SYMBOLIC EVALUATION OF LISP FUNCTIONS WITH SIDE EFFECTS FOR VERIFICATION

Dennis de Champeaux

Bedrijfsinformatica,

ABSTRACT
In this paper we present a symbolic evaluator
of LISP functions. It can handle data-altering
functions of the RPLACA type, i.e. functions that

change one datastructure by replacing parts of it
by other structures that will themselves not be
changed further, at least not permanently. The
state description language uses first-order
predicate calculus. It is argued that symbolic
evaluation in terms of this language, although

theoretically adequate, is not feasible in general,

since it may require extremely complicated
specifications for real-life functions with side
effects. Examples are given of the specifications
needed to verify several versions of SUBSTAD, a
non-copying SUBST.

Keywords; LISP, symbolic evaluation, verification

of data-altering functions, calculus,

frame problem.

predicate

1, Introduction

In 1978 we published SUBSTAD, a non-copying
version of SUBST [1]. Comparison of these two
functions in the context of a unification algorithm
showed some very favorable results. Two years later
we found out that the results were biased by a bug
in our machine implementation of SUBST.

This experience increased our interest in
verification, in particular of functions with side
effects, such as SUBSTAD. These functions pose a

challenge to verifiers. One simple RPLACA can have
consequences for every datastructure around.

Very few practical, ready-to-use techniques
are available at present. The theoreticians of
program verification (for an overview, see [5]) are
developing languages (Dynamic Logic e.g.) that
abstract away from real application, concern
toy-like programming languages and tend to be
considered as interesting objects by themselves.

More promising seem concrete efforts like that
of Topor [8], who verified the correctness of the
Schorr-Waite marking algorithm, an algorithm
somewhat similar to SUBSTAD. His proof by hand is
reasonable to follow, but we are interested in
actually automating the verification process as
much as possible.

Faculty of Economics,

Jos de Bruin

University of Amsterdam

We developed a program that can keep track of
the many details involved when checking all
possible branches of computation trees. We have
chosen the method of symbolic evaluation [3,6],
because it guarantees that every branch is visited
and that all preconditions to operations are
considered.

Symbolic evaluation requires the addition of
input/output specifications to the program code and

of invariants to each loop in that code. The code
is evaluated with symbolic input values that
conform to the input specification, producing a
symbolic output value for each branch through the
code. The symbolic evaluator should embody the
semantics of the operators used in the code, in our
case (at least) the subset of LISP primitives used

in SUBSTAD. For each of those operators it should
be able to transform the description of the state
in which this operator is called into a description
of the state it creates.

It has to be verified that all of the output
values produced are in accordance with the output
condition. This, as well as checking entry and loop
conditions, can be done "manually" or by a theorem

prover. Although we have been experimenting with
COGITO, our theorem prover (for results see [2]),
our conoern here is the automatic updating
concerning funotions with side effects, like
RPLACA. For details on the actual proofs (by hand)
see [2].

2. The state Description Language

In order to facilitate deduction, the state
description language wuses first-order predicate
calculus. We start off with a countable domain of

cells C and a countable domain of atoms A, where C
and A are disjunct. Let D be their union:
D =C U A. We will have the partial functions:
— car and cdr, with domain C and range D; and
— addr, with domain D and range N, the natural
numbers.
We will have the partial predicate:
— atom with domain D, and which,

with

defined,

the characteristic predicate of

where

coincides
A.

Using the we define the
relation ega with:
(¢)(e){ sqa(d,s) <=w> addr(d)saddrie) },

for d, & in D where addr ia defined.

ALIOM 1
($){a){ eqa{d,e) ==> [atom {d) —> dae } }, for d,
s in D.

ALlOM 2

{(Q)(e)} { ~atom{d} & eqaid,e) &
cer{d) = osri{e) & cdr{d) = odrie)] -=>

addr=function,

dzoe };
for d, » in D. Axiom 1
non=atomic.

We define a gata oblegt D to be an element of

the powar sat of D:
1) with D_ of finite size,

2} with C,. and A, the elements of D, respectively

in C and A,
vith car{C.) and cdr(C.) subsets of D,., and

with a unique element r in Dr' the root of Dr'

which hss the property that all other sesbers of
D. oan be reached from r by finite car/cdr

chaina,
from now on we mention data objects Dy referring to
thair roots.

Recuraive definitions on data objeots rum the
risk of bdeing undefined dus to infinite reagresa,
aince data objects may contain cycles - a cell can
reach itself along a car/odr chain, The finiteness
of data objacts is the vay out of this probles.
Most recursive definitions that we will give in the
ssquel apply to data objects that have the aspecial
forsat of a tree. For generalizationa to arbitrary
data objects, see [2].

Recuraive definitiona on tress invoke in
proofs an appsal to the so-called car/cdr
induction. Whenever a rformula P(x) reduces to a
forsula P{car(x)) and/or P{odr(x)) then oar/odr
induction allows the ccnclusion that P(x) has been
infarred. Thia is justified by the obssrvation that
a well founded relation can be conatructed (in most
casea the number of cells reachabla from x) that
decreases on sesach recursive refersnce. Handled
carefully, . this also applies to recuraive
definitions with non-tree arguments,

Next we give definitions of the predicates
partof and loopfree. The definition of partof works
only on trees. {(+ is the disjunction conneotive):
(d)(e)| partof{d,e)} <-s>

[partofcar(d,e) + partofcedrid,e}] }
(d){e)}| partofoar(d,e} <==)
[~atomie) &
{ decar{e) « partof(d,car{e})) 1}
(d)(a){ partofodrid,s) <-->
["atom{e) &
{ deodr{e) + partof{d,cdrie))) 1}

enaures that ¢ 1is also

3}
4}

520

{d){ loopfree{d) <==> loopfresi{d,0) }

(d)(¥}{ loopfree{d,¥) <-->
[atomi{d) «
{ “(d in V) &
loopfreei{car{d),(d} U ¥) &
loopfrest{cdri{d),fd} U V¥) }] }.

The expression partof(d,e) signifies that the data
object e contains a cell or atom identical to the
root of d. Loopfree defines the property that a
data object does not contain a cycle.

A state description is a conjunction of facts

referring to a finite number of data objects,
always containing the data objects nil and t,
corresponding with NIL and T, members of A, for
which holds: atom¢(nil), atom(t) and ~(t*nil).

A state description may refer to 'virtual*
data objects, which existed during earlier states.
Two data objects are compatible, if they can
co-exist:

(d)(e){ compatible(d,s) <-=>
[atom(d) + atom(e) «

{(equi{d,s) & dze) »

{ “eqaid,e}) &
compatible{d,car(a)) &
compatible(d,cdr(e)) &
compatible{ocar(d),e) &
compatible{cdr{d),e))]},

When two data objects are non-compatible at least
one has to be virtual. The RPLACX operations are
responsible for making data objects virtual.

DEFINITION: An glist ia a finite 1lisat of pairs
((31,r1), (ln,r'n)) with a, atoms unequal nil

and r, the roota of data oblects,

while for each
pair ry, ry we have: colpltiblo(ri,rj).

The alist contains the current bindings of the

atoms. A data object is virtual with respect to an
alist if it is non-compatible with an r* from that
alist. An atom may occur more than once as a first
element of a pair, for Instance as a oonsequence of
recursion. LISP functions retrieve and update
leftmost occurrences. Side effects may propagate to
the right in the alist. Extensions and

contractions, as a consequence of entering a higher
or lower stack level, also occur at the left.

DEFINITION: A s/ft oonflfiUriUofl pair
(AL,FL) with AL an alist and PL (the factlist) a
state description. Atomicity of nil, t and all
atoms a” on the alist is implicitly assumed.

is a

T. lufi SYrtQllc. EYIUftWr

When given LISP-code and a state configuration
the symbolic evaluator generates a tree of state
configurations, corresponding to all possible
computation paths through the oode. The symbolic

evaluator works like a real LISP evaluator. It has

a code pointer, corresponding to a program counter,
to that part of the code which has to be executed,
it contains modules which correspond to built-in
LISP funotions and it knows what to do with user
defined functions.

A non-numerical atomic form is evaluated by
retrieving the most recent (i.e. leftmost) binding
from the current alist.

For built-in functions, the recipe consists of
checking whether preconditions, parametrized for
the current arguments, are fulfilled and, if the
check succeeds, updating the state configuration.
An exception is made for COND. The COND-module
generates one or more bifurcations of the current
state configuration. The correctness of a
bifurcation (satisfiability of a test expression
and its negation) is not proven by means of the
deduction machinery but by constructing or having
available two models that possess opposite truth
values with respect to the test expression but are
both consistent with the current state
configuration. To construct these models one could
ask the user to provide several examples, which are
processed concurrently with the symbolic input
specification for the code (not implemented).
Testing by running examples and formal verification

should not be seen as mutually exclusive, but
should go hand in hand.

Modules are implemented for the following
subset of standard LISP functions: ATOM, CAR, CDR,

COND, CONS, EQ, EQUAL, GO, NOT, NULL, PROG, PROGN,
QUOTE, RETURN, RPLACA, RPLACD and SETQ. The
functions COND, GO, PROG, PROGN, QUOTE and SETQ are

of type FSUBR, i.e. evaluation of their arguments
is to their own discretion. The other functions
have automatic - left to right - argument
evaluation before module-specific actions are
taken.

An essential requirement for the modules is
that the compatability property of state
configurations is preserved. Our only worry is
RPLACA, RPLACD and SETQ beoause only those
functions affect the alist. We will describe some
of the modules.

ATOM
Let the argument of ATOM evaluate to x. A new
symbolic value will be generated, say g1, which

will be returned as the value, while the fact list
will be expanded with:
{ g1=t & atom(x) } + { g1=nil & ~atom(x) }.

The implemented version deals immediately with

the atomicity of x. It returns t or nil when
atomicity or non atomicity of x can easily be
derived from the given fact list, otherwise the
user is asked to Indicate whether t, nil or both
possibilities are to be pursued. In this last case,
it generates a bifurcation of the current
computation branch with t in one and nil in the
other branch, adding either atom(x) or ~atom(x) to

321

the respective factlist.

CAR (and analogously CDR)
Let the argument of CAR evaluate to x. In contrast
with ATOM there is a precondition check for CAR:

should be derivable from the current fact
new symbolic
returned and

~atom(x)
list. If that derivation succeeds a
value, say g2, is generated and
g2«car(x) is added to the faot list.

oOND
This function leads to bifurcation(s) of the
current computation branch, as described for the
implemented version of ATOM.

QONS
Let the arguments of CONS evaluate to x and y. A
new symbolic value, say g3> is generated and will
be returned, while the fact list will be extended
with: ~atom(g3), car(g3)=x and edr(g3)*y.

&0
We assume only backward jumps. The loop invariant
associated with the label to which GO refers,
provided by the wuser and parametrized for the
current bindings by the evaluator, should be
derivable from the current fact list. A non-looping
check, based on a well founded relation should also
be performed. Because jumps are always backwards,
we do not have to consider the current computation
branch any further.

RPLACA (and analogously RPLACD)

Let the arguments of RPLACA evaluate to x and vy.
The precondition for RPLACA is ~atom(x). A new
symbolic value, say g6, is generated and returned,
while the fact list is extended with: eqa(x,g6),
car(g6)*y and cdr(g6)=cdr(x).

Any non-atomic binding z1 on the alist, identical

to x or e«above* x, will be affected indirectly by
the RPLACA operation and has to be replaced by a
new binding z2 for which minimally holds:
eqa(z1,z2). In general: when a RPLACX operation
causes x1 to be replaced by x2 then each binding on
the alist, y1, will be replaced by a fresh binding,
y2, while the fact list will grow with:
eqaupto(y1,y2,x1,x2), which says: y2 is identical
with y1 unless there is a substructure of y1 that
is identical with x1. The predicate eqgaupto is
defined as:

(y1)(y2)({x1){x2){ eqaupto(y1,y2,x1,x2) <-~=>
{ eqaly1,y2) &
|yizxt ==> y22x2} &
[[~(y1=x1) & “atom{y1)] ~=>
{eqaupto{car(y1),oar{y2),x1,x2) &
eqauptol(edriyl),cdr{y2),x1,x2))}1}.

Remark: Whern the original binding y? is atcaic then

asccording to axiom 1 the new binding ¥2 1ia
idantical with yt.

LEMMA 1
Ix1=x2 & eqauptol(yl,¥2,x1,x2)} --> ¥yliszy2.

LEMMA 2

{-(x1xy1)} & “partof(x1,y1) & eqaupto(y1,y2,x1,x2}}
--) ¥lzy¥2.

These lemmas oan be wused to curb wupdating
activities. For proofs of these and other lemma's
and theorems, see [2].

THEOREM 1 Let
respectively replaced
RPLACX-operation
x2, thus with eqa(x1,x2),

eqaupto(y1,y2,x1,x2) and
implies compatible(y2,z2).

y1 and z1 be old bindings which are
by y2 and z2 due to an
that caused x1 to be changed into
then compatible(y1,z1),

eqaupto(z1,z2,x1¢x2)

SETQ
Let the second argument evaluate to X. The
precondition for SETQ is that the non-evaluated

first argument is atomic, say A. The binding of the
leftmost occurrence of A on the allst will be
replaced by x. If A does not occur on the alist -
i.e. when A is a global variable - then (A.x) will
be added at the righthand side of the allst.
Preservation of alist-compatability is ensured when
the evaluation of the second argument yields a
value compatible with the current bindings.

The modules not described trigger obvious
updatings. (For the equal predicate needed by the
EQUAL module, see [2].)

3.1, User Functions

Most LISP functions to be verified will
contain functions other than the above mentioned
primitive ones. These are provided either by the

user or are built-in. They can be handled by the
evaluator if they are accompanied by an input and
an output condition.

The symbolic evaluator first asks for (and
tries to assist with) a check that the input
condition is fulfilled and then looks whether the
user wishes this function to be verified. If so,
she will have to provide its body. Recursive user
functions will be opened at most once, for obvious
reasons. A well-founded relation, wuser provided,

should be
recursive call score strictly less with respect

used when verifying that arguments of a
to

that well-founded relation than the arguments at
the top level call. This was not implemented.

An output condition should describe the
resulting state in terms of the values used in the

input condition to enable the symbolic evaluetor to

update the state configuration in which the
function was called. This updating is
straigthforward when the function does not have
side effects and just returns a value, but built-in
and user functions of RPLACX-type need even more
complicated alist wupdating schemes than the one

given above for RPLACX.

Suppose we execute (NCONC LIS S1), where the
bindings of LIS and S1 are respectively lis and s1.
The rightmost leaf of SI, which must be NIL, will
be replaced by a pointer to its second argument S1.
Any datastruoture containing a pointer to lis or to
a cell lying on its 'spine' (i.e. the «cdr chain

522

starting at |lis) will be changed as a consequence
of this NOONC operation.

We will describe an alist update scheme for a
class of side effect generating functions,
including NCONC, EFFACE and our SUBSTAD support
functions SUBSTAD1 and SUBSTAD2. It applies to
those functions which cause replacement of a cell,
say x1, by a cell, say x2, (thus we have
eqa(x1,x2)).

Every binding, z1, on the alist is replaced by
a fresh binding, z2, and the fact list is expanded
with: transf(z1,z2,x1,x2). The predicate transf and
its supporting predicate tr1 and tr2 works by
double recursion. First, it is checked whether 2z1
is identical with x1 or - using tr1 - with a cell
reachable from xI. If the tr1-case applies the
predioate tr2 is invoked to relate z1 and z2.
Second, when z1 is not identical with x1 or a
subcell of x1 then transf is called recursively to
test whether subcells of z1 are affected by the
x1-x2 replacement.

The predicate tranaf ia defined as:

(¥1)(y2)(x1){x2){ tranaf{y1,y2,21,%2) <-->

[eqa(yl,y2) &
{x1=z¥1 -=> y2zx2) &
f["atom(y1) & ~(x1zy1) & tri(y1,xt,x2)] -->
tr2(yl,y2,x1,x2)} &
fl"atom{¥t) & "{x1zy1) & “tr1(y1,x1,x2}] -=>
[tranaf{car(y1),car(y2), x1,x2) &

tranaf{cdr(y1),cdr{y2),x1,x2)1}1},
with tr1 defined aa:

(y1)ix1)(x2){ tr1(y1,x3,x2) <-=>
[~atom(x1) &
eqa(x1,x2) &
{yl1zx1 +
sri{yt,car{x1),car{x2)} +
tri(yt,cdri{x1),cdr{x2})}]},
and with tr2 defined aa:

(yi){y2)(x1)(x2){ tr2{y1,¥2,x1,x2) C==>
[{,1::1 -3 YZ:::Z} 4
(“(y1=x1) -=)
{itri{yi,car(x1),car{x2)) —>
tr2{y1,y2,car(x1},car{x2})} &
(tr1(y1,cdr{x1},cdr(x2)) «>
tr2(y1,y2,cdri{x1),0dr{x2))111}}.

The seaning of the tranaf(z1,z2,x1,x2) formula can
be phrased as: let ¥1 bes z1 or a aubcell of 21, let
ul be x1 or & subecell of x1, while ul has been
replaced by uZ (so u2 1a identical with x2 or with
& subcall of x2), then, when y1 i identical with
ul, there ia a correaponding cell in 22, which is
identiocal with u2.

In analogy with lemma 1 and lemma 2, we have:

LEMMA 3
{x1=x2 & tranaf{y1,y2,x1,x2)} --> yisy2.

LEMMA %
({e){[2=xt » partof{z,x1}] -=>
[={z=y1) & “partof(z,y1)]} &
transf{y1,y2,x1,x2)] =)
yizy2.

THEOREM 2 Let
which are

and z1 be old
replaced by y2
due to an side-effect operation causing
be changed into x2, thus with eqga(x1,x2),
eoapatible(y1,z1), transf(y1,y2,x1,x2)

bindings
and z2
x1 to
then
and

y1
respectively

transf(z1,*2,x1,x2) implies compatible(y2,z2).
The limitations of this updating
scheme can be seen from the function
NCONC2, defined as:
(NCONC2(LAMBDA(LIS1 LIS2 S1)
(NCONC LISKNCONC LIS2 S1))))
A binding referring to the *spine' of the input

binding of LIS2 cannot be recognized and therefore
will not be updated, although it is not up-to-date
anymore.

We conclude that the user must be given the
option to specify a specific, idiosyncratic alist
update mechanism for any funotion having side
effects. This will considerably increase the
verification burden, since it will have to be shown

that
alist

the compatibility requirement for the updated
is fulfilled.

4. Evalulng SVBSTAP

To give an impression of the feasibility of
the method of symbolic evaluation as introduced
above, we will discuss our effort to verify
SUBSTAD. This function is called with three
arguments: S1, LAT and S3. It replaces al
occurrences of LAT in S3 by S1. The value of LAT
should be a non-numeric Atom. This is checked by
SUBSTAD, which also handles the case that S3 is
atomic. Otherwise it calls a support function with
one argument, S3.

The support function published in [1] wuses
pointer reversal to avoid the use of a stack, as is
done in garbage collectors. Before discussing this
function, we will make some remarks on the
verification of two simpler versions, to show how
the method works and to illustrate how a slight
modification in a program can lead to substantial

differences in its verification.

4.1, SURSTAD
First of all, the recursive SUBSTAD1:
{ SUBSTAD1{LAMBDA(S3) (PROG2
(COND{ (ATOM{CAR S53))
(COND({EQG LAT{CAR 53)}){RPLACA 53 S1})})
(T(SUBSTAD1(CAR 53)})))
{ COND{ (ATOM(CDR 53))
{ COND{ (EQ LAT(COR S3)){RPLACD 53 51})))
(T(SUBSTAD1{CDR 53)))}))).

523

The preconditions are:

- the binding of S3, say vs3, is not atomic;

- the binding of LAT, say lat, is atomic; and

- lat is not a leaf of the binding of S1, say vs1.
This last precondition is meant to prevent the
introduction of cycles.

To simplify the proofs, we will assume that
vs1 does not share substructure with vs3.
Consequently, lemma 4 will apply and therefore
updating of the S1 binding will never happen. (When
vs1 does share structure we can still Invoke
lemma 2, since lat is not a leaf of vs1.)

Since we assume the preconditions to hold, the

faot list will (implicitely) contain: atom(lat) &
~atom(vs3) * ~partof(lat,vs1).

The input allst is: ((S1.vs1) (LAT.lat) (S3.vs3)).
Assume the output allst to be: ((S1.vs1) (LAT.lat)
(S3.nvs3)).

The output assertion to be verified will be:
replacedd(vs1,lat,vs3,nvs3)»

with replaoedd (replacement with potential

destruction of vs3) defined as:
(x1}{x2)(x3){ot) {replacedd{x] ,x2,x3,0t) <==)
[eqa(x3,ot) &
{atom(car{x3}) -->
[(x2zcar(x3) --> car{ot)ax1) &
("{x2zcar{x3}) =-> car{ot)zcar{x3)) 1i &
[“atom(car{x3)) ==>
replacedd(x1,x2,car{x3) car{ot)} |} &
latom{odr({x3)) =->
[{x2ncdr{x3) --> odr{ot)zxi) &
{"{x2eodr(x3)) --> cdriot}zedr(x3)) 1] &
[~“atom{cdr{x3))} =>
replacedd{x1,x2,cdr(x3),cdr(ot}) 11},

There are 9 different paths through the code. We
will work our way along one of the paths.

Initially the fact list contains:
atom(lat) & ™atom(vs3) 4 -partof(lat,vs1).
Assuming that (ATOM(CAR S3)) vyields T we get in
addition:
xarcar(vs3) & atom(xa).
Assuming that (EQ LAT(CAR S3))

latexa.

RPLACA generates a new value, say nv1, adding:
eqa(nv1,vs3) & car(nv1l)«vs1 6 cdr(nv1)scdr(vs3).
The allst update scheme for RPLACA generates a new
binding for S3, say ivs3, so the allst becomes:
((Sl.vsD (LAT.lat) (S3.ivs3)),

while the fact list grows with:
eqaupto(vs3,ivs3.vs3,nv1).

Assuming that (ATOM(CDR S3)) yields NIL we get:
xdscdr(ivs3) * ~atom(xd).

yields T we get:

The next action concerns the recursive call on the
CDR. Its parametrized and simplified input
condition:

"atom(xd) & atom(lat) & "partof(lat,vsD,

is trivially satisfied. The function will not be
opened, but instead the faot list grows with:

replaocoedd(vs1,lat,xd,nxd) &
transf(ivs3,jvs3,xd,nxd),

while the allst changes into: ((S1.vs1) (LAT.lat)
(S3.jvs3)).
The output assertion to be proven for this
particular path is:
replacedd(vs 1,lat,vs3+Jvs3)

We will not give proofs. The general strategy

in this and following oases is a combination of
subproblem recognition, case reasoning, expansion
of recursive definitions and application of oar/cdr
induction.

4.2. SUBSTAP2

The treatment of SUBSTAD1 as given above was
slightly incorrect, although this did not affect
the result. Upon entry of SUBSTAD1 the alist is in
faot:
((S3.vs3) (S1.vs1) (LAT.lat) (S3.vs3)),
where the first occurrence of S3 cones from
SUBSTAD1 and the second one from SUB3TAD. The
output assertion of SUBSTAD1 did refer to the
second occurrence of vs3- This more subtle
treatment of the alist is essential for the half

recursive half iterative support function SUBSTAD2.
(SUBSTAD2(LAMBDA(S3)(PROG(HH)
AGAIN

(COND((ATOM(SBTQ HH(CAR S3)))
(CONDUEQ LAT HHHRPLACA S3 S1))))
(T(SUBSTAD2 HH)))
(COND((ATOM(SETQ HH(CDR S3)))
(COND((EQ LAT HH)RPLACD S3 Sl1))))
(T(SBTO S3 HH)
(GO AGAIN)))
)
Because of the assignment of the local S3 to
its CDR Just before the loop, we no longer have a
handle on the datastructure as a whole, to which we
must be able to refer in order to specify the loop
invariant and to enable a correct update of the
calling environment after exiting SUBSTAD2. The
problem is solved by refering to the global S3, the
argument with which SUBSTAD2 is called. (In general
a pre-prooessor should take care that all arguments
given to user defined functions are explicltely
assigned on the alist.)

Verifying SUBSTAD2 requires deducing the loop
invariant when oontrol reaches the label AGAIN upon

entering the function, deducing the output
assertion for six paths through the oode and
deducing the loop invariant for three paths.

The input alist is as given above. The output
alist, after exiting from SUBSTAD2 will be:
US1.vs1) (LAT.lat) (S3.nvs3)).

The input and output assertion are the same as for

SUBSTAD1. We have to provide a loop invariant with
the label AGAIN. This loop assertion will refer to
the current bindings of the variables, so we also
have to specify an alist at the label:

524

((HH.vhh) (S3.1s3) (Sl.vsl) (LAT.lat) (S3.gs3))

The value Is3 is the local value of S3, and gs3 s
the global value of S3. The loop assertion will be:
atom(lat) & ~atom(ls3) & ~atom(vs3) &

~partof(lat,vs1) &
spine(vs1,lat,vs3,gs3,1s3).

We will not give the definitions of spine and
other support predicates. Giving a general
description of the situation at the label is rather
complicated, since it is not enough to say that
every tree hanging off the spine above the local S3
has been checked and replaced if necessary.
Structure sharing may have led to changes in the
part of the tree that is still to be investigated.
It may even have caused the replacement of the
right most leaf of vs3 by a pointer to vs1, so S3
may eventually point to a cell for which there is
no corresponding cell in the original vs3.

We will just give one definition as an
example, for the others we again refer to [2]. The
predicate sidefct is used to describe that xp and
xq, which are parts of the not yet visited subtrees
x3 and x|l of the original (xo) and current (xn)
incarnation, are the same unless structure sharing
has led to side effects.
(x0)(xn)(x3)(xs0)(xsn)(xp)(xq)
{ sidefct(xo,xn,x3,xso,xsn,xp,xq) <-->
[eqa(xp,xq) &
{xsosx3 —>
[{atom(car(xp)) —> car(xp)scar(xq)} &
{~atom(car(xp)) —>
sidefct(xo,xn,x3,xo0,xn,car(xp),car(xq))} &
{atom(cdr(xp)) —> cdr(xp)scdr(xq)} &
{~atom(cdr(xp)) —>
sidefct(xo,xn,x3,xo0,xn,cdr(xp),cdr(xq))}]} &
{~(xso=x3) —>
[(car(xso)sxp —> car(xsn)sxq) &
(~(car(xso)rxp) —>
[{tr1(xp,car(xso),car(xsn))
tr2(xp,xqg,oar(xso),car(xsn))} &
(~tr1(xp,car(xao),car(xsn)) —>
sidefct(xo,xn,x3,cdr(xso),cdr(xsn),xp,xq)}]

—_—>

Symbolic evaluation of SUBSTAD2 generates fact
lists that are much longer than those generated for

SUBSTAD1, since the alist in this case contains
three arguments (HH, local S3 and global S3) that
have to be updated after an RPLACX or a recursive
call to SUBSTAD2. This, and the greater amount of
predicates needed to specify the loop invariant,
made verification of this function just barely
feasible. The great difference in verification
effort caused by a slight change in the code,
challenges the claim that once a program is
verified, modifications will require very little
additional effort.

4.3. SUBSTADP

The disparity between amount of oode and
amount of ad hoc definitions is even worse for
SUBSTADP:

(SUBSTADP{LAMBDA(S3) (PROG(EX HR)
(SETQ EX §)
L2
(SETQ HH{CAR 53))
(COND({NOT(ATOM HH)}
{MARX S3 1}
{RAPLACA 53 EX)
(SBTQ EX S53)
(SETQ S3 HH)
(o0 L2))
((EQ LAT BH)}{RPLACA 53 51)))
Ly
{SETQ HH(CDR 53))
(COND{{ATOM HH))
({NOT{EQ EX $))
(RPLACD 33 EX)
(SETQ EX S53)
(SETQ 53 HH)
(G0 L2})
{T(SETQ S3 HH)
(GO L2)))
(COND({EQ LAT HH){RPLACD 83 51}))
(COND{(EQ EX $}{RETURN)})
LS
(SETQ HH 53)
{SETQ S§3 EX)
(COND{ (MARKS S83)
{MARK 53 0)
(SETQG EX{CAR S3))
{RELACA 53 HH)
(GO L4Y))
{SETQ EX({CDR S3))
(APLACD 53 HH)
(G0 L5)
}))tend of the pointer reveraal SUBSTADP?

In this version, the use of a stack is avoided
by reversing pointers, i.e. when the car or cdr
part of a cell is non-atomic, this part is saved,
while the car or cdr is replaced by a pointer back
to the parent cell immediately above it. Marking is
used to indicate whether the car or the cdr part of
the cell contains the reversed pointer. The tree is
searched in a depth first manner.

The code contains three labels, so in addition
to the input and output assertion we have to set up
three loop invariants. Describing the situation at
the various loops is extremely complicated because
of the much greater number of (temporary)
replacements.

We defined the predicates that are necessary
to describe the situation at one label, L2,
assuming that vs1 is atomic. Even with this drastic
simplification, we needed a staggering amount of
definitions: eleven predicates, several of them
with seven arguments and totalling nearly 200 lines
of text (see [2]). To get an impression of what s

Involved, glance at the definitions of two
predicates, Ib2at3 and its support |Ib2at5. They
describe the subtrees hanging off the spine above

the inverted pointer chain.

523

(va1)(lat)(ex)(13}(ol){nw)
{ lb2at3(vel,lat,ex,13,0l,nw)} C=a)>
[eqalol,nw) &
{onichain(ex,nw) ==> 1b2atS{va1,lat,ex,13,0l,n%)}
[3
{“onighain{ax,nu) ==>
[{atom(car({ol)}) ==>
[{car(ol)zlat ==> car{nw)sval} &
{~{car{ol)zlat) --> car(nwizcar(ol)l]l &
{“atos{car{ol)) -->
1b2at3{vsi,lat,ex,13,0ar{ol),car{nw})} &
{atom(odr{ol)) -->
[{edr{cl)slat --> cdrinw)eval]} &
{“(cdr{cl)alat) -~> odri{nw)acdr(ol)}]} &
{“atom{cdri{ol}) -->
1b2at3{val,lat,ex,13,cdr(ol),0drinw)}})i]}.

This predicate mainly looks whether nw - whioh is
alresdy visited - is residing on the inverted
pointer chain, which may be oauasd by atructure
sharing. If so the predicate lbzatf will deacribe
the altuation.

{va1){lat){ex)(13){0l)(nw)
{ lb2at5({vat,lat,ex,13,0l,nw) <-=>
[eqalol,nw) &
[exznw ~=>
[{markb{nw} -->
[replacedd{vs1,lat,car{ol),13) &
{atom{cdr{ol)) -->
[[odr{cl)slat =~> cdrinw)=vall &
{~({edr(ol)=lat) -=> cdr{nw)=zodr{al}])l} &
[“atom{cdr{ol)) -=>
replacedd{vsi,lat ,odr{ol),adr{nw)))]} &
{ “markb{nw) =.>
{atom(oar(ol)) =>
{{car{ol)zlat --> ocmr{nw)=val} &
{~{car{cl)=lat) --> car{nmw)scer{ol)}]} &
[“atom{car{ol}) =->
replacedd{val, lat car{ol},car(nw))} &
replacedd{vsi,lat,cdr{ol),13)]11) &
{*{exanw) ==
[imarkb{nw) ==>
[latom(cdr{cl)) -->
[fodr(ol)alat —-~> odr(nw)svall} &
{~(odr(ol)slat} ==> cdrinw)zcdri{ol)}]} &
[“atom{odr{ol)) =->
1b2st3{vst,lat,ex,13,0dr(ol),cdrinw})} &
{E icel)(onichain{ex,iocel) &
1b2at5({vsi, lat ,ex,13,00r{0l), ioel) &
[markb(icel) --> car(icel)asnw] &
["markb{icel) --> cdr{icel)znw]}l} &
{"markb(nw} ==>
[{atom{car{ol)) ==>
[{car{ocl)zlat ==> car{nw)zvel} &
{~(car{ol)slat) ==> car(nw)scar{ocl)]]) &
{“atom{car{ol)) -->
1b2ati{va1,lat ,ex,13,car{ol), car{nu))]} &
(E icel){cnichain(ex, joel)} &
1b2at5{vs1,lat,ex,13,cdr(ol),icel) &
[markb(icel) —=> ocar{icel)snw] &
[“markb{loel) ==>
edr(ioel)anw]))11},

When nwsex, we can describe it with replaoedd,

keeping in mind whether its car (markb) or its cdr
("markb) contains the back pointer.

If nw lies somewhere else on the Inverted
pointer chain and the non-reversed pointer points
to an atomic structure, describing this part is
straigthforward. However, if it is non-atomic, we
have to recursively Invoke Ib2at3, because
structure sharing between that part of nw and the

reversed pointer chain is again possible.

To describe the part originally pointed to by
the now reversed pointer, we have to use
existential quantification. We do not have a direct

pointer to it, but we know were to start (at EX)
and we know its unique identification:
eqa(icel,car(ol)). This identification is part of
Ib2at5.

Possible structure sharing similarly
complicates the description of subtrees on the

inverted pointer chain, under 13 or to the right of
the inverted pointer chain.

5. Discussion

Although we were able
evaluator that can handle the functions we were
interested in (and no doubt a host of others), it
was not possible to give a completely general
update algorithm to handle all RPLACX-type
functions. We defined one for a common class, in
which one datastrueture is changed by replacing
certain subparts by other dataatructures that will
not themselves be mutated before the function s
exited (at least not permanently). To make the
verifier a general one, it should allow the user to

to write a symbolic

specify her own update procedures in other cases.
Since compatibility will have to be proven by the
user in those cases, this places a rather heavy
burden on her.

The algorithm given is extremely oareful,
replacing all bindings on the aliat after every
call to an RPLACX-type function. This has its
price. Updated bindings need potentially

complicated proofs to show their invariance, even
though it may be very obvious (to us) that in fact
they could not have been changed at all. Of course
one could keep the number of updated bindings down

by incorporating the lemma's given above and other
specific knowledge into the evaluator, but this
would amount to pushing the problem around.

The attempt to give correctness
several versions of SUBSTAD revealed that the
method of symbolic evaluation - although
theoretically adequate - flounders in some cases on
a practical problem: formal description of
input/output statements as well as loop invariants
leads to a proliferation of ad hoc definitions. We
expect this to hold for all currently available
verification techniques. If so, verification
specialists may be adviced to give more attention
to the practical implications of their theories,

proofs for

526

instead of devoting all their energies to esoteric
refinements, or even to the design of logics that
become an end in themselves.

The bottle-neck lies in the necessity to
specify in state-description terms what a function
is supposed to do. Whether a funotion is recursive
or not is not even explicitly expressible in such a

specification. Somehow people feel more akin to a
definition in procedural terms, such as "the
terminals equal to lat will be replaced by vs1" and
“the tree will be visited from left to right".
Proving correctness of a function would then
‘reduce’ to showing that the function behaves
according to expectations rather than that
input/output description pairs conform to a certain
relation.

The technique we have developed for describing
evolving states using an aliat, a fact list and
predictates like equaupto and transf that capture
specific side effects, may be of interest to other
areas of A.l.. The alist oan be considered a
collection of individual concepts, where the
bindings are the actual extensions. A new situation
differs primarily in that some concepts have
different extensions, which are described by fresh
facts. Outdated facts do not have to be deleted but
merely become invisible since they contain
arguments not residing on the alist any longer.

This more procedural approach
problem seems to have advantages over the

to the frame
strictly

declarative method given in [7]. There is no need
for wieldy axioms to express that when
P(x,...,z,s1) holds in situation s1 and some
conditions are fulfilled, the fact P(x,...yzys2)
can be inferred in s2. Instead we have a different
problem. A fact may seem to be obsolete (since an

argument has been removed from the alist) while an
analogous fact can be inferred for a newly
introduced extension. We have encountered this in

lemma 1-4, where particular circumstances allow one
to equate the old and new binding.

Since updatings and the recognition of
identities are object centered and therefore may
affect many facts simultaneously, this problem
seems less obstructive than the original one, but
more thinking and/or experimenting is needed to
validate this suggestion.

Although we agree with De Millo e.a. [4] that
the present verification tools do not lend
themselves to practical use, we do not share their
conclusion that the whole effort should be
abandoned. Verifiers will probably always run into

resource limitations, but to assume that they will
never be able to use meohanisms similar to those
that enable humans to circumvent some of these
limitationa for certain tasks (without sacrificing
preciseness) seems premature.

Finally, it pays to have a second look at
one's program from a verification perspective.

Writing this paper forced us to reconsider the
conditions under which the function SUBSTAD is
applicable. The specification that we published
five years ago turned out to be too liberal!

REFERENCES

[1] CHAMPEAUX, D. de, SUBSTAD: For Past
Substitution in LISP, with an Application on
Unification, Information Processing Letters,
vol 7, no 1, January 1978, pp 58-62.

[2] CHAMPEAUX, D. de, Algorithms in Al,
forthcoming thesis, Economische Paculteit,
Universiteit van Amsterdam, 1981.

[3] DARRINGER, J.A. & J.C. KING, Applications of
Symbolic Execution to Program Testing, IBM
Report RC 6965, January 1977.

[4] DE MILLO R.A. et al, Social Processes and
Proofs of Theorems and Programs, CACM, vol
22, no 5, May 1979, PP 271-280.

[5] HAREL, D., Proving the Correctness of Regular
Deterministic Programs: A Unifying Survey
Using Dynamic Logic, IBM Report 7557, March
1979.

[6] KING, J.C, Symbolic Execution and Program
Testing, CACM, vol 19, no 7, July 1976, pp
385-394.

[7] MCCARTHY, J. & P.J. HAYES, Some Philosophical
Problems from the Standpoint of Artificial
Intelligence, in B. Meltzer & D. Michie (Ed),
Machine Intelligence 4, Elsevier NY, 1969, PP
463-502.

[8] TOPOR, R.W., The correctness of the
Schorr-Waite List Marking Algorithm, Acta
Informatica, vol 11, pp 211-221, 1979.

527

