
Representation and Inference
in the Consul System1

William Mark

USC/lnformation Sciences Institute
4676 Admiralty Way

Marina del Rey, CA 90291

Abstract

Users of interactive systems need a single cooperative interface for all of
the services in their environment. The interface must behave in a
consistent manner in understanding natural user requests and in
providing explanation and help as required. The Consul system is
designed to provide such an interface. Its natural interaction capability is
achieved by mapping between detailed descriptions of users and systems
in order to translate requests and provide explanations An interactive
system of this Kind would be infeasible if the onus of constructing the
knowledge base and inference techniques were placed on the individual
service builders in Consul, service-dependent information is
incorporated into the Knowledge base by semi-automatic acquisition,
resulting in incorporation of the new Knowledge into the system's built-in
abstract framework. This incorporation allows the service-dependent
data to appropriately influence Consul's knowledge based mapping
processes. The current Consul prototype demonstates natural request
handling and explanation for a mail service

1. Introduction
An interactive system should provide a natural interface for its

users and behave in a consistent manner across a wide range of
functional services. The Consu l system attempts to achieve these
goals by providing natural language input and explanation
facilities for users of interactive services such as electronic mail,
automated appointment calendar, and document preparation.

Users' needs change constantly, and vary greatly from one
environment to another. The needs of any particular group of
users must be satisfied by service builders familiar with those
needs. However, the task of building an interactive service that
provides a natural interface and remains consistent with other
services is too great to be left as a burden for individual service
builders. What is needed is a system that has already solved the
basic problems of providing a natural, consistent interface, and
into which new services (or changes to existing services) can be
incorporated with relative ease.

In Consul, a single knowledge base framework consistently
represents not only the objects and actions of users and
interactive systems, but also the inferential capability to map
between the user and system worlds. This mapping mechanism is
the foundation of Consu ls natural language understanding and

1 This research is supported by me Defense Advanced Research Projects
Agency under Contract No DAHC15 72 C0308. ARPA Order No 2223 Views and
conclusions contained in this paper are the author s and should not be interpreted
as representing the official opinion or policy of DARPA. the U S Government or
any person or agency connected with them.

explanation techniques. The knowledge base is adapted to the
domain of any particular service (e.g., electronic mail) by a system
directed acquisition process which results in the association of
built-in concepts with their appropriate counterparts in the service
domain.

1 .1 . U n d e r s t a n d i n g user reques ts
If the user is allowed to express himself in a "natural" manner,

most of his requests will not correspond directly to input forms for
the appropriate service actions. Some aspect of the interactive
system must therefore have the capability of mapping user
requests into appropriate system action invocations. For example,
consider the following user request to a mail service2

Forward this message to Jones.

This request is simple enough from the user s point of view.
However, from Consuls point of view, its interpretation depends
on the circumstances of the request and the details of the
particular service involved. In most mail services, if this message
referred to a previously received message and if Jones were a
valid user address, interpretation of the request would mean
mapping the parse of the request into an invocation of the
message forwarding function with the appropriate parameters.
However, if this message referred to a just composed message,
many (though not all) mail services would consider the request to
be in error and would require restatement. As we will see below,
the situation in a SIGMA-like mail service is somewhat more
complex: "messages" are never actually forwarded (or sent in any
form); only citations of messages are sent between users- the
actual message remains in a central database. Therefore, the
users request can never be taken literally, but must be
redescribed in system terms. Even then the request is either
ambiguous (the user must either "forward for action" or "forward
for information") or in error (if this message is a "draft message").

Thus, understanding user requests requires mapping the input
forms into the conceptual framework of the particular service that
must fulfill the request. This process requires some
understanding of both the context of the users request and the
characteristics of the service.

1.2. Exp la in ing the s y s t e m
When the user requires information about some aspect of the

system, he must be able to ask about it in a natural manner and
receive a response that he can understand. Consul must
therefore be ready to recognize and respond to "help requests"
(e.g.. What has to be in a message? What does forwarding do?).
This problem of "explanat ion" has several parts:

All examples in this paper are baaed on a SIGMA-like service ([SIGMA 79])
currently being implemented under Consul

373

Consul must first decide whether a user utterance is a
request for help or a request for action This is by no means
straightforward, and ultimately relies on an understanding of
the user's intent in making the request (as in Could you send
this message to Smith?).

Even when a request for help is recognized as such, the
system must understand the user s statement of what he
wants to know in terms of those aspects of the system that
are relevant to answering his question. For example,
although Why was message 17 deleted? is a perfectly
reasonable user help request, it makes no sense at all in the
world of the SIGMA-like service. Messages do not have
numbers associated with them nor are they ever deleted.
Consul must map the user's question into a question that is
appropriate from the mail system viewpoint-a question that
takes into account that messages are accessed only through
their citations, that citations have numbers by virtue of being
in a user's mailbox, and that the relevant deletion process is
the one that removes particular citations from a particular
user's mailbox.

Next, the system must discover an appropriate answer to the
reformulated question, requiring information gathering (as in
What has to be in a message?), cause/effect reasoning (as in
Why was message 17 deleted?), or other special processing
depending on the type of question asked.

The answer, which is in system terms, must then be mapped
back into terms that the user can understand in order to
create a true response to the original question.

An additional explanation problem occurs because the system
cannot always do what the user wants. Thus, although the intent
of a user request may be that the system should perform some
action, the response of the system may have to be an explanation
of why it cannot meet this intent. For example, as discussed
above, if this message in the request Forward this message to
Jones refers to a just composed message, the system cannot do
what the user is asking. Instead, it must respond with an
explanation of why it cannot forward the message to Jones, and
suggest a restatement or alternative course of action to the user

1.3. Acquiring domain-dependent knowledge
All of the above discussion assumes a carefully built, detailed

model of what a particular interactive service can and cannot do
This raises the question of how such a model is built into the
Consul system. Builders of interactive services know about the
characteristics of their service--not the higher level models and
mapping knowledge required by Consul for cooperative behavior.
Therefore. Consul must be responsible for the task of
incorporating the details of a particular service into its knowledge
base. It must figure out (or at least lead the service builder to tell
it) how the operations and objects of a service can be seen in
terms of its higher level model.

It is very likely that the relationship between specific service
characteristics and Consul's built-in knowledge base will go
beyond straightforward instantiation: some service characteristics
will not instantiate anything in the knowledge base. For example.
Consul's model of transfer operations assumes that the argument
of the operation (say. a message) is what ends up being delivered
to the specified destination. However, SIGMA send operations
send citations of the message, not the message itself. SIGMA

send operations thus do not directly instantiate Consul's model of
transfer operations. But Consul will not be able to bring to bear its
knowledge about transferring (e.g.. how explanations and user
requests about sending map into transfer operations) unless it can
relate the SIGMA send operations to its built-in model of
transferring. Consul's acquisition task therefore comprises not
only instantiation of its knowledge base, but also the construction
of more complex mappings between what it knows and what the
service builder tells it.

2. Approach
The main feature of Consul is its knowledge base of

descriptions of users services, and interactive systems-
Relationships between descriptions--mappings--are represented
in terms of inference rules, which are "applied" to transform one
kind of description into another. The handling of a natural
language request from the user is treated as the reformulation (via
the application of inference rules) of a description in the
conceptual framework of the user as a description in the
conceptual framework of the service model. This service
description represents an actual function that can be executed in
order to satisfy the user s request. Similarly, help and explanation
are treated as reformulation of service descriptions in terms of
user descriptions.

Consistent treatment of services is achieved by pre-building a
service-independent model of interactive systems into Consul, and
then acquiring knowledge about particular services in terms of
that model. Acquisition is accomplished via a stylized dialogue
with the service builder, directed by Consul based on the service
builder's implementation of his service in terms of a programming
formalism specially designed for this task.

2 .1 . The Knowledge Base
The basic structure of the Consul system is shown in Figure 1.

The knowledge base, implemented in KLONE [Brachman 78]. is
central to all system activities-parsing, explanation, mapping,
execution, and acquisition. It contains several kinds of
information:

Knowledge of Users a representation of the relation between
English language constructs (e.g., "send request") and the
actions and objects of the user s world that (he thinks) have
some correspondence in the system world (e.g., "send",
"message"). For example, since users have the concept of
sending information from one user to another, the knowledge
base includes User Send and User Message (see Figure
2). This representation is purely in terms of the user's

376

Figure 2 Part of the Knowledge Base

conceptual structure-correspondence with the actions and
objects of the system, if any. has yet to be established.

Systems knowledge: a service-independent representation
of basic operations (e.g.. deletion, transfer, display) and the
data structures these operations work on (files, tables,
display lists, etc.). For example, any service will probably
have a transfer operation of some sort. Consul's systems
knowledge provides an organizational framework for
structuring knowledge about transfer operations, based on
the concept Transfer Operation (see Figure 2). The
particular transfer operations of any service can be described
in terms of that framework, and thus be "understood" by
Consul (i.e.. seen in relation to the other things that Consul
knows about).

Service knowledge: a particularization of systems knowledge
to the actual operations and data structures of some
interactive service that is implemented in Consul. For
example, the model for a mail service would describe a
variety of specific (actually executable) transfer operations
for sending messages. SIGMA has several specific transfer
operations for sending different kinds of message citations
(see Figure 2).

Dynamic Environment: a model of system and user activities
as events in time. i.e.. invocations of the actions defined in
the user and service models. This event model serves as a
dynamic environment for expressing the behavior of the user
and the system. Thus Send Request Event and Transfer
Operation Invocation in Figure 2 represent potential
occurrences during an interactive session with Consul.

Figure 2 shows some of the instantiation relationships among
Consul's descriptions of users, systems, and services. Consul

must be able to map between these various descriptions in the
knowledge base in order to understand requests, generate
explanations, and acquire service specific information.

2.2. Mapping
In Consul, this mapping capability is provided by a rule-based

inference process that can reformulate a given knowledge
structure in terms of another. The rules are simple transformation
relationships between modelled structures. When a given
description instantiates a structure that is a rule condition, the
mapper can reformulate the description in terms of the structure
that is the rule conclusion. This process can be used to
redescribe a wide class of incoming descriptions (user requests,
explanation forms, and service specific information) in terms of
Consul s built-in knowledge base3.

This section shows the systems mapping activity on the request
Forward this message to Jones. The first operation on any
incoming request is parsing4. i.e., classifying the request in the
knowledge base in terms of Consul's model of what the user can
express The new description is then redescribed by the mapping
process until it can be seen to instantiate either a description of
some service action (in which case the action is executed, thus
satisfying the request) or some explanation form (in which case an
explanation response is generated).

The parse of Forward this message to Jones is shown in Figure
3. The parser has described the request as a Request for the
user action whose objective is Sending. The fact that the user
has specified "forwarding" is represented by the intrinsic
description of this Send Action as Resend The result of the
action is that both the object (the message) and the intrinsic
description arrive at Jones.

When this parse is classified in the knowledge base, it does not
instantiate any service action or explanation form (i.e.. the system
does not contain a description of the "Forward this message to
Jones" action). However, as shown in Figure 4, the description
does instantiate a (very general) knowledge structure that

Figure 3: The parse of "Forward this message to Jones"

The underlying philosphy and implementation of the rule application and
redescription process is described in detail in (Mark 80]

4The PSlKLONE parser (Bobrow & Webber 80) has been integrated into the
Consul system,

377

happens to be a rule condition. The rule simply says that a
request for a user action with a particular result can be
redescribed as's call to an operation whose effect is that result5.
This does not imply that such an operation is really implemented in
the system; it merely creates a description of a call to such an
operation. In this case, rule application produces a call to an
operation (Operation Invocation. 1) whose effect is "this
message" and "resend" ending up at "Jones" (see Figure 4).

This redescription is then classified in the knowledge base
(Figure 5). If, via this classification process, the new description is
found to be a subconcept of a call to some actually executable
operation, inference is complete-Operation Invocation. 1 can
simply be passed on to the interpreter to produce the required
execution results. Otherwise Consul will have to use additional
rules to refine the description until it can be seen as some
executable form.

As shown in Figure 5, Operation Invocation. 1 can be
classified as a Transfer Operation Invocation, but not as any of
the actually executable SIGMA send operation invocations This
means that Consul will have to look for additional applicable rules
However, in this case none of the structures instantiated by the
current description happen to be rule conditions. In order to
proceed, the mapper will have to change tactics.

(Deictic]

Figure 4: Application of Rule 1

H Consul had had a mora specific rule that applied to requests for send actions,
that ruta condition would have been inatantieted. and that rule would have been
applied instead

Figure 5: Classification in the Knowledge Base

When no additional rules are applicable, the system goes into a
target-based reasoning mode The idea is to find rules that can
redescribe parts of the description (rather than the whole thing at
once, as before) until the whole description instantiates some
"actionable entity"-executable function, explanation form, or
other rule condition. Since the number of rules that can apply to
parts of the description is potentially much larger than the number
that can apply to the whole thing, target finding is used to
determine whether redescribing the description part by part is
worthwhile. Part-by-part redescription will be attempted only if the
whole new description produced could be an instantiation of an
actionable entity

Actionable targets for this redescription process are found by
noting all parts of the current description that could possibly be
redescribed by some rule (i.e., that instantiate some rule
condition). Then, treating these parts as "wild cards" (concepts
that instantiate anything), the classifier finds all of the actionable
entities that the whole description instantiates; these are the
targets. Once the targets have been found, the mapper knows
that applying rules to parts of the description can produce an
actionable entity. It can then apply the rules and see if the
resulting new description actually instantiates a target actionable
entity. If so, the mapping process either succeeds (if the entity is
an executable function or explanation form) or continues (if the
entity is a rule condition).

In this example, only one rule applies to a part of the current
description. This rule, shown in Figure 6, attempts to resolve a
deictic reference to an object (e.g.. this message) by looking for a
similar object that appeared in a recent event. Here it is possible
(depending on the actual resolution of the reference) that the rule
will redescribe this message as a Transmitted message, thus
making the current description a subconcept of the actually

378

Figure 6: Resolving the Deictic Reference

executable SIGMA Forward Message To User shown in Figure
5. However, let us assume in this case that when Rule 2 is
applied, this message turns out to be a Draft, as shown in Figure
6 SIGMA Forward Message To User is therefore not
applicable, and target-based reasoning fails. The mapper must
now conclude that the user's request cannot be satisfied, and that
an explanation response must be generated instead. It creates an
explanation form noting the structure it gave up on (Figure 7) and
passes the problem on to the explainer.

2.3. Explanation
Now that Consul has given up on the attempt to perform the

user's request for action, it must explain why it cannot perform the
action, and perhaps suggest alternatives to the user. This
requires finding the service operation or operations that the user
was probably trying to get Consul to perform, and explaining to
the user in his own terms why his request did not cause their
invocation. Then, since Consul assumes that the user is really
making an effort to do something with the system, it tries to make
reasonable suggestions for corrections of the original request that
win make something happen. Of course, the system must make
sure that the user knows what that something is and how it differs
from what he was requesting.

The first step of the explainer is therefore to find a reasonable
set of targets--service operations that the user could have been
trying for. This target finding operation is somewhat different than
the one used during target-based mapping. For mapping
purposes the only reasonable targets are those that could be
reached by rule application. The explainer assumes that no such
targets are available (otherwise the user s request would have
been satisfied). Instead, its notion of potential targets are those
service operation invocations that have the same objective as
the user action specified in the original request.

As shown in Figure 3, the user's request specified the User
Send action, that is, the action whose objective is the abstract
concept of Sending. The explainer assumes that any service
operations (or their invocations) that share this objective are close
enough to the intent of the users request to be considered
potential targets. All service operations constructed as instances
of the systems Transfer Operation will inherit the objective
Sending. Figure 5 shows that four SIGMA operation invocations.
Forward. Forward For Action, Release, and Send For
Review, are instances of the systems Transfer Operation
Invocation6.

This initial list of targets is then examined to determine the
differences between the targets and the user's requested action.
A comparison of the desired operation invocation in Figure 7 with
each of the potential targets (of which only a few relevant parts are
shown in Figure 5-the full model of SIGMA's forwarding function
is shown in Figure 9) reveals that Forward has the right intrinsic
description but sends the wrong type of message. Release and
Send For Review send the right type of message but have the
wrong intrinsic description (Release has none at all), Forward
For Action both sends the wrong type of message and has the
wrong intrinsic description. Since Forward For Action happens
to differ in all of the ways that any of these targets differ, it is
pruned from the target list. This leaves only Forward, Release.
and Send For Review to be used in the explanation.

But the explainer also notes that one of these targets. Forward.
differs from the requested invocation in a different way than the
other two. The specification this message in the user's request
has been resolved into a description of a unique object in the
world, i.e.. a particular message. The explainer will not suggest
alternatives to the user's specification of unique objects (i.e.. it will
not respond to the users request with "You can t forward this
message, would you like to forward a different one?"). Therefore.

6The way that these service specific operations came to be so modelled is
discussed in the following section

379

given that the user really wants to send this message, only two of
the possible targets, Release and Send For Review, remain as
viable alternatives.

All of the necessary information for the response has now been
gathered. Comparison of the explanation form in Figure 7 with the
target descriptions shows why the user's requested action could
not be applied to his requested object: the indicated intrinsic
description and message type are incompatible with respect to the
target set (while the recipient Jones, for example, is compatible,
and will not enter into the explanation). The response will
therefore explain that the user's request for forwarding could not
be satisfied because this operation cannot be applied to messages
of type "draft". And, since there are other targets in the set that
can still satisfy the user's objective for his requested object, the
response will go on to suggest Release and Send For Review
as alternatives.

Once the content of the response has been decided upon, the
explainer must determine whether there are user concepts that
correspond to the system concepts ("forwarding", "sending for
review", "releasing", and "draft message") in the planned
explanation. Those concepts that have a direct correspondence
in the user model can simply be incorporated into the response
(e.g.. since the user's concept of message and the systems
concept of message share a common abstraction, Consul can
make the direct translation). Those concepts that do not have a
direct correspondence in the user world must be redescribed in
terms of component parts that do have user equivalents (e g .
"forwarding for action is like forwarding except that the user
receives the note 'requires action' with the message"). We have
already seen that the user has the concepts of "forwarding" and
"message"; for simplicity, we will assume that the other system
concepts to be explained also have user equivalents The
explanation response resulting from the user request Forward this
message to Jones is therefore

Draft messages cannot be forwarded. You
can release this message or send it for review.

2.4. Acquisition
It should be clear from the preceding sectiors that Consuls

ability to understand user requests and produce appropriate
responses relies crucially on proper classification of service
dependent information in the knowledge base. This means that
the service dependent information must be seen in relation to the
built-in concept structures representing Consul's systems
knowledge. Consul's reliance on precise service modelling would
be in feasible if model construction were the responsibility of the
individual service builder: the service builder is unaware of
Consul's needs, and certainly unaware of the intricacies of its KL
ONE model. Instead, Consul provides an acquisition mechanism
to incorporate the builders description of his service into the
Consul framework.

The service builder is never directly aware of the system
knowledge base. He implements his service as a set of process
script programs [Lingard 81]. The process script language is a
programming formalism specially designed for the acquisition
task. Programs consist of a procedure and some descriptive
information about that procedure. The descriptive part is in the
form of a small number of categories of information required by
Consul in order to see how the function represented by the
process script fits into its knowledge base. The process scripts,
along with descriptions of service-dependent data structures, are
acquired into the knowledge base to form the service model. The

process script to implement the SIGMA Forward operation is
shown in Figure 8

ProcessScript SlGMAForward;
Input u:SIGMAUser;
Output none;
DataAcceased SiGMAOpenMessage. SIGMALoggedOnUser:
Preconditions SlGMAOpenMessageSV = true:
SideEffects none:
Undo none:
Error Conditions eNoMailBoxForRecipient,

Call SlGMASend(u. "Forwarded"):
Figure 8: A Process Script

The process script is expressed completely in terms of the
service builder s programming environment. It must therefore be
translated into the appropriate KLONE representation, called
SIGMA Forward Process Script in Figure 9. This description
must then be incorporated into the knowledge base As I
mentioned earlier, the service builder s program (embodied in
SIGMA Send) transfers citations of messages rather than the
messages themselves This means that the operation defined by
this process script is not an instance of the systems Transfer
Operation, which would expect SIGMA Open Message to actually
be sent However. Consul will not be able to understand SIGMA
Forward unless it can see it in relation to Transfer Operation

The required relationship is constructed by the acquirer in
accordance with a stylized dialogue with the service builder (see
[Wilczynski 81] in this Proceedings for a detailed description).
Briefly, the acquirer uses its built-in model of the Transfer
Operation to ask the service builder questions about the
parameters of SIGMA Forward. The service builder s answers to
these questions are used to construct an instantiation of Transfer
Operation with the same functionality as the process script The
result is called SIGMA Forward Operation in Figure 9

3 80

Unfortunately, this is not a Transfer Operation in the sense
intended by the service builder: it does not transfer SIGMA Open
Message, but instead a citation of that message. In order to
capture this intended meaning of SIGMA Forward, the acquirer
must use the results of its dialogue with the service builder to
generate the mapping rule shown in Figure 9.

The description generated as the condition part of the rule,
SIGMA Forward Message To User, is the appropriate
representation of SIGMA Forward as a function for forwarding
messages; the mapping rule shows how its invocation can be
mapped into an invocation of the actual process script. As shown
in Figures 2 and 5. it is the generated description SIGMA
Forward Message To User that is found during the mapping
process (because the user also speaks of messages rather than
citations being sent). If such a description had not been
generated by the acquirer. Consul would not have been able to
find the SIGMA Forward process script during its natural language
understanding and explanation activities, and the users request
could not have received the correct response. The acquirer will
not allow process scripts to be entered into the system until it has
related them to system model concepts either by instantiation or
by mapping rules.

3. Conclusion
The Consul system is still in the early stages of development. It

currently demonstrates all of the capabilities discussed in this
paper for a small class of user requests and service functions.
Only part of the SIGMA-like mail service has actually been
modelled and implemented. Immediate plans (the next year or so)
call for the expansion of the knowledge base and service
implementation to allow cooperative interaction with the full mail
service. Then (over the next several years), in order to prove the
generality of the system as a cooperative interaction environment,
the knowledge base will be extended to model the characteristics
of other interactive services. The major problems now facing the
Consul project are the acquisition, maintenance, and efficient use
of large amounts of organized knowledge. In part, the solution to
these problems awaits the higher speed, larger address space
machine architectures that are now becoming available.

Acknowledgements

Thomas Lipkis is responsible for the explainer and the classification
algorithm, Robert Lingard for the process script programming
methodology, and David Wilczynski for the acquisition mechanism.

References

[Bobrow&Webber 80] Robert Bobrow and Bonnie Webber,
"Knowledge Representation for Syntactic /Semantic
Processing." in Proceedings of the National Conference on
Artificial Intelligence, AAAI. August 1960.

[Brachman 78] Ronald Brachman. A Structural Paradigm for
Representing Knowledge. Bolt, Beranek and Newman, Inc.,
Technical Report. 1978.

(Lingard 81] Robert Lingard, "A Software Methodology for
Building Interactive Tools." in Proceedings of the Fifth
International Conference on Software Engineering, 1981.

[Mark 80] William Mark. "Rule-Based Inference In Large
Knowledge Bases," in Proceedings of the National
Conference on Artificial intelligence, American Association
for Artificial Intelligence, August 1980.

[SIGMA 79] R. Stotz. R. Tugender, D. Wilczynski, and
D. Oestreicher, "SIGMA: An Interactive Message Service for
the Military Message Experiment," in Proceedings of the
National Computer Conference, AFIPS, May 1979.

[Wilczynski 81] David Wilczynski, "Knowledge Acquisition in the
Consul System," in Proceedings of the Seventh International
Joint Conference on Artificial Intelligence, IJCAI, 1981.

381

