LAST STEPS TOWARDS AN ULTIMATE PROLOG

A. Colmerauer,

H. Kanoui,

M. Van Caneghem

Groupe d'Intelligence Artificielle
Faculte des Sciences de Luminy
Universite d'Aix-Marseille |l
13288 Marseille Cedex 9,France

ABSTRACT

A portable version of Prolog, an Artificial
Intelligence language, is presented. A complete
system has been implemented on a micro-computer
using a floppy-disk virtual memory. The general
methodology of the implementation is discussed in
terms of an abstract machine (Micromegas) suppor-
ting a language (Candide) in which the Prolog sys-
tem is written.

| INTRODUCTION

Prolog has been developed in our research
laboratory in 1973 by A. Colmerauer and P. Roussel
[1.2,10], mainly for natural language processing
systems. Since then, it has been applied to vari-
ous A.l. fields. Several Prolog interpreters have
been written, and even a compiler by D. Warren
for a DEC 10 computer. Practice and theory of
Prolog have been also studied and extensively des-
cribed (see [3,5,6,8]). Amazingly, the influence
of Prolog has been until now restricted to Europe,

where the language has been largely distributed
and used. However, some recent papers in the Ilit-
terature show a growing interest from the U.S.
community [9,11].

11 MOTIVATIONS

During the past years,
for more facilities to write very

Prolog users clamored
large programs.

For these reasons, we decided to start a new ge-
neral version required to be usable on large com-
puters as well as on micro-computers. Our first

try in that direction was the design of a Prolog
system on an { xorciser M6800 micro-computer. This
work is reported in [4,7] and gave encouraging
results, specially in the use of floppy disks for
virtual memory management.

The Prolog system reported here is intended
to be the "ultimate" one in the sense that it is
specially designed to fullfil the requirements of

1. Easy transportability.

2. Running large applications thanks to a
large memory space dynamically organized as a tree
structured hierarchy of sub-worlds to achieve soft-
ware protection and management of memory space.

947

3. Versatility by a practical tool to add

user-oriented evaluable predicates.

4. Powerful new built-in features such as
coroutines, infinite-trees processing [5] error
recovering and user controlled execution thanks
to the concept of "block".

5. Interactivity by
capabilities.

including clause editing

Il REALIZATION

We exhibit a complete, self-contained system

which includes
1. A high level programming language,
Candide, designed to provide the software tools

needed to write the interpreter.

7. A candide compiler which emits code for
an abstract machine, Micromegas. featuring the
hardware viewpoint of the system.

3. A Micromegas emulator which interprets
the Micromegas code at run-time. This is the only
part which depends on the host machine on which
the Prolog system is implemented.

4. The Prolog
the heart of the system,
of Candide code.

interpreter itself, which is
and consists of 50 pages

A complete, fully documented version of this
system is operational on Apple Il. The implemen-
tation on a Solar 16-65 (french minicomputer-
equivalent to PDP 11-65) is on progress and will
be done by September 81.

The abstract machine Micromegas is embedded
into the operating system of the host computer,
leaving free access to the built-in resources
(e.g. in the Apple Il implementation, the U.C.S.D.
Pascal system procedures and functions can be
reached from the Micromega3 level).

The abstract machine uses cells and words
a cell is the smallest part of memory addressable
both by the host computer and by the Micromegas
machine. A word is a sequence of contiguous cells
containing a large address in the Apple Il im-
plementation, we have 8-bit colls and 24-bit words.



Thin provides an addressing space of 2 megabytes,
simulated hy a virtual memory management system
Implemented hy software on a floppy disK. The Mi-
cromegas machine has also 256 general purpose re-
gisters and a user memory which contain", the pro
gram and a local variable stack.

The Micromegas instructions perform arithme-
transfers, comparisons. The operands are cells
or words from the virtual memory, the registers
and the stack. Other instructions perform condi-
tional, unconditional or computed gate's, proce-
dure invocation and return, external procedure
activation, and so on.

tic,

IV PROLOG_ON APPLE I
This implementation needs
1. An Apple Il with 48 K bytes of memory.

2. Two 143 K bytes floppy disks.

3. The language card.

The Micromegas emulator is embedded into the
Apple Pascal system and consists in 10 pages of
Pascal code (Initialisation, 1/O, and virtual me-

mory management) plus 1b pages of 6502 assembler
code (performing the 16 instructions of the Micro-
megas machine). The Micromegas code for the Prolog
interpreter needs 12 K bytes. The virtual memory
system in implemented on the two floppies and the
main memory paging area occupies 40 256-byte pages.
Such a configuration allows up to 50-pages Prolog
programs.

V' CONCLUSION

The performance of a micro-computer imple-
mentation Is slow compared with a large computer
one. Nevertheless, the system remains usable thanks
to the large virtual memory. A micro-computer im-
plementation can be used hy A. |. students, el-
even by researchers for testing and debugging pro-
grams, thus performing (at home) on a personnal
computer the more tedious and time consuming part
of programming work. Naturally, the definitive
application will be run on a bigger computer.

Is it
yes for us !

really the ultimate Prolog ? Certainly

In
years to

fact, we have deliberately spent three
design the system and build the adequate
tools to perform our research. This goal is now
achieved and we have definitely moved back to the

Prolog users family.
ACKNOWLEDGE MENTS

This work has been sponsored by the Centre
National do la Recherche Scientifique (lquipo do
Recherche Associated 363) .

948

[1]

[2]

[4]

[5]

[6]

[7]

[0]

[9]

[10]

[11]

REFERENCES
Battani G. and Melon! H.. "Interpretour du
langage de programmation Prolog,", internal
report. Croupe d'Intelligences Artificial,
Universite Aix-Marseilie |Il. September 19/3.
Colmerauer A., Kanoui P., Pasero P. and

Roussel Ph., "Un systeme de communication
homme-machine en francals", internal report.
Croupe d'Intellengence Artificielle.
Universite Aix-Marseillo 11. June 1973.

Colmerauer A., "Metamorphosis Grammars".

Natural language communication with computer.
Springer Verlag. 1978.
Colmerauer A.. Kanoui H., and Van Caneghem M..

"Etude et realisation d'un systeme Prolog",
Internal report, Groupe d' Intelligence ArtJd-
ficielle. Universite Aix-Marseille 11. May 1979.

Colmerauer A., "Prolog and infinite trees", to
appear in Logic Programming Workshop 1

(K. Clark and S.A. Tarnlund. eds).

Kowalski P.

and Van Emdeo M.. "The semantics

of predicate logic as a programming language".
Journal of the ACM. 23:4. October 1976.
733-742.

Kanoui H. and Van Caneghem M.. "Implementing
a very high level language on a very low cost
computer", in prne. IF IP 80. October 1980.
349-354.

Kowalski R., "logic for problem solving,".
North Holland. 1979.

Mr. Dermott.The Prolog phenomenon. Sigart
Newsletter, n. 72. July 1980). 16-20.

Roussel Ph.. "Manuel d' utilisation Prolog,",
internal report, Groupe d' Intelligence Arti-
ficielle, Universite Aix-Marse111e 11.
September 1976.

Comments on Prolog.
October 1980. 10-25.

Sigart Newsletter, n. 73,



