
A M E T A L A N G U A G E R E P R E S E N T A T I O N OF R E L A T I O N A L DATABASES
FOR DEDUCTIVE QUESTION-ANSWERING SYSTEMS

K u r t Konoligc

SRI International
Mcnlo Park, Ca.

A B S T R A C T

This paper1 presents a method of formally representing the
information that exists in a relational database. The primary
ut i l i ty of such a representation is for deductive question-
answering systems that must access an existing relational
database. To respond intelligently to user inquiries, such sys
tems must have a more complete representation of the domain
of discourse than is generally available in the database. The
problem that then arises is how to reconcile the information
present in the database w i th the domain representation, so that
database queries can be derived to answer the user's inquiries.
Here we take the formal approach of describing a relational
database as the model of a first-order language. Another first-
order language, the metalanguage, is used both to represent
the domain of discourse, and to describe the relationship of the
database to the domain. This view proves particularly useful in
two respects. First , by ax iomat i i ing the database language and
its associated model in a metatheory, we are able to describe in
a powerful and flexible manner how the database corresponds
to the domain of discourse. Secondly, viewing the database as a
mechanizable model of the database language enables us to take
advantage of the computational properties of database query
language processors. Once a database query that is equivalent
to an original query is derived, it can be evaluated against the
database to determine the t ru th of the original query. Thus
the algebraic operations of the database processor can be incor
porated in an elegant way into the deductive process of question-
answering.

1. Introduct ion and Overview

This paper presents a method of formally representing the
information that exists in a relational database. Database rep
resentation technology has progressed independently of A I , but
there is a need to reconcile it wi th AI representations. Many AI
systems that address real-world domains must access existing
databases; typicall ly these have been natural-language question-
answering systems, e.g., L U N A R [14) and D-LADDEI i (8). The
D-LADDER database, for example, is a pre-existing relational
database that is distr ibuted across several sites of the Arpanet;
access to the information is through a pre-defined database
query language. D-LADDER can parse and "understand"
English-language questions for which no information is available
from the database because it maintains a representation of the
domain of discourse that subsumes the information present in
the database. However, to respond reasonably to a user's ques-

l T h e work reported here was supported by the Defense Advanced Research
Project* Agency und«r Contract N00039-80 r 0645. The views and con
clusions contained in this document arc thoso of the authors and should
not be interpreted as representative of th« official policies of the Defense
Advanced Research Projects Agency of the U.S. Government.

t ion, D-LADDER must have some description of the information
present in the database, and must be able to decide whether or
not there is a database query that wi l l answer the original ques
t ion.2 Other researchers, including Rciter (12] and Chang [1],
have advanced solutions to the problem posed above; but their
solutions are inadequate for a number of reasons. A common
fault is that they compromise the expressive power w i th which
they represent the domain of discourse in order to arrive at a
satisfactory algorithm for deriving database queries. We wil l
critique these systems more fully at the end of this paper.

The key task we accomplish in this paper is the formula
t ion of a representation rich enough to describe the domain of
discourse, along wi th information that the associated database
contains about that domain. Furthermore, we present an algo
r i thm that wi l l determine when sufficient information exists in
the database to decide the t ru th of some statement about the
domain, and generate the appropriate database language query.

To formalise the information content of a relational
database, we take the view that the database is a finite model of
a particular first-order language, called the database language, or
DDL. The operations of the relational calculus can then be used
in a decision procedure for sentences in the language. When this
occurs, the database language is said to be interpretable, w i th
the database as its intended model. Queries to the database are
expressed as sentences in the DHL; operations on the relations
of the database can be used to find the truth-value of any for
mula of the DDL. A model wi th this property is said to be a
computable model.

When viewed as an interpreted language, the DDL lacks
the descriptive power necessary for most AI applications, e.g.,
it is impossible to express disjunctive facts ("cither it is raining
or the sun is out") . Thus we wi l l axiomalizc the domain of dis
course separately as a theory in a first-order predicate calculus
wi th equality, which is a powerful descriptive formalism. This
language is called the metalanguage, or M L . In addit ion to en
coding the domain of discourse, the ML theory wil l contain a
description of the DDL. That is, the ML theory wil l have terms
that denote DDL expressions, and predicates that assert the
t ru th of DDL expressions in their intended model, the database.
Final ly, the ML theory wi l l contain axioms that relate the t ru th
of sentences in the DDL to predicates in the ML that describe
the domain of discourse. These axioms characterize the connec-
2Note that we are not making a judgement here about the ut i l i ty of
database representation technology. Il may be the case that all the in
formation that is present in the database under consideration could be
more easily and conveniently represented using standard AI techniques,
e.g., semantic nets or Morn clauses. The situations we are interested to
are those where the database is a pre-defined part of the domain, and wt
must build some representation for the information that it contains. Given
the prevalence of databases as an in formation-storage technology, it seems
reasonable to expect that some applied AI systems wil l have to interact
wi th them.

4 9 6

tion between the database and the domain of discourse.

Queries about the domain are originally expressed as for-
mulas in the ML. By attempting a constructive proof of a cer
tain ML expression involving that formula, it is possible to
either answer the query by a proof in the ML theory, or find
a DHL expression that is equivalent to the original ML query.
In the latter case, because the DDL is fully interpreted by the
database, the answer to the query can be found by evaluating
the DBL expression with a suitable database query processor.
This whole process is reminiscent of the answer extraction tech
nique of Green [5].

The metalanguage/database language dichotomy is useful
in making a theoretically satisfying distinction between the
description of the discourse domain required by an AJ sys
tem, and the information that may be present in an associated
database. As a result, it will be possible for a question-answering
system that uses this representation to respond in a more sophis
ticated way to user inquiries to a database. For example, it is
possible to correctly represent the distinction between questions
such as "Is P always true?" versus "Is P currently true in the
database?"

2. The Relational Database as a Model

We seek a method of describing the information that a
database contains, that is, a way of formally characterizing the
way in which data in the database relates to the domain under
consideration. For the purposes of this paper, we will restrict
our attention to a particular type of database, the relational
database, because it is more readily amenable to formal analysis
than are other database formulations.3 A relational database is
a set of relations {/?,} over a set of domains {Dj}. Each relation
Ft consists of a set of tuples of some fixed length n, the arity of
the relation; we will indicate a relation's arity with a superscript,
Rn. The elements of the tuples are drawn from the domains of
the database.4 In a relational database, the relations arc finite,
but the domains may be infinite, e.g., the domain LENGTHS
in the sample database below is the set of positive real numbers
over some interval.

As an example relational database, consider the following
relations about the ships world:

SHIPR : SHIPS X SNAMES X LENGTHS X MEDIC
CO MM AN DR : OFFICERS X SHIPS

The domains are SHIPS, S NAMES (ship names),
LENGTHS, OFFICERS, and MEDIC. MEDIC is the bi
nary domain {T,F}, and its use will be explained below. This
sample database is derived from the BLUE FILE database ac
cessed by the LADDER project (6). A typical tuple of the
SHIPR relation might be {U S N m,L AF AY ETTE,344.&,T}.

A relational database is used to model the world in the
following way. If a tuple {u,x, y,z} is present in a relation R4,
then the objects u, x, y, and z are assumed to participate in
the corresponding real-world relation. Thus the presence of the

*Thc approach deicribed here wil l actually work with any databaie repre
sentation technology that is powerful enough to be a mechanizable model
for tome first-order language.
4This is unfortunate terminology, since we have already introduced domain
of discourse. The relational domains are sets of individuals drawn from the
universe of individuals of the domain of discourse. Generally there should
be no confusion about the proper referrent of domain in this paper, because
of context.

tuple {USNl2ZtLAFAYETTEM**,T) means that the ship
USN123 has the name Lafayette And the length 344.6. The
interpretation of the MEDIC value is that the ship has a doctor
on board if the value is T, and does not if the value is F.

What happens if a tuple is not present in a relation
depends on the interpretation one chooses for the database. The
strongest assumption that can be made is that if a tuple is ab
sent, the relation does not hold for the elements of that tuple.
Whether this assumption is appropriate or not depends on the
domain of discourse that is being modeled. It assumes that
the database has complete information about the part of the
world that corresponds to the relations it contains. In many
applications, the database has only partial information about
the domain of discourse. A formalization of the information
that the database contains must be rich enough to represent a
partial correspondence between the database and the domain.

The relations in a relational database can be considered to
form an algebraic structure under the operations join, restric
tion, projection, and set union and difference [3]. These opera
tions can be used to extract information from the database in a
convenient manner. For example, suppose we wished to find the
officers of all ships over a length L. One way to do this would be
to join tuples from the COMMANDR and SHIPR relations
with the same SHIPS element,5 restrict the resulting relation
so that only tuples with a LENGTH element greater than L
remain, and then project the OFFICER elements to yield a
set of one-element tuples containing the answer.

Formally, the results of algebraic manipulations on a rela
tional database can be described by designing an appropriate
first-order language for the database. The basic idea is that
expressions in the language (which we will call the database
language, or DBL) are either true or false with respect to the
database; further, because wc actually have the database in
hand, it is possible to determine the .truth value for any ex
pression of the DBL by performing algebraic operations on the
database. Thus the DBL functions as a query language for
the database, because it describes properties of the database.
A query is phrased as an expression in the DBL, and then
algebraic manipulations can be performed on the database to
determine the truth of the expression, and hence answer the
query. Codd (3| has shown that the five given operations are
sufficient to decide the truth-value of any expression in an ap
propriately defined DBL; hence the database and its associated
algebra forms a computable or mechanizable model for the DBL.

At this point, it is helpful to look at the DBL for a particular
database, the sample database given above. We will use a many-
sorted first-order language with equality. There is one sort for
each relation in the database; a sort consists of all tuples that
are in its corresponding relation. Variables are restricted to
range over a given sort. In quantified expressions, the sort that
a variable is restricted to will always be indicated by giving the
name of the relation for the sort. For example, in

VtISHIPR • • •

the variable t is restricted to tuples in the relation SHIPR.
Because variables only refer to tuples in a relation, this type of
language has been called a tuple relational calculus (13).

Besides variables over tuple sets, we allow function terms
that refer to elements in the domain. Among these terms will be
unary functions that pick out elements of a tuple. Generally,

*This operation if called an equijoint and is the composition of a jo in w i th
an equality restriction.

497

we will use function names that are similar to the domain of
the element that they select from the tuple. As an example,
consider:

The language also contains the boolean operators, the
equality predicate, and some arithmetic predicates such as
greater than and lest than. As defined, the DBL has the im
portant property that every expression that can be written in
the language is decidable with respect to the sample database,
using the relational algebraic operations. Such a language is
called safe in the database literature [13]; a safe language is one
whose expressions can all be interpreted by examining just the
instances of relations present in the database. The practical im
port of this is that safe languages are mechanisable, in the sense
that the truth value of every expression in the language can be
determined by a finite number of algebraic manipulations on its
intended model.

3. The Metalanguage

A language like the DDL for which the intended model is
available is called an interpreted language. If the database cor
rectly reflects the structure of the domain of discourse, then we
need no additional representational apparatus to describe the
domain. However, it is more often the case that we have incom
plete information about the domain of discourse: for example,
we may know that the Lafayette is commanded either by Smith
or Jones, without knowing which one of the two is the actual
commander. Such partial information about the domain cannot
be expressed within the database model.

Another way to view this situation is to say that the
database and the domain of discourse are both models of the
DBL, but they are not coextensive. That is, in the real world
it may be the case that either Smith or Jones is the captain
of the Lafayette; because we do not know which is the case,
there will be no tuple in the COM MANOR relation of the
form {nnn,£/5JV123}, where 1/5JV123 is the identifier of the
Lafayette. So if the query, "Does Jones command the Lafayette"
is posed in the DBL, the answer with respect to the database
will be "no," which may not be the case in the actual world.1

If a question-answering system is to return correct responses
to user's queries when only partial information about the domain
is available, then a more powerful representation than the DBL
and its associated database is required. On the other hand, we
wish to make use of the information that is contained in the
database in those cases where it is sufficient for responding to a
query. So the representation we seek must not only characterise
the domain of discourse, it must also encode the way in which

•We are going to uiume in this paper that what information the database
does contain about the domain of ditcottrac is correct. In principle, the
formalisation presented in this taction could readily handle case* where
the database was not in conformity with the domain, e.g., the tuple
JONES, USN123 is present in the COM MANOR relation even when
Jones is not actually the commander of the Lafayette. It may be useful
in practice to have this ability, especially when dealing with a changing
domain where updates to the database may not be timely.

the database as a model corresponds to the actual world.
To represent the domain of discourse, we will use another

many-sorted first-order language with equality, called the
metalanguage, or ML. The ML will have non-logical axioms that
state properties about the domain. For example, for the ships
world we might define the following predicates:

A typical assertion about the domain might be:

which says that every ship has a length. It is not critical that we
have chosen this particular form of the first-order predicate cal
culus; any of the non-sorted variants would do just as well. Note
that the ML need not be a tuple calculus; in this example, vari
ables range over individual ships, officers, lengths, etc., rather
than tuples.

In addition to representing the domain of discourse, the
ML is also used to characterize the database as a model of the
DBL; this is what makes it a metalanguage. In the ML, we
will use the predicate DB of one argument, a DBL formula,
to mean that that formula holds in the database. Assume,
for example, that the ML term / denotes the DBL formula
Vt/sHtPR |«name(*) = LAFAYETTE) V \length(t) > 344.6).
Then the ML expression DB(J) asserts that the DBL formula
denoted by / is actually true of the database; that is, all tuples
in the SHI PR relation either have their sname element equal
to LAFAYETTE, or their length element greater than 344.6.

In the metalanguage, we require a number of constructors
for DBL formulas. For boolean connectives of the DBL, the
constructors and, or, imp, and not take DDL formulas as argu
ments and return the obvious DBL compound boolean formula.
For example, the ML term and(f, g) denotes the DBL formula
FAG, where F and G are the DBL formulas denoted by / and
g. This abstract syntax for object-language formulas was intro
duced by McCarthy (9).

Because the DB predicate represents truth in the database
model, the normal truth-recursion axioms are valid for it. We
introduce the ML sort DBFS, which is the set of all DBL
formulas, and write the truth-recursion axioms as:

Additionally, to construct an arbitrary DBL formula we
will need ML terms that denote DBL predicates, terms, and
quantifiers. At this point it is convenient to develop the theory
for the propositional case; later it will be extended to predicates
over individuals. For each DBL propositional constant there is
a ML constant term that denotes it. The convention will be
to use primed terms in the ML to denote the corresponding
unprimed propositional constants in the DBL. Thus the ML
term P' will have the DBL proposition P as its denotation.
Given this and the ML boolean constructors, it is possible to
write a ML term for any sentential expression of the DBL, e.g.,
and(P\ not(Q')) denotes the DBL formula PA Q. The two ML
terms TRUE' and FALSE' are specially defined to refer to the
DBL propositions TRUE and FALSE, whose truth values in

498

the database arc always taken to be true and false, respectively:

DB(TRUE')=PV~P T p ,
DB(FALSE') s P A ~ P J H2'

4. Database Query Derivation

Having described the DBL and its associated database
within the ML, we are in a position to formulate the derivation
of database queries in the DDL from an original ML query. At
this point we will restrict our attention to closed queries, that
is, those whose answer is either yes or no. Closed queries can be
represented by closed ML expressions.

Suppose that qwff is a ML expression whose truth value is
to be determined. Consider the ML schema:

3f/DBrs\DB(f)~qwt!\ T\.

If a constructive proof of T\ can be found for a given instance of
qwff, the binding for / will be a DBL formula that is equivalent
to the original query qwff. By evaluating the DBL query with
respect to the database, the truth of qwff can be determined.
Note the use of the equivalence connective in TV, if the answer
to the DBL language query turns out to be "false," then the
negation of qw/f will have been established.

A special case of T\ occurs if the binding for / is TRUE
or FALSE. When this happens, the truth or falsity of qwff will
have been established entirely within the metalanguage, without
the necessity of evaluating a DHL query.

Example. Let P and Q be two DBL propositions which we
intend to have the same meaning as the ML predicates P and
Q, respectively (wc can use the same names because we will
always know which language a formula is in). The ML also
contains the constructors P' and Q' of no arguments, whose
denotations are the DBL language formulas P and Q. We can
state that the DBL and ML predicates have the same meaning
by axioms of the following sort:

DB(F)~P
DB(Q>)=Q

P1 states that P (or Q) holds just in case the DBL formula
represented by P' (or Q') holds in the database. The axioms
P1 can be used to derive DBL queries equivalent to any ML
query that is a sentential expression over P and Q. Suppose
the original ML query is P\/Q. Then it is easy to show that,
by TR1 and P1,

DB(OT(P',Q')) = PVQ Ql.

The process of database query derivation is similar to that
of answer extraction in formal question-answering systems (5|.
The problem of finding a database query is reduced to that of
finding a proof of the first-order ML formula that is an instance
o f T l .

5. Predications on Individuals

In section 3 an abstract syntax was developed for DBL
constant predicates. But since an important part of the DBL
are terms referring to individuals, the abstract syntax must be
extended to include constructors for these DBL terms. In this
section we introduce the needed technical machinery for this into
the ML. Although the machinery itself may appear cumbersome,
the idea behind it is fairly simple: to state the correspondence

between terms in the DBL and the individuals they name. The
complications arise in keeping track of the distinction between
terms in the ML, terms in the OL, and the individuals they
denote.

5.1 The Denotation Function
We begin by defining a new sort, DBTS, that is the set

of DBL terms. ML terms or this sort will denote DBL terms.
Again, a primed convention will be used; e.g., the ML constant
term A' will denote the DBL constant term A. We can diagram
this relationship as follows:

The arrows in the diagram represent the denotations of the
terms. A and B as terms in the ML refer to the individuals
A and B in the domain of discourse; they are of the sort INDS.
Similarly, the terms A and B of the DBL also denote individuals
in the domain. The ML constants A' and B' (of sort DBTS)
refer to the DBL terms A and B, rather than individuals. There
is nothing special about using the same symbols in both lan
guages to denote these individuals; it is done here simply for
consistency of naming.

To construct DBL expression that involve predications over
arguments, the ML contains a primed constructor symbol P' for
each predicate symbol P of the DBL. The arguments of the ML
constructor P' are DBL terms, one for each of P's arguments.
Thus the denotation of the constructor P' is a DBL predicate
over DBL terms; P'(A',B') denotes the DBL predicate P(AtB).

Although it is possible for the DBL and the ML to have
different domains of individuals, it is technically convenient to
make them identical. This will make the correspondence be
tween quantified expressions in the two languages easier to state.
To assert that the DBL's model actually has enough individuals,
the denotation and naming functions must be introduced into
the metalanguage.

It is often useful to know, in the ML, what individual a
DBL term refers to. The denotation function A is used for this
purpose;7 it takes a DBL term as its argument, and returns the
individual denoted by that term. In the ML, the sorts of the
argument and result of the denotation function are given by:

Vn/DBTS 3 J / / N D S A(n) * *•

The A function can be understood more easily by examining
the denotation map for individuals in the ML and the DBL; it
maps between a DBL term and its referrent. Because, in the
ML, A' refers to the DBL term whose denotation is the same as
the ML term A, we write:

5.2 Standard Names
In any language, there may be many different names for the

same individual; e.g., we could speak of the Lafayette as "the
ship commanded ' v Jones." Such names might change their
denotations in different circumstances, however. It is handy to
have a name for each individual that is always guaranteed to
refer to that individual; these are called standard names. All
of the constant terms that we will introduce into the DBL will
be such standard names (e.g., I*AFAYETTE from section 2),
7 Church (2) introduced the denotation function to formally describe the
denotation of terms in the object language-

499

since there it no need to have more than one constant term for
the same individual in the DBL.

In the ML, it will be useful to construct the standard DBL
name for individuals. We define the standard name function n
of one argument, an individual. The value of n is the standard
DBL constant term that refers to that individual. Thus we
would write:

and

In the denotation diagram above, n is the mapping from in
dividuals to their standard name in the DBL.

We state here two useful properties of the standard name
function:

DN\,

DN2.

The ML function constructs the DBL equality predicate of
its two arguments. DNX essentially says that the two DBL
standard names for different individuals actually do refer to
different individuals. DN2 establishes 17 as the DBL standard
name function for all individuals referred to by the ML, because
it guarantees that the denotation of an individual's DBL name
is indeed that individual.

5.3 Quantified DBL Expressions
Quantified DBL expression are constructed with the ML

functions some and all. Both these functions take three argu
ments: a DBL variable name, a DBL sort, and a DBL expression.
We will generally use ML constant terms t' and S' to denote DBL
tuple variables t and s, and primed constant terms to denote the
corresponding sorts in the DBL. Thus:

5.4 Corner-Quotes
The abstract syntax can be a cumbersome way of naming

complicated DBL expressions within the ML. To reduce the
notational burden, we introduce an abbreviation device: we will
let a DBL expression stand for itself in ML formulas. The DBL
formula will be set off with corner-quotes from the rest of the ML
formula so that there is no confusion. Here are some examples
of the use of corner-quotes:

The translation between corner-quote abbreviations and their
corresponding ML terms is straightforward: all predicate and
term symbols in the corner-quote expression are replaced by
primed symbols, and booleans and quantifiers map back to their
constructors in the ML. It should be noted that the corner-quote
convention is strictly a device for abbreviation of M l . terms; it
does not introduce any logical machinery into the ML.

500

By using PA above, either of the following two DBL expres
sion can be proven to satisfy Q3:

Given just PA, it is not possible to find a DBL expression
corresponding to the query, "Is Jones the doctor on board
USN123?" The domain of discourse represented by the
DOC predicate properly subsumes the database's informa
tion on the subject. Thus it is possible to represent this
query in the ML, but not in the DBL.

7. Incomplete Information

In the previous section, we encountered an example of a
database which had incomplete information about the domain
of discourse: there was no representation for which doctor was
on board a ship, just an indication that some doctor was present.
In this section, we will examine a few of the more common ways
in which a database may have incomplete information about the
domain. This catalog does not exhaust the possiblities available
for characterizing the relationship of a database to its domain
within the MI.; but it does show how to deal with a few of the
more common situations that arise in practice.

7.1 No Attachment for a Predicate
It often occurs that some part of the domain of discourse is

just not referred to at all by the database. For the sake of con
ceptual completeness, for example, we may allow the user to ask
about properties of ships that are not included in the database
under consideration. In this case, there will be a predicate in
the ML that refers to the property, but no corresponding DBL
tuple set. The ability to deal with this type of incompleteness
is particularly important in building systems that must interact
with users who are unfamiliar with the contents of a database.

A special case of this type of incompleteness occurs when
a ML predicate has only a partial correspondence in some
database relation. An example of this is the DOC predicate
in the previous section (axiom PA); only ML queries involv
ing existential quantification over the doctor argument could be
answered. Partial correspondence of a ML predicate is charac
terized by the ability to find DBL expressions for some, but not
all of the ML queries containing the predicate.

7.2 Only-if Incompleteness

The correspondence previously stated between the COM
predicate and the COMMANDR relation, expressed in P3,
used an equivalence connective. The only-if half of this connec
tive is important for the derivation of DBL expressions equiv
alent to ML formulas involving COM. This is because the only-
if half of F3 states that if the tuple {A,B} is not present in the
COMMANDR relation, then A does not command B.

In many cases, however, the interpretation of a database
relation is that if a tuple is present, then the relationship holds
between those; individuals; but if it is not present, it cannot
be inferred that the relationship does not hold. All of the
positive instances of the relation correspond with the domain
of discourse, but not the negative instances. For example, it
may be the case that all of the commanders of U.S. naval ships
are known, but not those of foreign naval ships. Then the axiom
P3 is too strong, and must be weakened to an implication:

This axiom it not strong enough to allow the derivation of equiv
alent DBL expressions for the COM predicate, but may still be
useful in an intelligent question-answering system. Failing to
find a proof of an instance of T\ for a ML query, such a system
might weaken T1 to find a DBL formula that implies, but is not
implied by, the original query. If a positive answer is returned
from the database, then the original query is true; if not, no
conclusion can be drawn.

7.3 Domain Incompleteness
Since the DBL is a tuple calculus, there is no ex

plicit quantification over subdomains of INDS, e.g., SHIPS,
OFFICERS, etc. How then can DBL queries be formed that
ask whether a property holds for all the members of one of these
sets? For example, consider the ML query:

This asks whether all ships have a length greater than 344.4
meters. Suppose we assume that every ship length is represented
in the SHIPR relation:

PS is not sufficient to answer QS; the reason is that we have
not stated anything about whether all ships are included in the
SHIPR relation or not. A counterexample to the truth of QS
would be a domain where there were some ships that did not
have lengths. The best we can do with PS is to derive the
equivalent ML formula:

where there is still a ML quantifier over all ships.
Domain incompleteness is thus automatically assumed un

less explicit non-logical axioms are included to counteract it.
For the ships world we are using as an example, we want to
say that all ships in the domain are to be found in the SHIPR
relation; on the other hand, not all LENGTHS or NAMES
need be present. That is, the domain LENGTHS is assumed
to be the rational numbers in the interval (say) (100,1000]; at
any given moment, only a finite subset of these will be present
in the SHIPR relation. Similarly, more NAMES are available
than are in use.

To state the completeness of the SHIPR relation with
respect to SHIPS, we assert:

That is, a universal quantifier over SHIPS can be moved inside
the DD predicate to the SHIPR relation. The use of P6 enables
us to prove that the following DBL expression satisfies QS:

On the other hand, because there is no explicit domain com
pleteness axiom like PS for LENGTHS, the question "Is there
some ship of every length?" cannot be answered by a DBL
query.

501

The ability to correctly represent that the database has
only partial information about a domain of individuals enables
us to allow infinite domains in the database, without deriving
DDL expressions that yield counterintuitive truth values for ML
queries. If answering a ML query involves quantifying over an
infinite domain, then no equivalent DBL expression will ever be
generated for it.

8. Other Issues

In this section we will briefly describe how open queries
can be accomodated in the metalanguage approach. We will
also examine some of the ways in which a question-answering
system might use the representation to respond intelligently to
user queries.

8.1 Open Queries

Open queries are queries whose answer is a set of in
dividuals, rather than a truth value. In the metalanguage, open
queries can be represented by a formula that has one or more
free variables in it. The answer to the query is the set of those
individuals that, when substituted for the free variables, make
the query true.8 For simplicity, we will consider open formulas
with only one free variable. The free variable will be indicated
by enclosing it in square brackets next to the ML formula: M\x\
is a ML formula with free variable z. Free variables in the ML
will always be of the sort INDS.

In the DBL, we will allow free variables over the simple
(non-tuple) domains. Because of the finitencss of the DBL tuple
domains, DBL expressions involving free variables have the im
portant property that only a finite set of individuals will satisfy
the expression when substituted for the free variable.9 A DBL
query with a free variable is thus guaranteed to return a finite set
of individuals; further, because of the computational properties
of the DBL discussed in the second section, there exists an al
gorithm for determining this set.

The problem of finding a DBL open formula that cor
responds to a ML open formula can be stated in terms similar
to T l , the schema for closed queries:

T2.

Here is the DBL expression constructed by substitut
ing the term TJ(Z) for the free DBL variable or in /. If a con
structive proof of T2 can be found, then it will yield an open
DBL formula whose truth value is the same as that of M\z\ for
every individual z.

8.2 Types of Questions and Answers
The ability to formalise the relationship of the database to

the domain opens up new possibilities for intelligent response to
a user's queries. One type of query that can be readily handled
in this framework is a request concerning what information
the database has about the domain. For example, suppose a
naive user wants to know if the database has information about
what doctors are on board which ships. This question could be
phrased in the ML as:

'Reiter (12) extends the notion of the answer to an open query to disjunctive
combinations of individuals, e.g., "either Smith or Jones commands the
Lafayette." We do not consider this complication here.

•To show this, it is necessary to exclude from the DBL expressions of the
form a = Q, where a free variable.

If this ML formula could be proven, then any query about
individual doctors and ships could be answered. Note that
we are not interested in evaluating the DBL formula that is
a binding for / in this case; rather, we wish to establish the
existence of a class of DBL formulas.

In a more speculative vein, we might consider integrating
the ML/DDL framework with current AJ formalisms for the
representation of changing states of the world, most notably
the situation calculus (10). Suppose each ML predicate were
extended to take an additional argument, a situation in which
the predicate was to hold. Thus DOC(x,y,s) would mean that
z was the doctor on board y in situation a. There would be
some distinguished situation 50, the current state of the world,
about which the database would have information. It would
then be possible to correctly represent and answer user queries
that made the distinction between a proposition always being
true of the domain, as opposed to true in the current situation.
For example, consider the two queries:

Is there always a doctor on every ship?
Is there a doctor on every ship now?

The first of these can only be answered by proving a ML formula
over all situations; the second can be answered by consulting the
current state of the database.

If several previous copies of the database are kept around,
then it is also possible to answer queries about past situa
tions. Suppose, for example, that the day associated with each
situation is kept in the MI,, and a separate copy of the daily
database is available for querying. Then queries such as "Do
more ships have doctors on board today than yesterday?" could
be answered by evaluating two database queries and computing
the answer from the values they returned.

9. Relation to Other Work

Some recent work in formalisms for database representation
has been collected in |4j. This work differs broadly from the ap
proach presented here in that the dabatase is viewed as a set of
ground atomic sentences in a first-order theory of the domain
of discourse, rather than as a model. There arc several disad
vantages to interpreting the database as part of the syntactic
description of the domain, which the approach described here
does not suffer from:

e Because the database tuples are taken to be part of the lan
guage that describes the domain, special algorithms must
be formulated to translate from a formula containing non-
database predicates to an equivalent one containing just
database predicates,

t Special assumptions about incomplete information must
be made, because it cannot be assumed that the negation
of a tuple not present in a relation holds. These special
assumptions, which have been called the Closed World As
sumption and Domain Closure, do not always correspond
with our intuitive notions about incomplete information
in the database, and do not give the required flexibility
in axiomatizing the relationship of the database to the
domain.

• The representational power of the first-order language
used to describe the domain is severely restricted in order to
carry out database query derivation in the presence of the
incompleteness assumptions. In particular, these systems
forgo the use of existential quantification and function sym
bols in axioms that connect the database and non-database
predicates. This means, for example, that a relationship

502

such as Pi could not be encoded.
The systems described in [<l] suffer from these limitations

to a greater or lesser extent, depending on which trade-off they
choose to make. For example, Chang [l] chooses a very restric
tive form for his axioms, but has a simple algorithm for deriving
equivalent formulas that involve only database relations. Reiter
[12] relaxes these restrictions somewhat, and also gives an exact
account of the assumptions being made about incomplete infor
mation; but his derivational algorithm is more complicated.

It should be mentioned that the criticisms leveled above
apply to the so-called evaluational approach to database query
derivation, which is assumed in this paper. That is, the database
is presented a priori, and must be addressed by a separate
query processor whose communication overhead is high relative
to deduction outside the database. With this assumption, it is
reasonable to try to transform the full query to one that can be
evaluated all at once against the database. Other systems, such
as [7], assume a much tighter coupling between the database and
the non-database parts of the first-order theory. The database
is assumed to be simply a repository for atomic ground formulas
that can be accessed during the course of a proof, although some
attempt is made to minimize the total number of accesses.

10. Conclusion

We have taken the view that the information content of
a relational database can best be represented as a model of a
particular type of first-order language, a tuple relational cal
culus. This view has proved particularly useful in two respects.
First, by axiomatiding the database language and its associated
model in a metathcory, we have been able to describe in a power
ful and flexible manner how the database corresponds to the
domain of discourse. This is a representational advance, be
cause AI systems that must address databases need just this
facility. Secondly, viewing the database as a mechanizable
model of the DBL enables us to take advantage of the computa
tional properties of database query language processors. Once a
database query that is equivalent to an original query is derived,
it can be evaluated against the database to determine the truth
of the original query. Thus the algebraic operations of the
database processor can be incorporated in an elegant way into
the deductive process of question-answering.

A final word about implementation. An initial algorithm
that incorporated some of the ideas about incomplete infor
mation in the database was implemented for the D-LADDER
project [8|. A restricted first-order language (the conceptual
schema) was used to represent the domain of discourse, and
a query expressed in this language was transformed by the
algorithm into the database language SODA |11|. However,
this algorithm did not take advantage of the power of the
metalanguage encoding. In KLAUS, an intelligent knowledge-
acquisition and question-answering system, we intend to imple
ment the ML/DBL structure as described in this paper, and
explore the complicated issues of deduction that will arise.

REFERENCES

[1] Chang, C. L., "DEDUCE 2: Further Investigations of Deduc
tion in Relational Data Bases," in Logic and Data Bases, H.
Gallaire and Jack Minker (Eds.), Plenum Press, New York
(1978).

(2) Church, A., "A Formulation of the Logic of Sense and

Denotation," in Structure, Method, and Meaning, P. Henle
et. at. (Eds.), Liberal Arts Press, New York (1951).

(3) Codd, E. F., "Relational Completeness of Data Base Sub
languages/ in Data Base Systems, R. Rustin (Ed.), Prentice-
Hall, Englewood Cliffs, N.J. (1972).

[4] Gallaire, H. et. at., "An Overview and Introduction to Logic
and Data Bases," in Logic and Data Bases, H. Gallaire and
Jack Minker (Eds.), Plenum Press, New York (1978).

[5) Green, C. C, "Theorem Proving by Resolution as a Basis for
Question Answering Systems," in Machine Intelligence 4, B.
Meltzer and D. Michie (Eds.), American Elsevier, New York
(1969).

[6] Hendrix, G. G. et. ai, "Developing a Natural Language
Interface to Complex Data," ACM Transactions on Database
Systems S, 2 (June 1978).

(7) Kellogg, C. et. ai, "Deductive Planning and Pathfinding for
Relational Data Bases," in Logic and Data Bases, H. Gallaire
and Jack Minker (Eds.), Plenum Press, New York (1978).

(8) Konolige, K., "A Framework for a Portable Natural-
Language Interface to Large Data Bases," Artificial Intel
ligence Center Technical Note 197, SRI International, Menlo
Park, California (October 1979).

[9] McCarthy, J., "Towards a Mathematical Science of Com
putation," Information Processing, Proceedings of the IFIP
Congress 62, North-Holland, Amsterdam (1962), pp. 21-28.

(10) McCarthy, J. and Hayes, P. J., "Some Philosophical
Problems from the Standpoint of Artificial Intelligence," in
Machine Intelligence 9, B. Meltzer and D. Michie (Eds.), Edin
burgh University Press, Edinburgh (1969), pp. 463-502.

[11] Moore, R. C, "Handling Complex Queries in a Distributed
Data Base," Artificial Intelligence Center Technical Note 170,
SRI International, Menlo Park, California (October 1979).

[12] Reiter, R., "Deductive Question-Answering on Relational
Data Bases," in Logic and Data Bases, H. Gallaire and Jack
Minker (Eds.), Plenum Press, New York (1978).

[13] Ullman, J. D., Principles of Database Systems, Computer
Science Press, Potomac, Maryland, 1980.

[14] Woods, W. A. et. ai, "The Lunar Sciences Natural Lan
guage Information System," BBN Report 2378, Bolt Beranek
and Newman, Cambridge, Massachusetts (1972).

