may
easily blow up computationally, efficient
embedding of some interactive structure of top-
down and bottom-up processes is highly desirable
In any knowledge-based problem solver. Using
ACTIVATE actions within pattern-evoked produc-

tions is a realization of this general framework.

4.3 Structuring new productions from solution
experience

To build a hypothesis production as shown In
Fig.3, Analyzer must select suitable elements in
WM for creating conditions and actions. The

mechanism for gathering them is analogous to the
heuristics incorporated in the algorithm for
drawing auxiliary line segments, but slightly
more complex. Analyzer picks up one geometric
relation arbitrarily, and makes it as the action
in the hypothesis. Then Analyzer collects
objects and relations related (in a certain
sense) to the action, and assumes them as
conditions. The mechanism makes use of LPS's
labelled structure.

Note that the example in Fig.3 is equivalent to:
the two base angles of an isosceles triangle is
congruent. The system succeeded Iin generating
the production in Fig.3 without solving this
problem. We believe that the effort of Analyzer
deverves doing, as this kind of self-organizing
performance is the heart of intelligent tasks.

5. CONCLUSION

We have chosen geometry as the task domain
mainly because it satisfies our general motiva-
tions stated in Section 1, and involves issues
described in Section 4. We believe that those
motivations and issues are general and central
iIn any knowledge-based problem solving task.
LPS IS a general-purpose representational
system, and our research presented here is a
working study toward a general theory of know-
ledge-based problem solving. Though some
detailed part of the used techniques are task-
specific, and we have yet little experience on
LPS in other domains, our work has achieved a
step toward a computational unification of
understanding, solving and learning within a
general framework of problem solving.
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In this paper we propose a new production system called
(IGPS) which represents situations which have interactions.
belled directed graphs and two sets of production rules which control
Then we show examples of IGPS:
for making clear structure and move of an IGPS.
IGPS interpreter must have some functions for efficient execution of
And for making productions efficiently, we need graph production editting system which
in graphical

of situations. First, IGPS is defined.
and monkey and banana problem,
of IGPS is discussed.
IGPS.
enables us to handle graph productions

1. INTRODUCTION

Eversince production systems (PS) were first
proposed by Post [7] as a general computational
mechanism, the methodology has heen a great
deal of development and has been applied to a
diverse collection of problems. A production
system may be viewed as consisting three compo-
nents: a set of rules, a data base, and an in-
terpreter for the rules. In the simplest de-
sign, a rule is an ordered pair of symbol
strings with a left and right hand sides, the
set of rules has a predetermind total ordering
and the data base is simply a collection of

symbols.

Throughout much of the work reported, there ap-
pear to be two major views of PSs, as charac-
terized on one hand by the psychological model-

ling efforts (PSG, PAS IlI, VIS, etc.)
on the other by the performance-oriented,

Kknowledge-based expert systems (e.g. MYCIN,
DENDRAL) [2, 3], For the psychological model-
ers, production rules offer a clear, formal,

and powerful way of expressing basic symbol
processing acts, which form the primitives of
information processing psychology. For the
designer of knowledge-based system, production
rules offer a representation of knowledge that
IS relatively easily accessed and modified,
making it quite useful for systems designed for
iIncremental apploaches to competence.

Now we have trend to apply PSs to more and more
complex problems. Those problems need more
complex knowledge-bases. For instance, the

[5, 6] and
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Interactive Graph Production System
An |IGPS is constructed by two la-
Interactions and changing
three coin problem
Next execution

forms.

DENDRAL system uses a literal pattern match,
but its patterns are graphs representing chemi-
cal classes. For expressing complex situa-
tions graphs are better than collections of
literals for human understandability. In many
cases graphs are used for describing situations,
and we see many usage of graphs for explana-
tions while collections of assertions are used
for an internal representation of a system.

So we want to construct a PS which treats not
symbol strings or collections of assertions,
but graphs.

In complex problems we find two situations in-
teracting each other. For instance, in a
problem solving for controlling a robot we find
a robot and its environment interacting each
other. We think that it Is better than a de-
scription by a single situation which repre-
sents the robot and its environments, to de-
scribe the world by the set of two sub-situa-
tions: one represents the robot and the other
does its environment; and changing of the world
by interactive changing of two sub-situations.
So we want to construct a PS which can express
systems that interact each other also.

In this paper we will propose a new graph pro-
duction system that has interactions called an
Interactive Graph Production System (IGPS).
An IGPS represents a situation by a set of two
labelled directed graphs and changing of situa-
tions by rewriting rules of graphs. So we will
construct an IGPS based on the graph grammar
system which iIs discussed in [1], In this pa-
per we will first describe definitions of an



|IGPS,
ing clear
moves, and then discuss execution of an

next show some examples of IGPSs for mak-
the method of descriptions and
IGPS.

2. INTERACTIVE GRAPH PRODUCTION SYSTEM

In this section we will describe definitions of
an |IGPS. An IGPS is constructed by two la-
belled directed graphs and two sets of produc-
tion rules which control interactions and chang-
ing of situations.

2.1 Situations of an IGPS

A situation of an IGPS

tuple,

IS represented by a

(Oo,
where oo and O; are sub-situations described by

labelled directed graphs. More formally, a
sub-situation 0. is represented by a 3-tuple,

( Ni, Ll y Ei)7

where N,- iIs a set of nodes, L; is a function:

/
N. -> a set of labels, and E. is a set of edges
i .

I
IS Iincluded into N. X N;

and
[Example 1] Here we show an example of a sub-
situation.
Let Ni = {1, 2, 3} ,
Li(l) = he ,
Li(Z) = {s |
Li(3) = diligent ,
and E. = { 1, 2, (2,3) } .

Then the sub-situation (Ni’ Li’ Ei) is the
graph: he 1s diligent
2.2 Structure of IGPS
An IGPS is a 7-tuple:
S =(C,V,R; iO ,P1, P1)7

labels of sub-situations, V

ranges are subsets

r
V -p» 2

and I4

where C is a set of
iIs a set of variables whose

of C, R is a function: which defines the

ranges of variables, tg are two finite

initial sub-situations whose sets of labels
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and P, and P, are sets of productions

are C,

which are applied to two sub-situations: Oy
and a , respectively.

describe elements of C by
letters and elements of V
letters.

In this paper we will
strings of lower case
by strings of upper case

2.3 Variables

An element of V is V. whose range is R(v) € C.

A variable V. can have a value of an element of
R(V,').

[Example 2] Here we show an example of a var-

lable.

Let ¢ = { station, school, boy, girl },
V. 2 PLACE ,

R(PLACE) m { station, school }.

Then the value of 'PLACE'
'school', but it can not be

and,

'station' or
‘girl’'.

can be
'boy' nor

2.A Productions

We describe a production of Py or P, by the form:

( G = G

2 30
labelled directed graph whose /N4/

1) G

where G, is a

IS a non-negative integer and the set of labels
is COW, G, is a labelled directed graph whose

IN2| is a natural number and the set of labels

s CUW, and Gj; labelled directed graph

labels is CUVU{null} and satisfies
listed below.

IS a

whose set of
the conditions

9 ) )

N3 Nz and E3 » bz .

and any n, € N3 : L3(n3) € V ;
there exists n2 or nl

n,. € N2 and Lz(nz) = L3(n3),

2

and/or "4 e N. and Ll(nl) = L3(n3).

1

At an application of a production each variable
has one value. When two l|abelled directed
graphs are compared, a variable V and a con-
stant ¢ are compatible if the value of v is c.

[Example 3] We show an example of a produc-
tion in Fig. 1. In this example C, V and R
of the IGPS are same as those in Example 2.



2.5 Effect of Application of Production

IGPS be (o

Then the production p.. may be

Let a situation of an ol), and let

0’

a production p..: be included in

P. (i=0, 1).

applied, if Condition 1 and 2 are satisfied.

[Condition 1] Let a be O, ., and let G be G,
1-I

IS satisfied.

then this condition

then Condition 1'
empty graph,

[Condition 1]
Let o=(N, L,

then there exists N'CN:
are compatible.

If G iIs an
IS satisfied.

E ),
(N', L, EnN'xN') and G

When Condition 1 is satisfied, the production
p.. can be applied if Condition 2 is satisfied.

[Condition 2)

by rewriting

L et Gz '

labels of G, which are elements of

be a graph which is made

iIn G, as the value of the variable.
and G be G,

V and used

Let o be o0, then Condition 1' is

satisfied.

and 2 s
then a sub-graph of O; matching G, is

If a production satisfying Condition 1
applied,

rewritten as G3. Here G3' is a graph made by

rewriting labels which are elements of V as the
value of the label.

In an IGPS, production has a structure described
in 2.4, therefore deletion of nodes or edges is
not avairable. But in an IGPS the special la-
bel 'null' expresses that the node will be not

rewritten nor referred. Hence an IGPS inter-

preter can delete a node whose label is 'null’

and edges which connect those nodes, there are

no defferences in moves of the I[GPS.

[Example 4]
and

We show an example of a production
its application in Fig, 2 In this example,

C = { monkey, at, placel, place2, box, move },

V = { PLACEX, PLACEY 1},

and R(PLACEX) = R(PLACEY) = { placel, place2 }.

0

1) of

When a situation of the IGPS is (Ug, 0

PLACE
” <

Fig. 1 An example of a production of IGPS.

(boy PLACE) boy PLACE => girl
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Fig. 2, if production-1 of Fig. 2 is an element
of Py of the IGPS, then in production-1 the val-
ue of PLACEX is palce2 and the value of PLACEY

Is placel, and the production can be applied to
08. If the production is applied to 08, then

a situation of the IGPS becomes to be (0(1), 0?)

of Fig. 2.

: monkey at placel

8 box at place?
— >

0

1

—_—>

: monkey  move place?

—— >
P (monkey move PLACEX) monkey at PLACEY
— —>>

=> monkey at PLACEX

[Production-1]

—>—>
oé : monkey at place2 Dbox at placel
———— > —>—>
Fig. 2 Example of a production and its appli-
cation.

2.6 Moves of an IGPS

IGPS
When a situation of an IGPS is (Og, 0(1)),

One move of an Is constructed by two sub-

MOVES.

one sub-move is an application of an element of

0 .
P, to Og» OT preservation o 0,17en no element

0 0

of Po can not be applied to 00 Let the result

0.
1

be (00, 0(1)). Next one sub-move is an applica-

tion of an element of P, to o , or preservation

ofo(l) 'e n no elements of P. can not be applied
0 1 1

to 01. Let the result be (00, 01).

3. SOME EXAMPLES OF IGPS

In this section we show some examples of IGPS
for making clear the structure of an IGPS and
the moves of an |IGPS.

3.1 Three Coin Problem

Here we show the three coin problem of Jackson

[4].

Given three coins
head, tail),

Problem:
e., head,

initially HHT (i.
In exactly three moves



make all coins show the same face. A move con-
sists of flipping a coin over.

We show below elements of an IGPS which de-
scribes the three coin problem and chunks of
knowledge for solving the problem.

C = { start, cont, flip, end, coinl, coin2,
coin3d, inc, countO, countl, count2,
count3, head, tail, op, counter } |,

V = { COINX, COINY, COINZ, CONT, COUNT,
COUNTALL, COUNTNEXT, STATE, STATEX,
STATEY 1}

R(COINX) = R(COINY) = R(COINZ)
= { coinl, coin2, coind } ,
R(CONT) = { cont, end },

R(STATE) = R(STATEX) = R(STATEY)
- { head, tail } ,

R(COUNTALL) = { countO, countl, count2, count3 } ,
R(COUNTNEXT) = { countl, count2, count3 } |,
R(COUNT) m { countO, countl }

o - start -p» cont ,

1, = inc -> countO -» countl coinl -> head
inc -» countl -» count?2 coin2 -» head
inc -» count2 -» count3 coind -> tail
head <- op -» tail counter -> countO

P, and P, are shown in Fig. 3 and Fig. A, re-

spectively.

COINX +~ STATE COINY -+ STATE, cont => flip -+ cont

( counter *+ COUNT ) +
COINX (1)
(COINX + STATE COINY -+ S'I‘ATE) cont => flip + end
COINZ counter -+ count? ¥
COINZ (II)
Fig. 3 P, of the IGPS which represents the

0
three coin problem.

flip->COINX COINX->STATEX STATEX<-o0op->STATEY
( ) counter-> COUNTALL

CONT inc +COUNTALL -> COUNTNEXT

=> COINX -» STATEY STATEX <- op -> STATEY
counters COUNTNEXT
inc -> COUNTALL -> COUNTNEXT

Fig. 4 P4 of the IGPS which represents the

three coin problem.

In this IGPS the sub-situation o{ which is ini-
tially i1 expresses a situation of coins, and
the sub-situation oy, which is initially iy ex-
presses a situation of a process of solving.

Productions of Py generate moves which fit in
the situation with referring a sub-situation O;

by getting knowledges of coins' situation and
how many times the move is with Gy . A produc-
tion of P; expresses the move which is gener-
ated by Po. In 04 "inc-> countO-» countl" ex-
presses the move of a counter. And

"head <-op->tail” expresses that 'head' and

'tail' are opposite faces of each other.

In Table 1, we show changes of a sub-situation
Oy of the IGPS. And in Table 2, changes of a

sub-situation 04 of the IGPS are shown. In

Table 2 we omit part of sub-situation O4 which
do not change for making short.

Table 1 Process of changing of og .

applied Oy which is the result of applica

production tion of the production
1 start + flip =+ cont
¥
coinl
1 start - flip -+ flip + cont
\ ¥
coinl coinl
I start + flip + flip - flip + end
+ ¥ ¥

coinl coinl coin3

Table 2 Process of changing of 0, -

value of 01 which is the result of applica-
'COINX' tion of the production

coinl coinl > tail coin2-+head coinld=+ tail
coinl coinl »head coin2-+head coin3-+ tail

coin3 coinl +head coin2-+ head coin3 -+ head

3.2 Monkey/banana Problem

The familiar monkey and banana problem is for-
mulated as an IGPS. In three coin problem,
IGPS always generates correct answers, but in
the present case |IGPS expresses a process of
monkey's trial and error process. Here, monkey



does not want to do a move which can not be car-

ried out. And if monkey can take banana, he

must take it. We show elements of the IGPS

below.

C = { mky, box, ban, placel, place2, place3,
at, over, on, has, move, push, climb,
take, start, cont, cont', end } |,

V - { PLACEX, PLACEY, DO, DOX } ,

R(PLACEX) - R(PLACEY)

={ placel, place2, place3 } |,

R(DO) - { climb, take, move, start } |,

R(DOX) = { push, move }

P, and P; of the IGPS are shown in Fig. 5 and

Fig. 6, respectively. The initial sub-situation

( ) cont => move -+ cont
v
PLACEY (1)
mky +~ at - PLACEX + over « ban cont > ¢limb -+ cont’
( 4 )
at « box (1)

(mky + at + PLACEX + at + box) cont => push » cont

4
PLACEY (1)
(mky + on + box + at * PLACEX + over <« ban)
cont' => take -+ cont' (V)
(mky + has + ban) cont' > end (V)
( ) DO->DOX-+DOX => DO"'/I‘IU-DOX
+ ¥ + \ (VL)
PLACEX PLACEY null PLACEY
Fig. 5 PO of the IGPS which represents the

monkey and banana problem.

move »* cont mky +at +» PLACEX => mky + null~> PLACEX

( +4 ) PLACEY ™ gt -+ PLACEY
PLACEY

push+cont mky +at +PLACEX « at + box

( + ) PLACEY

PLACEY

=> mky *null -+ PLACEX + null < box
¥ at - PLACEY + at ¥

mky box => mkv box+ on

~N~— T

(take + cont') mwky+on+box+at+PLACEX+over+ban

(climb #+ cont')

=> mkyzon—+box+at*PLACEX+overgban

> has/’

of the IGPS which represents the

Fig. 6 Pl

monkey and banana problem.
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ip 1s shown in Table 3, and 1/; is shownin Fig. 7

A process of monkey's trial and error are shown

in Table 3.
Table 3 Process of changing of 94
applied O, which is the result of applica-
production tion of the production
iO start -+ cont
I start =+ move -+ cont
¥
place3
1 start -+ move * move -+ cont
¥ +
placel place?
VI (1) start @+ null - move -+ cont
\ \
null place?2
m (1) start + move -+ push + cont
¥ \
place?2 placel
m (1) start -+ move -+ push -+ push -+ cont

\ \ \
place2 placel place3

_—

VI (1, T) start #+ move * null + push -+ cont
¥ \ \

place2 null place3

mky * at + placel box ~ at +»place2 ban*over+place3l

Fig. 7 The il of the monkey and banana problem.

4. EXECUTION OF IGPS

In this section we discuss execution of IGPS.
The core of execution of IGPS is an IGPS inter-
preter, which receives an IGPS and execute the
IGPS. And we need a production editting sys-
tem for easy description of productions. The
production editting system enables us to edit
productions on a graphic display unit and gen-
erate sets of productions.

4.1

IGPS Interpreter

We implement an IGPS interpreter which executes
an IGPS originally in accordance with the def-
initions of IGPS. But the IGPS interpreter
has some functions for making processing fast
and description of productions easy.



The IGPS interpreter has two modes except a
basic mode. In the basic mode the IGPS inter-
preter applies one production at one time ac-
cording to the definition of the IGPS. In ex-
panded mode 1. the IGPS interpreter tries to
apply productions which are permitted to apply
at one time. And in expanded mode 2, the IGPS
interpreter tries to apply all productions to
all sub-graphs at one time while productions
can be applied. In those expanded modes, the
number of derisions on whether a production may
be applied or not decreases, so processing time
at one application of a production decreases.

In the definition of IGPS we did not define how
to select a production, so we must now decide
how to select a production. In most of pro-
duction systems, for instance RPS [8], produc-
tions are ordered and the first production
which matches the data-base is applied. But
If we use rule-ordering for selection of a pro-
duction, we can not describe the monkey and ba-
nana problem as in 3.2. Therefore the IGPS
interpreter enables us to decide a selection
method of a production among three methods.

The first method is the conventional rule-or-
dering. The second one enables us to specify
a priority of productions at each move. And
the last one enables us to specify an algorithm
which decides a priority of productions at each
move.

4.2 Production Editting System

A production of IGPS is constructed by three
tuple of labelled directed graphs. For ed-
itting productions efficiently, we need some
functions, which enables us to define a set of
constant C, a set of variables V and a range
function R, and to input labelled directed
graphs, and to check Iinputted productions.
Input of labelled directed graphs can be done
by inputting a label of each node and a tuple
of a head and a tail of each edge using punched
cards, but we can not inspect graphs efficient-
ly using a list of a label of each node and a
list of a tuple of a head and a tail of each
edge. So the production editting system must
enable us to edit productions: three tuple of
labelled directed graphs, using graphical de-
scriprion. Therefore the production editting
system uses a graphic display unit for display
of productions. And the production editting
system enables us to edit productions interac-
tively.

5. CONCLUSION

In this paper, we have proposed a new produc-
tion system: I[IGPS. IGPS is a formal system
which expresses a structure and moves of a
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system which has interaction. And we have
shown examples of an IGPS for making clear de-
scriptive power and moves of IGPS.

In the field of artificial intelligence, we
treat a diverse collection of problems. Some
of them have Interaction in their situations.
For expressing these problems we need a produc-
tion system which can express interaction. Of
course conventional production systems can ex-
press a system which has interaction. But
simplicity, modularity and other favourable
PS's features are lost. IGPS can express a
system which has interaction while increasing
favourable PS's features. And further using
labelled directed graphs, IGPS can express very
complex situations.
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META-KNOWLEDGE AND COGNITION
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In Al knowledge representation schemes, structures that describe other structures are said to
represent "meta-knowledge,” or knowledge about other knowledge. After describing some studies
of human behavior that demonstrate people's ability to reason about what they know and about how

they reason, we review the use of explicit meta-knowledge in aeveral rescent Al systems.

The

concept of meta-level knowledge captures Intrinsic, commonplace properties of human cognition
that are central to an underatanding of knowledge and intelligence.

researchers have
knowledge

In the Ilast few years, several Al
proposed the use of "meta-level”
representation structures for a variety of tasks. In Al, the
phrase "meta-knowledge" generally refers to data-
structures In a knowledge representation scheme that
"represent” knowledge about other other data-structures,
as opposed to representing knowiege about "things In the
world." For example, a rule in the knowledge base of an
expert medical diagnosis system might be annotated with a
meta-level description of the rule's history (e.g., which
expert entered it or last modified it) or a description of its
relation to other rules in the database.

The use of meta-knowledge of this type in Al systems like
TEIRESIAS (Davis, 1076) is a key breakthrough In the
design of "knowledge-based" intelligent systems. Meta-
level knowledge has been used in these systems primarily
In the Implementation of “introspective” processes:
acquisition of new knowledge from human experts and
explanation of the system's reasoning to users. The
usefulness of meta-level descriptions for these and other
functions has prompted proposals for their Incorporation in
several new general-purpose representation schemes, like
KRL, as described below.

But there Is more to meta-knowledge than its typical
characterization in Al captures. In human experience,
meta-level knowledge and reasoning are an integral part of
common, everyday cognitive activity. For example,
consider the well-known "tip-of-the-tongue" phenomenon;

You run Into someone you have met once before, and
you can't remember his name. You remember very well
your first meeting at a New Year's Eve party In
Oakland, and that he is the brother-in-law of your
wife's boss. Then you remember that he has a
foreign-sounding name. It rhymes with spaghetti...

You could use all of this knowledge In trying to recollect
his name. You would certainly say that you "know his
name," even though you can't recall it: You "know that you
know It" — knowledge about what you know. It Is this
intuitive knowledge about what we know, and also about
how we use what we know, that is the most compelling
reason for viewing meta-knowledge as having a central
role In human cognition. After exploring some psychological
studies which indicate the nature and extent of the role of
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meta-knowedge in human memory, reasoning, and
understanding, we will examine tho recent use of explicit
representations of meta-knowledge In several recent Al
systems. We will argue, In conclusion, that the apparent
difference in character between human meta-cognltive
activity and the use of mets-level representations in Al Is
an important Indication of the difference between
"representation” and "knowiege" that should be explored

further.

Meta-knowledge in Human Cognition

The psychological studies reviewed here deal with human
memory, plausible reasoning, and cognitive development.
The conceptual framework offered by "meta-knowledge" is
essential to understanding these results: It will be argued
that much remembering and reasoning Is best described as
meta-level activity, that at the core of these mental
processes people use knowledge about their own cognitive
ability, style and experience, and about the extent, origin,
and certainty of their knowledge.

It Is Important to keep in mind that the cognitive behaviors
described here are not the results of trick questions or
contrived experimental situations. The phenomena that
are described are an Intrinsic part of human cognition, from
remembering to everyday inference making.

Meta-memory: Knowing What You Know

The experience of meta-knowledge by humans Is
addressed directly in a paper by Kolers and Palef (1076).
They point out that the "knowing not" phenomenon is a
very common characteristic of human cognition; this Is
simply where people often know rapidly and reliably that
they do not know something. Furthermore, these
researchers point out that this trait is not easily captured
by current "searching" models of memory.

Meta-knowledge and Inference

Allan Collins and his colleagues have for some time been
studying "reasoning from incomplete knowledge,” that Is,
what one can conclude from the fact that one doesn't
know something. Since the prerequisite to this kind of
reasoning is awareness of not knowing some fact, these
inferences relate directly to the "knowing not" studies,
and to meta-knowledge. For example, In the "lack of



knowledge" Inference, the fact that you would know some
fact if It were true, but you don't remember it, leads you to
believe that It Just isn't true. Gentner and Collins (1976)
suggest two factors used in making the lack-of-knowledge
iInference. First, one estimates the (relative) "importance”
of the fact; the more important It is, the more the fact that
you don't remember it implies that It "ain't so." Second,
one's own expertise in the topic area is estimated—the
more one knows about the area, the more likely not
remembering something implies it isn't true. Collins (1978)
stresses that much of human plausible reasoning Is based
on meta-level reasoning about what one knows, and what
one would know if some fact were true.

The Development of Meta-cognition

John Flavell has been studying for some time the way
children develop Increasingly accurate "feelings" about
their performance on cognitive tasks involving learning,
remembering, and understanding. In a recent paper, Flavell
(1979) discusses these results in terms of metacognitive
knowledge and metacognitive experience. Metacognitive
knowledge Is knowledge about people as cognitive
systems, about the cognitive tasks they face, and about
the strategies they employ to accomplish them.
Metacognitive experiences are the realizations about some
aspect of a cognitive enterprise, particularly how well it's
going. For example, a person may "feel" that he has
memorized a list completely, or that he doesn't understand
some Instructions.

The point of these studies for the current discussion Is
that they indicate that the knowledge we have about our
knowledge and memory Is not simply that we "know that
we know X" or that we "believe that adults know what
2+2 is." The meta-level knowledge that appears to be
useful to cognitive processes like learning, remembering
and understanding, or what Flavell (1979) calls generally
metacognition, covers the full range of "knowing" about
other knowledge.

The Phenomenology of Mete-knowledge

The psychological phenomena reviewed here lllustrate the
pervasive role of meta-level activity in human cognition.
The studies by Kolers and Palef deal with some
fundamental properties of human remembering, namely, that
one often seems to "know" rapidly and reliably that one
doesn't know something, without going through any sort of
"memory-scanning” process. In other words, people seem
to have "at their fingertips" an Idea of the extent of their
knowledge in somo kinds of tasks. Recent research on
memory has extended this notion, viewing recall as a
problem-solving activity that uses knowledge or
descriptions of memories just as other problem-solving
tasks use domain knowledge (see Williams, 1977, and
Norman and Bobrow, 1979).

Collins's studies indicate that this kind of meta-knowledge
may be an Integral part of much of people's everyday
reasoning. Flavell's work shows that meta-cognition
develops gradually in children and that certain meta-
cognitive tasks, like estimating how hard a problem will be
or knowing when one has understood directions, are
performed surprisingly poorly by young children. Once
again, what Is developing here is not the child's knowledge
of the world, but his understanding of what he knows and
doesn't know, and of his own cognitive performance. What
does It mean to "represent” this kind of knowledge?

The Representation of Mota-knowlodge

The Al systems reviewed below all allow the explicit
declaration of meta-level data-structures in their
representation schemes. In other words, the
representation formalisms allow encoding of data-
structures that "describe" other data-structures. The
Issues discussed here have come up in many, maybe all, Al
systems and are relevant to all representation schemes:
predicate calculus, production rules, conceptual
dependency nets, semantic nets, procedures, frames, etc.
The particular systems described here have attempted to
use explicitly represented meta-knowledge.

TEIRESIAS

The use of meta-knowledge evolved naturally in systems
developed In what might be called the "Transfer of
Expertise" paradigm (Barr, Bennett, and Ciancey, 1979).
Systems like DENDRAL and MYCIN perform a complex task
by using a database acquired from the human experts who
are good at the task. The need to give these systems
meta-knowledge, knowledge about their own structure and
about what they know, developed naturally as part of the
effort to endow them with some introspective capabilities, In
particular, facilities for automating the acquisition of new
knowledge from humans, for doing automatic bookkeeping
on the database, and for explaining the system's decisions
and reasoning strategies to humans. A prototype system
for Incorporating such capabilities into Al programs, called
TEIRESIAS, was designed by Randy Davis, and led him
directly to the development of techniques for the explicit
representation of meta-knowledge (see Davis, 1976, and
Davis & Buchanan, 1977).

TEIRESIAS's  various meta-knowledge representation
structures are all encoded and used differently within the
system, each having its own set of data structures and
Interpreting procedures. However, the important point Is
that all of these structures arose out of the effort to
Implement some new, introspective abilities in the system
which were needed to facilitate transfer of expertise
Interactions with humans.

KRL and KRS

The best known of the new frame-oriented representation
languages is KRL, being developed at Xerox PARC. The
explicit representation of meta-knowledge was already an
espoused feature of the first Implementation effort, KRL-0
(Bobrow and Winograd, 1977). Each slot of a unit, or
frame, could be tagged with certain features, selected from
a set of predefined meta-level characteristics, which were
used In Inheritance and matching.

Besides the feature tags, use of an entire description to
describe another description, i.e., as a meta-description,
was proposed in KRL-O, but was not thought out further
until work on the KRL-1 implementation. Recent work on
KRL has strongly Influenced a theory of the formal
semantics of representation languages proposed by Brian
Smith at MIT (B. Smith, 1976). Smith's formalism, called
KRS, Includes meta-level descriptions, called layers, as one
of Its basic characterizations of a representation. The
most Important aspect of Smith's model of meta-level
descriptions is that, unlike the ad hoc character of
TEIRESIAS's meta-level knowledge, KRS offers a unified
conception of the role of meta-level atructurea In which
the various layers share the same syntax end Interpreting
process.



FOL

Its  explicit reasoning

representation of its own
mechanisms makes the POL proof-checking system
(Weyhrauch, 1079) of Interest in this discussion: FOL
makes direct use of meta-knowledge in a first-order logic
representation scheme, based on the idea of simulation
structures which are used to establish the semantics of
expressions. The key Idea is that, since the FOL proof
checker Is itself a program, composed of data structures,
It Is the natural simulation structure to "attach" to a theory
of language/simulation-structure pairs, a theory of
reasoning. In such a theory one could reason about (prove
theorems about) any particular language/simulation-
structure pair by using general theorems about L/SS pairs,
meta-theorems. Although FOL is a very powerful proof-
constructing/checking system in its own right, it is uniquely
of Interest in this discussion because of the neat way that
meta-level reasoning fits into the formalism.

The State of the Art

Explicit declarations of the form of the system's
representation schemes were necessary In TEIRESIAS to
Implement "introspective" capabilities like explanation. The
form of the meta-level representations In TEIRESIAS was
ad hoc, but their use was clear. On the other hand, the
representation of meta-knowledge as feature tags in KRL-0
was more uniform, but the ideas about how to use this
knowledge were incomplete, involving rather vague ideas
of Inheritance and matching. Both KRS and FOL have
elegant ideas about how to represent meta-level
knowledge In their representation schemes, but have not
actually specified yet how this kind of knowledge is to be

used.

Meta-knowledge and Computation

The first observation that must be made is that there Is a
qualitative difference between human meta-cognitive
capabilities, like "knowing not," "meta-memory,” and the
"lack-of-knowledge Inference," and the current uses of
meta-level representational structures in Al systems. In
particular, viewing meta-knowledge as additional "facts" or
"rules"” which describe the object-level knowledge does not
completely capture its essential characteristics.

Typical (pre-meta-knowledge) Al programs can achieve
expert performance in their domain and yet be unable to
answer questions like "Why did you do this?" or "How do
you know that?"--questions that a human expert would
naturally be able to answer. It was an attempt to
implement these very abilities In TEIRESIAS that led Randy
Davis directly to the use of meta-knowledge. Humans
acquire, as a natural, integral part of their development
and training, knowledge about their own reasoning
processes as well as knowledge about what they know.
These psychological studies of meta-cognitive behavior
are Important because they deal with commonplace human
cognitive abilities, like "knowing not" and "meta-memory,"
that are Very difficult to understand In terms of "storage
and retrieval” models of memory (see Barr, 1077, and
Restle, 1974). This indicates that there are aspects of
"knowing" and "remembering" that have so far remained
unexplored in Al research--we have only begun to examine
the full fabric of behavior that is the reason we ascribe
knowledge and Intelligence to people.
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KNOMEDGE ENGINEERING IN NUCLEAR PHYSICS

David R. Barstow
Department of Computer Science
Yale University
P.O. Box 2158 Yale Station
New Haven, CT 06520

Gamwma ray activation spectra are wused by nuclear physicists to identify the elemental

composition of unknown substances. Neutron bombardment causes some of the atoms of

sample to change into unstable isotopes, which then decay, emitting gamma radiation at

characteristic energies and intensities. By identifying the unstable isotopes,

composition of the original substance can be determined. Since the performance of such
analysis relies on large amounts of various kinds of knowledge, the task seems appropriate
for the techniques of knowledge engineering. An experimental system, GAMMA has been

developed, based on the generate-and-test paradigm. GAMMA's performance has been
enough that it is currently in use by practicing nuclear physicists.

1. INTRODUCTION

Gamwma ray activation spectra are produced by applied. Some of this knowledge been
bombarding a sample with neutrons, thereby codified into a machine-usable data base, and an
producing unstable isotopes which begin to experimental program, called GAVIMA been
decay. While decaying, these isotopes emit implemented for using this data base within a
gamma rays at characteristic energies and generate-and-test paradigm. Preliminary results
intensities. By measuring the gamma rays with GAVMA have been good enough that even
emitted by the sample after bombardment, the experimental version has already been used for
unstable isotopes (and from these, the elements cross-checking analyses by several practicing
of the original sample) can be identified. Fig. nuclear physicists.

1 shows the spectrum produced after bombarding a

sample with neutrons. Some of the peaks are 2. KNOMEDGE BASE FOR GAVIMA RAY ANALYSIS

labeled by their energies. This Is considered

to be a high resolution spectrum, since the The process that produces gamma ray spectra can
energies can be identified quite accurately. be seen at six different levels as follows:

Fig. 1 also shows the isotopic interpretation

made by a nuclear physicist. The peaks are (1) elements in original sample

labeled by the isotope which emitted those gamma (2) isotopes in original sample

rays during decay. The elemental interpretation (3) isotopes after bombardment

attributes the Na-24 to sodium, the CI|-38 and (1) decays

S-37 to chlorine, the K-40 and Th to natural (5) emissions during decay

radiation, and the Ba-137 to an impurity. (6) detections during decay

The task of interpreting gamma ray activation The relationships between the Ilevels

spectra requires considerable knowledge about understood in terms of the different kinds of

nuclear physics, suggesting that the techniques knowledge that play a role. The relationship

of knowledge engineering may be usefu||y between levels (1) and (2) iInvolves the relative
concentrations of the naturally occurring

The work reported herein was accomplished by the isotopes of each element. The relationship

author while serving as a consultant to the between levels (2) and (3) Is more complex.

Computer Intelligence Program at Schlumberger- Under neutron bombardment, a given isotope

Doll Research Center. A detailed version of go through any of four basic transitions,

this paper is available from: Dr. W. Frawley, the  frequency  with  which  the  different

Schlumberger-Doll Research Center, OIld Quarry transitions may occur depends on the particular

Road, Ridgefield, CT 06877. isotopes involved, on the device used to produce
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the neutrons,and on the length of time during all subgoals, because rejection of one subgoal
which the sample is exposed to neutrons. The makes the others irrelevant. In addition, the
principal factors relating levels (3) and (4) list of elements would only be implicit in the
are the half lives of the unstable isotopes and list of rules relating levels (1) and (2). In a
the time during which the detector is exposed to forward-chaining (or data-driven) paradigm, one
the sample after bombardment. The relationship could work wupwards from the spectral peaks at
between levels (4) and (5) is relatively simple: evel (6) to level (1), using data  (or
every unstable isotope has a characteristic set nypotheses) at each level as -evidence for
of gamma  rays (with relative intensities) nypotheses at the next. Finally, one could
emitted during decay. The relationship between imagine some kind of mixed-chaining, using
levels (5) and (6) depends on the detector: any individual peaks in the spectrum to suggest
given detector will detect some fraction of the candidates to be evaluated further. (This is
emitted gamma rays. This detector efficiency roughly  the  strategy  used by nuclear
may depend on the energy of the gamma rays. A physicists.) We plan eventually to experiment
second factor, the presence of escape peaks with all of these paradigms.
(e.g., those labeled Na-24' and Na-24" in Fig.
1), also depends on the energy of the main peak. 4, GAMMA
Much of the knowledge discussed in this section Our first experimental system, GAMMA, uses the

N the form
we have converted the
Into a machine-usable

Is available to nuclear physicists
of books and articles;
data from one of these [1]
LISP data base.

3. PARADIGMS FOR KNOWLEDGE ENGINEERING

Based on the discussion of the preceding
section, several implementation paradigms can be
imagined. Generate-and-test could be based on a
list of elements. For each element, one could
progress from level (1) to level (6), predicting
each level from the previous one. The predicted
level (6) peaks could then be matched against
the peaks of the spectrum to accept or reject
the original element. Backward-chaining would
iInvolve progressing through the levels in the
same order, but In some cases it might be
unnecessary to go all the way to level (6) for
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generate-and-test paradigm. GAMMA has routines
to predict from hypotheses at one level to
hypotheses at the next level. Chaining together
predictions from a single element at level (1)
to level (6) gives a predicted pattern of peaks,
which can then be matched against the peaks of
the spectrum to determine whether or not the
element was present In the original sample.
(Note that this technique only works when the
hypotheses (i.e., elements) at the top level can

be considered relatively independently.)

Prediction from level
simple, since the
naturally-occurring

(1) to level (2) is quite
relative abundances of the
iIsotopes of an element are
stored in GAMMAS data base. Prediction from
level (2) to leve (4) is collapsed into one
step, from isotopes in the sample to decays of
unstable isotopes after neutron bombardment. We






