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MilBASI

Ma consider the problem of answering part-of
questions and questions about overlap in partitioning
structures. which is of importance in systems
knowledgeable about parts relationships, set inclusion
relationships or taxonomies of types in an earlier paper
1t was noted that the problem of extracting information
from arbitrary sets of partitioning assertions
("P-graphs") Is intractable (at least if P = NP) and the
more restrictive class of quasi-hierarchical closed
P-graphs  was introduced as a fairly flexible
representation of partitioning structures permitting
efficient information extraction. The present paper
introduces the larger class of semi-closed P-graphs. and
provides efficient and complete methods for answering

part-of and disjointness questions based on such P-graphs

I INTRODUCTION

Consider the relative ease with which people can
solve "problems" such as

(1
(2)

In comparison with a problem such as the following:

(3)

Does a dog have a spine?
Is sulphur a precious metal?

The members of a certain group of people have the
following properties If any one member of the
group envies another member, and that other member
envies a third, then the first also envies the

third; and 1f any two members of the group envy the
same person then they love each other At, Bill.
Cecil and DId1 are members of the group, end A)

Cecil envies Bill, and Oidi envies

love AI?

envies B111.
Cecil. Doee DIdi

(1) and (2) can be solved "without thinking", but (3)
requires some deliberate thought. (Of course some mental
effort is required merely to understand the problem, but
some additional effort is required to solve It). Vet from
a logical point of view (1)-(3) are very much the same
kinds of problems, namely problems of inferring inclusion
or dlsjomtness relationships in taxonomlc structures, and
(2) probably requires as many inference steps as (3) Note
that it would be implausible to suppose that people recall
that sulphur 1s not a precious metal as an explicitly
known fact, rather than an inference

This suggests that (1) and (2) are solved by very
efficient special-purpose methods that exploit the
structure of taxonomies, while (3) 1s solved by more
laborious general methods. Which type of method 1s used 1s
a matter of familiarity: if we have reflected on the
relationships between Al. Bill. Cecil and Old! - or a much
larger group - at length, and the relationships can be
viewed taxonomically. we will eventually assimilate the
taxonomy in the same way we have assimilated the
taxonomies of animal parts, or the taxonomies of
substances.

Even If these comments are psychologically
incorrect,- they serve to make a practical point concerning
A.l systems: if such systems are to use taxonomlc
knowledge with the same ease as humans, they will have to
be equipped with special-purpose inference mechanisms for
doing so instead of relying on general problem-solving

* This work was supported by NSERC operating grant AS818
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strategies such as recursive problem reduction, we see
this as an important challenge in A.l,, given the ubiquity
of parts hierarchies and concept hierarchies in virtually
all fields of knowledge

Of course, a great many past and present A,l.
systems have made allowance for hierarchies of various
kinds For example. Raphael's SIB[1] effectively exploited
the translvity of part-of relationships and QuillMan's
Semantic Memory(2) organized concepts as "subset-superset"
taxonomies; (neither. Incidentally, paid much attention to
possible exclusion relationships among subparts or
subconcepts) More recently Philip Hayes(3] has developed
network structures and techniques for using knowledge
about part-of relationships, and Fahlman(4] has made
proposals for reasoning about "tangled" overlapping
concept hierarchies in his NETL system

A shortcoming of much of this work has been the
lack of any attempt to analyse the adequacy of the
proposed methods. What types of questions can they answer?
Are the answers they derive reliably correct? To what
classes of hierarchies or "tangled" hierarchies do they
apply? Will an answer be derived within a reasonable
length of time?

In an attempt to remedy this shortcoming.
Schubert(5,6] studied sets of partitioning assertions of
the form [a P af ..an], meaning that object a 1s
partitioned into disjoint parts a1. ..,an, with P defined
in terms of a part-of relation "c, Such sets of
assertions correspond to arbitrarily "tangled"
hierarchies. One of the first findings was that in this
general case even the simplest questions, such as
?[a part-of b] can be forbiddingly difficult to answer
(co-NP complete). This 1s surprising 1f one is inclined to
believe in the generality and efficiency of
"label-propagation” methods. The next step was to define a
class of P-graphs (where a P-graph is essentially a set of
partitioning assertions) which avoids the intractability
of unrestricted P-graphs. yet permits
"tangled hierarchies" of sufficiently general kinds to be
useful in practical Inference problems. To this end a
closed P-graph was defined, roughly as a set of
P-assertions which (directly or indirectly) decompose all
parts mentioned into a subset of a fixed set of ultimate
parts Graphically, closed P-graphs have the appearance of
overlapping partitioning hierarchies 1n which all downward
paths terminate at the leaves of some common "main"
hierarchy whose root represents the merge of all parts
mentioned Examples given in [6J illustrate how closed
P-graphs can represent overlap parts and "multiple views"
of the same object. They can. of course, also represent
partitionings based on relations other than the part-of
relation, as long as these relations satisfy the assumed
properties of "part-of" (as mentioned later, they must
induce boolean lattices). This includes the subset-of
relation and the subconcept-of (IS-A) relation commonly

used in taxonomies of types
While allowing some tangling of hierarchies, closed
P-graphs still admit very efficient (linear or sub11near)

inference methods for questions of type ?(a part-of b) or
?(a disjoint-from b). as outlined in (5]. Moreover, these
methods are provably complete This partially solves the
problem originally addressed.

1s twofold. The

The purpose of the present paper
foundations

first objective is to shore up the theoretical



of the earlier work by supplying axioms for the part-of
relation.* stating soma immediate consequences and
carefully defining various kinds of P-graphs and relevant
notions. This is the subject of sections 2 and 3. Later
(in section 6) we also Illustrate the model -theoretic
techniques which provide a basis for proving inference
algorithms for P-graphs correct and complete

The second objective is to liberalize the notion of
a closed P-graph so as to provide a more flexible
representation for parts structures without sacrificing
inference efficiency. It was noted m (S) (and proved tn
[6]) that an arbitrary P-graph can in principle be
converted to a logically equivalent closed P-graph.
However, the equivalent closed graph may be much larger
than the original open graph.

Consider the following situation. Suppose that a
person (or computer) knows who the faculty members
a' ,a?5 of certain computer science department C are,
and also knows that the department divides
organizationally into a chairman cf. an advisory committee
c2, a library committee ¢3. a colloquium committee c-?, and
graduate and undergraduate committees, ¢5 and c6.
He/shel/it doesn't know the current chairman or
constitution of the committees (perhaps after being out of
touch for a year). This information, in the form of a
P-graph, is shown in Fig. 1. <« Note that not all paths 1n
this graph terminate at the leaves of a common main
hierarchy (though all terminate at the leaves of one of
the two main hierarchies), so that the graph is open.
Conversion of the graph to a dosed graph would Introduce
90 new parts in addition to the 22 already present! (We
are Ignoring constraints such as that cf. the chairman,
must equal one of af,...,af5 and that each ci must consist
of a subset of the af, for simplicity). This 1s because

7 \
If4/. ..\:15 /ll\

Fig.1' A aimple non-closed P-graph

"artificial"

conversion to a closed graph produces an ": "
in the original

integration of the alternative viewpoints
graph. Introducing nodes for all the ways in which parts
in ona view may overlap with parts 1n the other Tha
question-answering algorithms rely on the presence of
these overlap nodes Vet it 1s obvious that part-of
questions and dlsjolntness questions can be answered very
easily for the original graph; everything 1s part of C,
and wlthin each of the two part 11ionmgs all distinct
parts are disjoint while for parts ai. cj. taken from both
partitlonings. the correct answer to ?(a/ part-of cjj or
?ta/ dlsjolnt-from c¢)) Is "unknown". A reduction to closed
graphs would only obscure the logic of the requisite
reasoning process.

A similar example would be provided by a partly
functional and partly anatomic representation of brain
structure m which the postulated functional subsystems
(say, perceptual subsystems, motor control subsystems,
short term and long term memory, language understanding
subsystems, etc.) cannot be reliably identified with
particular anatomic structures. A computer encoding of
such Incomplete knowledge should not require introduction
of identifiers and partitioning assertions for all
possible overlap parts corresponding to the two views.
Examples of this type, Involving poorly integrated
alternative views of some physical, political, or abstract
entity are easily constructed, and could easily arise In
an Al system, particularly one which 1s fed its knowledge
piecemeal.

This motivates the Introduction of recursively
defined semi-closed P-graphs m section 4. A semi-closed

P-graph is either a closed P-Qr»ph, or a semi-closed
P-graph with another semi-closed P-graph attached to it by
one of Its main roots. Clearly the P-graph of fig. 1 1s a

* We take this opportunity to correct mn error In (3): In
the first sentence of Sec. the assumption that part-of
has the extension property should be replaced by the
asaumptlon that the merge and overlap functions "U* and
are mutually distributive (see below).

*« For the purposes of this Illustration, we
be interpreted as the (disconnected) physical
composed of the department members, not as a set.
ef and ci are parts of C. not elements or subsets.

intend C to
whole
Thus the
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it consists of the closed

semi-closed P-graph, since
its main root C

committee-structure subgraph attached by
to the closed faculty-roster subgraph

In Sec. 5 efficient complete algorithms for
answering part-of and disjomtness questions on the basts
of semi-closed P-graphs are developed. We feel that the
class of semi-closed P-graphs is probably as large a class
of P-graphs as 1s needed for most practical applications
to taxonomlc structures, and as can be easily mechanized,
as far as answering part-of and disjomtness questions 1s
concerned.

II THE PART-OF RELATION, PARTITIONINGE AND P-GRAPHS

The part-of relation, K, that the gQiven sethods
raly upon Is assumed to have the folilowing properties (6]

1) ‘E* {a a partial) ordering:
{Wu ) wex]
(vay)[[[xOy)b[yCx]]}=a[x=y]]

(veyz) [ [[xSy)&iycz])va(nec2])

[N Extatence of a untque empty object & such that
(vu)[Oex}]

[111) Existence of an 'overlap’ function N guch that
tyxyz)[[z6(fxy)]ce>{[ren]b(zoy]]]

(tv) Extatance of 8 'merpge’ function U such that
(vxyzH [{Unyiczl<=a{[uez]8[yvEx]]]

(v} Exigtance of a ‘remainger’ function \ such that
(vayz)[lza(\xy) J2=s[ [xuiuz(Nxy)) &L (Nyz)=0]]]

(vl) Mutual gistributiyity of N and U:

(¥xyz)(Mx{Vyz) b= ((U(Pxy){Mxz)) ]}
(wayz ) { T {Myzhyu{ (M Uny){Unz)]]

It is shown tn [6] that the assumed properttes of
the part-of relstion induce a boolesan lattice on the set
{n|x2w) ror sny w. The following are some consequences of
this that are used throughout the proofs. From now on
orackats ars omitied whers no sebiguity Ari1ees.

ta) (vuy ) [ {Unyndyx] & [Pxysnyx]]

tb) (wxy)[aEy<e>fAxysn & Uxyry]}

ie) (wxeyz)[y=fxz <a>[{Uyi\nz})ox & (My{\xz))=8])
{a}) (Vx)[MxBe0 & UxB=x]

iw} (Way ) IUn{Axy)h=n & (Me{Uxy))=x]

(r The functions N and U are asscciative,

fand U will be infarpally UBed AN many-place

For bravtty.
from (wil, this reasults (N NO ambiguity.

functions since,

Partitionings ars defined in terms of the part-of
relation; i1ntuitively, & partitioning aswertion anumerates
a set of disjoint parts of the object that it pertaine to.

Ff‘l‘li“on‘. A partitioning assgrtion is of the farm
® Pm gyl

ym]l, me2, where =, v ym can te constsnts or
varigbles of the ocoject tangusge and Pm is the m*l place
predicate sysbol sef ineq by:

¥y} x P2 y 2]<u>{xslyz & @uhyz}]
and far all m2d:

ym) ev>

(wyt. . ym)[[x Pm yr .
.ym] B Pyiy2e8]]

{ix Pm-1 (Wyty2) vd, .



Thus, by gefinition, end (1) above. the order of
the y's is {meaterial. "P* wit] be used for "P2+
Fartitioning assertiions sre the bullding unita of
P-grapha .

PRfinttion: A P-graph 19 & finite non-empty set of
partitioning awsertions of tha form (2 P ¥ Z...] together
with non-emptiness ssaertions of the form [Red] over
constants of the object language. The distinct constants X
Y, 2 of a P-graph will be rafarrec to as the “nodes* of the
P-graph,

The reader’'s attantion ig drawn to the fact that
digtinct obiect language constants correspond to digtinct
nooes by definition. Conssquantly & Statement such as a*h
can only expresy that s sand © denote the seme gbiget, hot
that & and b are the sam . Howsver, & matalinguistic
siatament such as *N=y*, wharse ¥ and ¥ stand for
metalanguapgs variables ranging over the nodes of & P-graph
18 takan to mean that x and ¥ denots the Same nNode .
Gengrally sratesents of the obrject language sssert facta
Such as "a s part of b and $0 on, while those of the
metulanguape are about relations betwesn nodes of P-graphs
ch as the descendant relstion oefired balow. Boldfece
symools will be used In the metalanguage i Ooroer to
trans thiv digptinctton,

It 10 assumed throughout this paper that the
asgartiony wnich make up a P-graph stong with the part-of
axtome are consinteant. [t shoulo be noted, however, that a
Pograph QG along with the part-of axions and the usus!
rules of tnference of firut order logic in general amounts
1m0 ar 4 laty thwory of the objacts of the greph; f.e. .
not every well formsd formute w butit up from constants
that are nodes of G, B, predicats symbols C, Pm, =,
function aymbols N1, U, \ snd the logical connectives Is
sither provable {G = w»l or disprovapis (G }— -wi [0]

An an sxampla consiger the case whers all that 1a
known 8 that "b 19 part of a" and "c is part of a*; from
thip 1t i1s clearily undecicabie whethar or Not b and ¢ ars
disjoint. Although this iu Intuitively cbyvious in such
Himple canam. tn geangrat, showing that soms Quastton
cannot be angwered from the inforsation svailabie reouires
o format argueent. Typically. showing that & particular
statemant cannot be proved, given the (nforsstton
svailable from the P-graph, will constst of sehibiting a
mode! of tha graph in which the statement s in fact
featse, aince, by soundness of the rules of inference, &
statemant can be derived from & consistent set of
sentencas {1 s .8 theoryl only 17 1t 18 true in &l
of the theory.

moce | n

111 HIERARCHIGE AND CLOBEQ E-QRAPHE

Simply stated, & cescencant of a node "a" of &
P-grapn iy any node from which there I8 &N upward path in
tha graph that leady to "a”. Simllgriy, a hisrarchy ia &
F-graph that taues the form of a trew with no more than
one P-aswertion spbout esch rode: a clowed graph is one in
which a1t nodan are ultimately partitiorned (nto & et oOf
disjoint "lsaves".

Thase notions are sade forsal in the following
Sefinitions:

finition: The geicengant relstion « batween the nodes x,
snd X ©of & P-graph G in oefined by
1) wx for al] nodes % of G

1) 1f wiy and Z 8 & Olrect descendant of K than Iy

We say that x 18 = girget geecengant of ¥ +f thare
in an asgertion in G of the form:
[y Pk M Z1...Zh-1) for some k. (Of course. X mead not ba
the firat srgument following Pk).

The r rulation s the inveras of the
dascendant relstion.

Qefinition: & 1gaf is & node that has no deascendants other
than itaalf.

mu_q!: A rggt 1S 8 node that Pas no BRCeRtors other
than tteeir,

finigd A P-graph Q@ is 1ig ¥ angd only +f for any
two Nodes X and ¥ of G, 1f Ny and YEX. then x=y.

T graghs that will be consicersd hare are
acycllc. Note that all the nodes thet Make Up & cyele 1h &
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P-graph are forced to be igeantical 1n denotation, 1.8,
the gbjact language formula xry can be dertved fOr any two
nooes X, ¥y from the assartions of the P-graph and the
part-of axioms.* Thus cycles sre sanily atiminatad by
collapsing the cyclic noges.

Graphs 1in which some node i3 provably smpty ars of
retattvely 1ittle practical A.1 tnterest, since thay do
not reflect the kinds of knowledges typically employed in
"comman Ssae” infersnces. For sxample, people prasumsbly
do not usualty hold belisfs about humen anatomy {(or about
tha anatomy of & bicycle, organiation, or computar
program} which logically reguire some of the parts sbout
which the beliefy are haig to be smpiy.

Pefinition. & P-graph {s fuliy-consigignt 11f none of its
Modes AR Be proven to be emptly.

Datinition: & Sippie graph 1w an acyclic P-greph with a
untque root and at wost one partitioning assertion about
«ach non-1eaf node.

Qefinition: A path is a wet of nodes of & P-graph orderad
by tre direct dascengant relation,

Pefinition: & higrarchy is s simple P-graph in which there
inm at most Oore path batwean any two nodes.

Exanplaw of siaple grapns and hisrarchiss ars shown
in Fig. 2. Hierarchiss are the moyt desiratis form of
P-graph, bescause parte-reasoning for hierarchias is
trivial: in & hiararchy Xcy Is provables for any two nodas
®, y if and only {f wRy. Further, fixy=8 |a provable {f and
only it thare 13 no path connecting X and ¥, and xX»y iy
provable if gnd only if x=y { . a., &1} the nodes represent
possibly distingt objects. It can also be shown that
hisrarchiss are fully consistent and that any fully
congintent wimple graph s a hierarchy [7].

i N

IO TR
AANEA KA
YA o
AV

(a)

-0

AN,
)0/\0 PAWAY
{c

fig. 2 General P-graphs and higrarchiss. (a),.(o) are
simpie; (b) ta & hisrarchy But (a) 1§ not sInce there ars
two pathe Detwsen "a" and "B, (¢} 1s nOt nimple, Bince
thars sre two aasertions sbout "n*.

Untortunately, hisrarchies can only reprasant some
very rgstricted kinds of irformation sbout pariE. Usually,
parts knowladge about the world takes the form of “tengisd
higrarchins ' . Reasoning about srbitrary P-graphs 18 known
to be co-NP-complete, This problem 18 desit with tn (5] by

reducing arbitrary F-graphs o cloe P-prapha: G is
closed if? any two of (ts nodes are projectibls into a
common subhisrarchy. & node n 1 tiplg into a

subhigrarchy H 17 G gontains s subhisrarchy rooted at n
whose tesveRr 118 in H. In theory, & single parts node will
e regarced a9 & Bubhilararchy, although, atrictly
speaking. 1t cannot Stand on ite own &% a P-graph,
according to the definttton. Thus any noge 8 trivially
projectibie into any subhierarchy to which 1t belongs.
Hancae &ny two nodes of & wubhigrarchy H sre projsctible
into & common subhierarchy, vit.. H.
* Formulas Involiving object language and metalsnguape
symbols are interprated as object language formulay
{aymoo) sequencen), t.&. . the object language symbols are
" rather than Thus mey {unlike =8y} denotes
sn opjact 'anguege formuis, rather than a propolition.



The Projection of a node n into the leaves of a
closed P-graph Q is the largest subset L of the leaves of
G that are also leaves of a subhlerarchy rooted at n.

It is shown in (6) that for every P-graph there 1s
an equivalent closed P-graph. Inference methods are given
to answer the questions ?[b part-of a) and
?(a dlsjolnt-from b) for fully consistent closed P-graphs.
1n linear space-time relative to the number of edges of
the closed graph.

It 1s proved 1n [6] that all the leaves of a fully
consistent, closed P-graph belong to a single (not
necessarily unique) main hierarchy whose root represents
the whole entity. Such a root will be called a main root
of the closed p-graph.

1v $IMI-CLOSKD P-QRARS

Semi-closed P-graphs relax soma of the restrictions
of dos«d P-graphs, thus forming a larger class. The tacit

re_sériction to fully consistent graphs should be kept 1n

mind.

Def mitlon A semi-closed P-graph is:

(1) a closed P-graph, or

(1) a semi-closed P-graph that has a semi-closed
P-graph attached by a main root to one of its
nodes. (It is easy to see that a sent1-closed
P-graph, like a closed P-graph. must have at least

one main root),

As semi-closed P-graphs are defined in terms of
closed P-graphs, the inference methods presented here rely
on those developed for closed P-graphs (5]

The design of the following algorithms is based on
the observation that semi-closed P-graphs can be viewed as
trees of closed P-graphs; each vertex represents a closed
subgraph and each edge a common node of the two P-graphs
(parent and child subgraphs) that it connects. Since the
closed subgraphs can have at most one node in common, this
will be a tree. Examples of corresponding trees for
P-graphs are given in figure 3(c).(d) and (e).

Note that edges out of distinct vertices correspond
to distinct nodes in the P-graph while edges out of the
same vertex may represent the same node

For any given semi-closed P-graph, it is possible
to attach labels to the nodes which indicate the position
in the corresponding tree of closed P-graphs

Implementation details are of no concern at the moment; we
assume semi-closed P-graphs to be searched by the
algorithms of Sec. 5 have been preprocessed, with labels

Indicate their position
Thus, for
it will be

being attached to all nodes which
1n the corresponding tree of closed P-graphs.
any pair of nodes of a semi-closed P-graph.
possible to arrive at a pair of "ancestor- nodes which
both belong to the same closed subgraph tree vertex. Note
that one (or even both) of the "ancestors" sought may be
the same as the corresponding initial node.

In figure 3(b).
corresponding pair 1s r'
corresponding pair (s r'

for example, for r and q the
and q', while for r and s the
and s.

We have put "ancestors" in quotes above. since we
are dealing with an ancestor (descendant) relation which
Is somewhat more general than that formally defined

earlier r' is an "ancestor" of r If and only if r<r' or r
1s projectible Into a set of nodes n», ...nk such that for
all 1, 1<1<k either ni<r' or r' 1s an "ancestor" of n»

(see Fig 4)
v ALGORLTHMS FOR EXTHACTING INFOAMATION FROM JCM]-CLOMED
P-QRAPHS

Algorithms for answering the questions
?[x part-of yj and ?(x disjolnt-from y] in fully
consistent closed P-graphs have been developed in [5] and
are incorporated in the methods given below. So. for any
two nodes x.y of a fully consistent closed P-graph G,
assume there are algorithms P(x.y) and D(x.y) that will
return "yes", "no" or "unknown" to the respective
questions, on the basis of what can be logically deduced
from the closed P-graph G. The algorithms are complete in
the sense that they return "unknown" only If neither a
positive nor a negative answer logically follows from the
P-graph and the part-of axioms. The same property 1s
desired for the new algorithms.
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Ce
Fig. 3 Some examples of semi-closed P-graphs. In (a), the
(closed) P-graph consisting of nodes s. q and r 1s joined

to the rest of the graph only through s, end no other
nodes. Similarly 1n (b) there 1s e main closed P-graph
with two other P-graphs attached to it. one of which is
itself a closed P-graph with another closed P-graph
attached to it by the root, (c) another representation for
semi-closed graphs where the overall structure, rather
than individual nodes, 1s emphasized (d),(e),(f)
corresponding trees for the P-graphs of (a),(b),(c).

Fig. 4 The semi-closed P-graph G has closed subgraphs
C1..... C6. the node r belongs to C4 but 1s not a
descendant of the main root of C4, It is a "descendant"
r' as defined in this section.

of

Algorithms P(x,y) and D(x.y) make use of a

predicate N(x4. . ... xn) which is true if the merge of
Xr,...,xn 1s provably non-empty and false otherwise. It
was noted in [5] that this predicate is efficiently

decidable for closed P-graphs. In applying P(x.y) and
D(x.y) to closed P-graphs embedded within semi-closed



wa need to assume that N 1s still efficiently
with tha provability requirement now referring
is

P-graphs,
decldeble.
to the entire semi-closed graph. The assumption

justified since the only changes In the truth values of
N(xf . . .. Xn) ovar nodas of a closed graph C. resulting
from attachmant of semi-closed P-graphs to C, ara those

duo to tha non-amptinesa of nodas to which a semi-cloaad
graph containing a provably non-ampty noda was attachad
(this information propagatas "upward" in tha traa of
cloaad graphs); and tha only changa potentially resulting
from tha attachmant of C to ¢ semi-closed P-graph is that
dua to provable non-amptmass of tha noda to which C was
attachad (this information propagatas "downward" via main
nodas which ara points of attachmant 1n tha traa of closed
P-graphs). Tha amptinass assartions thus nacassMated at
points of attachmant by tha upward and downward flow of
Information can ba computed (n ona "pass* aach ovar all
tha nodas of tha aeml-cloaad P-graph, (n tha worst ease

In tha following algorithms tha test "a*b" 1s an
abbreviation which stands for;
"((C(a.b) and P(a.b)) or ?[a part-of b))"
where C(a.b) is a predicate which Is true)
and b belong to a common cloaad subgraph,
otherwise.

if the nodes a
and falsa

"ap"
algorithm ?(a part-of b]
to the question "a-b?" (i.e..
tha same object?) is "yes".
known that b 1s part of a;
1s an ancestor of b, as for x'
tha nearest pair of "ancestors"
cloaad subgraph for x and y respectively,
tha above discussion

incorporates a recursive call to the

to determine whether the answer
do the nodes a and b denote
1n cases where it (s already
(this test is only used where a
and x). Let x'. y denote
which belong to a common
as described in

rigwgr % part-pf
tH (w ax gnd y'¥y) than return P(x’' .y )
alee 14 y'iy then
if Pix’ .y’ )=*yas" than return *yes*
eloe if (Dix’' .y’ }e"yas" snd Nix)} then return "no*
alas return “unknown”
sise 1f x'éix then
i1? Pz’ y')="no" then return “no"
4158 FELIFR "unknown®
alne (¢ (n(r M )ecyan® prd N{x)) then returmn *no*
alsa I'lt&ll‘l'l " unknown*
Lal r X gi int-fr
11 (x'Eu pngd y' &y} then return O(x’ ¥y’ )
sine 1f Dix" .y’ )="yan" than return ‘yes*
wine f x-ix then
if (Ply . 5 )s"yen" antl Niy)}) than return ‘ro
sise PALUFR “unknown®
alse If y'sy than
I (r(x’ . y')="yus" ol N(X)) then return "no
2158 FEtUrH "unknown”
alsm FEturm “urknown”

VI CORRECTNERE O THE PROFQREDR METHOOS

This section Is devoted to showing how much can be
inferred from P-graphs snd, in garticuler, proving the
quEstton answer ing methods given in the previcus section
corract and complate.

The 1ogical founderions of thesa proofs hava basen
oriefly discuvsed 1N Eection 2. In deciding whather a
statemant regarding objecits representsd in & P-graph is &
valid inference from the P-graph, the part-of axipme and
the assertiorns that make up the P-graph sre viswsd as »
thaory (in the logical saree). Thus, the Question reduces
to what is a theoram for that theory.

fAacauss of the soundress any tha completaness of
first-order logic, we Can write

Ol irr G =i

raph G, meaning that § ia
in trus in all sodele of G.

for any fully consistent P-
darivable as o theorem iff

& mooe! of & P-graph 1s an intarpratation of the
parts nodes of G, the function symbols 4, N, \, the
relation £ and constant B, such that tha part-of axioms
and the sssartione of G are satisfied.

When desal ing with knowlsdge represgntstion ve are
interssted in intarpratations whose domain ooneists of
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Fig. 8 G 1w a fully consistent asmi-closed P-graph.
Subgraphs 531, 52, 53 sre seni-Closed, and C clossd. n' and
b' batong to the same clossd suopraph C. wo P{a'.bB’) and
D{a’'.b’) Are used. b snd b’ belong to & smaller
semi-cloped subgraph, t1hus the niuor-uhns can be applisg
recursively to determing whether = br&r. Thus it

G bevb’, then |f P(l'.b’l-'y!l' the algorithm yislds
"yan*® for (a part-of B].

reatl worig objects {concrete or Abstract]). Thum we have

"raal wor)d® mooels for F-graphs.

The complistensss and corractiness of the given
algorithes ratates to the garivability of statemsnts of
the form &a C b, & £ b, Nab=6 or Mabr®. To whow that tha
mathods ars complete and correct it 3 nReceasary to prove
that for an assertian §. the algorithm will return "yes"
It 4 "o If G |- ~4, ana “unknown" atherwise. Tha
following Jemma 1Hiustratey the sorts of techrigues uesad
and facillitates the proafs of correctrans and
comg letanaes .

1: Lmt G be & fully conmintent closed P-graph. Let I
os an interpretation that sseigrne functionm U, N and % to
tha symbols U, 1, and \, and the relation € to the aymbo!
C of tha cbject tanguage and sasigns objscta from & set A
to the cometante (nodes) of the P-graph SO a8 to aatisfy
the part-of axiome and:

{1} 1t A and k are the intergretetions for two

Teaves n anvd & of G, respactively, than:
nkeg
{11} 1+ nara ), .,k are tha intsrpretations of

A hate f and ite projection nt, i onte the
laavae of G, respectively. then:

ne(int, k)

Then 1 constitutes & model of G
(1. e, a1 tha asssrtions of G are trup undar such sn
interpretation)

..nk] ba an assertion of G, and iet

Proot: Lat [n & nt,
..mk into the

NI, . Nk ba tha (sets) projectiona of nt,
lsaven of G, respactively.

From (11)
waing " RCMRHUNG)

where Hi and Rj ars sets of interpretstions of tha nooes
tn the wetu N/ and Nj respactively {U is informally used
nare Ak an ocparator on ssts)

Since G 10 & closed P-graph tharsfors N:ONjag {(For

1f wENIPN] than xvd, since G Aninfe8). Thus from (1)
fininj=s.
Now Mnf. . ko= LHMATY. . (BRx)
o (W(RTY, . UhK))

Furtrermore R1V, . WAk 15 the projection of n into
the Teaves of G, since:
1) sny Tesl in the projection of nf in alse In the

projesction of n eince 1t is & descendant of n.

2) Tt “s” be » leaf in the projection of n
Pan=a,
Thus G | nacunt.. .na}es,
G J Na(uiUNI). .. (UN&))eg
hence G - UlPe(uNg) . Ma(nk})=a.



But 1f arx for a1} lwaves x +n the union of
the projactions of the ni‘s, then & | Paxs® so a=0
and G would not be fully consistent. Thus & sust be
tn the projection of ora of the nl‘s.

$o, by (1), (WA, Wik)) = n
therafors, UNT. . .nk"n
Hance, I = [n P nr. . .okl

The following lemmas sketch the proof of
corrgctness and complatenass of the algarithms; these are
proved (n [7], by methods very similar to thome employed
in the proof of lemma 1.

Lamma2: A Semi-ciosed graph G constating of fully
consistent sami-clossd Qrapns T and 5, such that § 13
sttached to T by ita main root only, 18 fully conzistent

Progf: The proof of this l1enma makes use of theorem 2 of
Iﬁi which states that for every P-graph thare im a
logically sgquivalent cloasd P-graph. Once dealing with
closed P-graphas we can construct a mooe! in which all the
nodew have ron-ewmpty interpratattons.

For tha following thres ‘emmas let Q be a
semi-closed fully consigtant P-graph. Let § and T be
closed subgraphs of G, both rooted at some node *a* with
no other common noces, and suppose S without T (s & closad
sSubgraph .

and ti, . .tnh be nodes of 5 and T
at, t). 0 b Mity=0

Let s1,. . .,.80
For anmy

Ltenmal:
raspectively.

Progot: Thne same mode) theorsetic methods kre used in this
proaf. The Idea 18 to supposa thare 18 a model of G that

satiafiens Maftn=9 arvd from That construct another model
that satinfies Neltare.

Lamma4: Let % ardd ¥ te nodes of S and T respectively.
tal 6 | you => G | a=x
b)) G |- wey =» ¢ }— asy

Procf- Straightforward.

Fig. 8 Diagram for lemmas 4.% and 6.

LemmaS: [f ¥ is & node of ¥ and x is & node of G not n T,
and G |t acy then:

(a) 6 = yox 1ff G |- acx

(b) & b~ xFy (#f G |— wca ana G |~ acy

(c) G |~ yix 1t G |= Muase

(d) G = %Py #f G | xfa

(o) G |~ Mxy=0 irf G }= Maxs@

1P} G |~ Axyr@ 1ff G |= acx and & |= ¥*0
Proot . Straightforward.

Theursm: This theorem relaxes the restriction that the
subgraphs 7.5 and G without T be closed, in lTemmas &

Progf This maken refsrence tO the theorsem 2 from is}.

Ear tha following corollsries to the theorem let G
b a Fully consistent semi-closed #-graph with subgraphs
Ta, 5, Th such that Ta and Tb are rooted at nodes &', b’
of 5, respEctivaly and have no Other comman hodem with 5§
or wach other. Let &, b be nodes of Ta, Tb respectivaly,
such that G B a'c a and G }# B’ b,
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llpryi: 6 W acED
Coroliaryl: G =~ a £ b (FF G |~ Da‘b =g
roll G |- Nabe® i1f G |— Ma‘p s

Corollaryd: G bt Nabse

tha corractress and complieterwss of the proposed
algorithms follows from the sbove thesorem and {ts
corol lartes.

VII CONCLUDING REMARXS

it 19 shown that the problem of answering
questions about part-of and disjointness relations between
nodes of a general P-graph 1s co-NP-complete. This
motivates the search for algorithms which answer these
questions for as large a class of P-graphs as possible,
and hence the development of semi-closed P-graphs. Note,
however, that in proving the co-NP-completeness of these
problems, the restriction to fully consistent P-graphs had
not been made; thus it is conceivable that methods can be
devised to answer these questions efficiently for general
fully consistent P-graphs. This would clearly make the
foregoing obsolete; thus the co-NP-completeness of the
corresponding problem needs to be Investigated.

In (6)

Semi-closed P-graphs 9rm in most cases sufficiently
general to accommodate all incoming parts information
without an intervening conversion. Nevertheless,
algorithms to convert general to semi-closed P-graphs need
to be developed; the conversion can be accomplished in a
bottom up fashion with relative ease. It should be noted
that we are mostly interested m a knowledge assimllatmg’
system, so the order of entry of the assertions will be
significant.

The restriction that a semi-closed P-graph consist
of a semi-closed P-graph with another semi-closed P-graph
attached by the main root to one of its nodes could yet be

relaxed, leading to a larger class of graphs
Another area of further investigation is the
applications .of P-graphs to propositions! logic and

theorem proving. Clause sets can be translated to
P-graphs. exploiting the analogy between implication and
part-of, and vice-versa. Thus P-graphs may offer a new
approach to theorem proving for certain classes of
clauses.

We wish to thank Leo Hartman for the heip ha has
eftured through disscuasions of this work and for hia
asptEtance 1n praparing the final draft of this paper.
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