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ABSTRACT

We present here a learning technique which is
both statistic and syntactic, by using simultaneous-
ly logical operators and counting procedures. Its
modular structure makes it usable for creating the
necessary redundancy for controlling the generali-
zation of the formulas.

0. INTRODUCTION

In Data Analysis, a learning problem is gene-
rally stated as, either a discrimination problem,
or a regression one. Some inductive methods [4]
use metric concepts. But most of the Artificial
Intelligence methods [2,3] are purely syntactic,
i.e. they use concepts of Formal Logic.

Then a problem arises, which is the generali-
zation one [5], i.e. how to apply the found logical
rules to examples which are not in the training set.
This problem is more and more studied, and interes-
ting solutions have been found, based upon the idea
of controlling the generalization [6,8].

We describe in this work a learning technique
which builds rules to describe a given training
set. Each of them can be used as an "opinion" about
the training set. Then a "rule storming" is perfor-
med to complete the generalization.

1. OUTLINE OF THE METHCD

We consider a set of objects, called the
training set. This set is described by several
"describers", which are questions (or binary varia-
bles) with a value for every object.

Let us take one of these describers and call
it the "variable to forecast". The aim of the method
presented here is to find a combination of the
others describers identical to the variable to
forecast.

The method we propose consist on the iteration
of an algorithm made of 3 modules : expansion, se-
lection, compression.

Expansion step consist on combining each
couple of describers with a logical operator, in
order to obtain a new set of describers.

Selection consists on eliminating the descri-
bers which are not "similar" enough to the variable
to forecast.

Compression step then classifies the descri-
bers according to their similarities, and summarizes

each class by one(or a few) describer.
We shall now describe each of these parts.

2. EXPANSION

This step consist on combining each couple of
describers. Then, the operator must be associative,
so that the combinations of 3 or more describers
are nothing but successive 2 by 2 combinations. On
the other hand, the permutation of 0 and 1 ("true"
and "false") must not disturb the result of
expansion.

These constraints suggest two possible opera-
tors : the logical conjunction "and", and the logi-
cal equivalence "id".

With the conjunction, 4 describers are built
for each couple of initial describers

aand b ; (non a) and b ; a and (non b) ; (non
a) and (non b).

After that, we have to check the consistency,
i.e. if (d) is in on formula, then (non d) is not
in another one.

For the logical equivalence, we have the follo-
wing properties

a id b = (non a) id (non b) ;

(non a) id b = a id (non b) = non (a id b).

According the remarks made at the beginning of
this paragraph, it is only necessary to build "a
id b".

It is easy to check the fitting of these opera-
tors with the constraints described at the beginning
of this paragraph.

3. SELECTION

The aim of the selection step is to compare a
describer to the variable to forecast, in order to
select the describers which can be frucfully expan-
ded again. The most natural way of comparison
between 2 binary variables is to look at the list
(NOO NO1 N10 Nil) of the co-occurence frequencies
for the different values of the variables, i.e.
of the describer to be selected and the variable
to forecast.

Several criteria are then possible for the se-
lection. We consider here two kinds : overlapping
criteria and information theory criteria.

An overlapping means that the describer has one
value for at least a part of the objects from one



class and the other value for at most a part of
the objects of the other class. The corresponding
thresholds are given by the user.

The Information Theory criteria are different
of the previous one, in the sense that they are not
used in the same way. They are information measure-
ments on the describers, which are then ordered
according this measure, and the k best ones are
selected, for a value k which is choosen by the
user.

Several criteria are possible. For instance,
we can use the Kullback's divergence, the Mahalano-
bis distance or the contingency-khi 2 criterion.

4. COMPRESSION

This step consists on summarizing the set of
the selected describers, regarding their inter
correlations, which are measured by a given func-
tion.

Then, we have to perform an automatic clus-
tering of the describers into k groups.

4.1. Optimization of a clustering

In this paragraph, we state the problem of
optimizing, for a given criterion, a k-class clus-
tering. As we previously noticed, we suppose that
a distance has been chosen to measure the decorre-
lation between the describers.

Then, the criterion to optimize is the sum
of the distances of the describer i to the descri-
bers which are in the same class. Let D(i j) be
the sum of distances between describer i and the
describers belonging to class j. Let j (i) be the
class which contains describer i. Let us state

W(i) = D@ j(i)) - min (D(i j) j=1I,k)
W(i0) = max (W(i) i=I,...)
D(I0 jO) = min (D(iO j) j=1,k)

Then, the algorithm deletes iO from its class
and appends it to the class jO.

This procedure is repeated until the obtained
classification is invariant, i.e. W(i)=0 for all
the describers. This algorithm is actually a local
optimization one, because we can easily proof that
the criterion W(i0) is descreasing at each step.

The initial clustering may be randomly chosen,
or given by the user. We shall now use the later
possibility to define a strategy for compression.

4.2. The compression algorithm

An interesting aspect of the previous algo-
rithm is that it works even if one class is empty.
This remark suggests a strategy for compression,
which needs only to input the maximum number of
classes.

The algorithm starts with a one-class clus-
tering. Obviously, the value of the criterion is
zero in this case.

When the best (k-l)-class clustering has
been found by the algorithm we described in the
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previous paragraph, an empty class is created and
we look for the best k-class classification.

The algorithm stops when k is the given maximum
value nmc. We can notice that, if the sum of intra-
class distances is zero for k < nmc, then the
(nmc-k) other classes will remain empty.

Once we have obtained the desired classificatior
each class is summarized by one (or a small number)
of its elements. We shall describe this point in
the following paragraph.

4.3. Summary of a compression

The summary of a compression must depend upon
the chosen distance. The purpose of the distance
is to compare 2 describers. Then, it will be defi-
ned with the list of co-occurences of values of the
describers (NOO,NO1,N10,N11).

In the case of the equivalence distance min
(NOO+N11,NO1+N10), we can choose any element of
each cluster, because they are supposed to be logi-
cally equivalent, except for a few objects.

In the case of the comparability distance min
(NOO,NO1,N10,N11), the characteristic of the ele-
ments of the same cluster is to be comparable to
each other, except for a small number of objects.
This kind of relationship may be summarized by
ordering the describers, and then using a dicho-
tomic decision tree to compress.

Then, this kind of compression can be viewed
as an "unfolding" (dimensionality reduction) of
the training set, and we studied it in some pre-
vious works [7].

5. BEND_CRITERION

As the aim is to find a formula which is, on
the training set, logically comparable to the va-
riable to forecast, there are several ways of
stopping conveniently the algorithm

- maximum number of iterations (it is careful)

- emptiness of the describers list (it may
happen after a bad choice of the selection
parameters)

- one (or several)of the built describers is
sufficiently correlated to the variable to
forecast.

These criteria are applied in the previous
order. We can add some more, in order to detect
the case when it is useless to continue. For ins-
tance, if the describers list remains identical
after a new expansion, selection and compression
("stability" criterion), it is clear that further
iterations will give the same result.

6. GENERALIZATION BY "RULE STORMING"

The generalization consists on decision making
outside the training set. Then, the logical rules
built with the previous algorithm can be considered
as "opinions" about the training set, each onebeing
related to the choice of a particular describer as
variable to forecast.
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The generalization itself consist on perfor-
ming a "rule storming" on these opinions. Let us
summarize this idea. According Michalski [5], a
generalization is a filter (in the topological sense)
on the space of objects.

Let w be an object and OP(i) the i-th opinion
Then, OP(i,w) is the new object produced by applying
the rule OP(i) to w. Several cases are possible :

OP(i,w) = w (at least on the training set).
OP(i,w) = w\ then OP (i,w') = OP(i,w)
OP(i,w) = 0 (the rule is not applicable).

Then, the filter is

V(i) = {w} U (U OP(i,w)

V(p) = {w} U (U OP(i,V(p-1))).

The rule storming is then made by a vote at
a given level of this filter.

An advantage of this technique is that we
actually build a topology, then we need not a dis-
crimination problem to generalize.

7. RESULTS AND DISCUSSION

This technique has been tested on real
problems : learning of animal behavior, control
problems on nuclear plants, forecasting earthquakes,
learning meta-rules for expert systems, decision
making in psychology.

In all these applications, only a few (3 to
5) iterations of the expansion-selection-compression
were necessary to find the rules. For the generali-
zation, the good decision was made at level V(I) or
V(2), but never more.

8. CONCLUSION

The algorithm that we presented in this paper
in a first draft of a tool for learning problems.
We work now on its enhancement and integration in a
complete learning system. We think that the pre-
sented results show reasonable efficiency and compu-
ting costs. The theoretical background can be found
in the field of non classical Logic [1], more preci-
sely non distributive logics.
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