
Logic P rog rams W i t h Uncer ta in t ies : 

A T o o l f o r Imp lemen t i ng Rule-Based 

Systems 

Ehud Y. Shapiro1 

Department of Applied Mathematics 
The Weizmann Institute of Science 

Rehovot 76100, ISRAEL 

1 . I n t r o d u c t i o n 

One natural way to implement rule-based expert 
systems is via logic programs. The rules in such systems 
are usually definite clauses, or can easily be expressed as 
such, and the inference mechanbms used by such systems 
are built into the Prolog interpreter, or can be 
implemented in Prolog without much effort. 

The one component of expert systems which is not 
readily available in logic programs is a language for 
specifying certainties of rules and data, and a mechanism 
for computing certainties of conclusions, given certainties 
of the premises. Clark and McCabe [1] suggest an 
implementation technique for solving this problem. They 
augment each predicate in the rule-language wi th an 
additional argument, whose value is the certainty of the 
solution returned in this predicate, and augment the 
condition of each clause wi th an additional goal, whose 
purpose is ' to compute the certainty of the conclusion of 
the clause, given the certainties of solutions to 
the goals in the condition of the clause. 

In this paper we propose a different way of 
implementing rule-based expert systems within Prolog, in 
which evaluation of certainties of solutions is carried out 
at the meta-level, within the logic program interpreter 
itself. This resulting framework, called logic programs 
with uncertainties, has the following properties: 

• It is amenable to theoretical analysis. In 
particular, a precise semantics can be given to 
logic programs wi th uncertainties. 

• Standard logic programs are a special case of 
logic programs wi th uncertainties. If all 
certainty factors are 1, then the semantics 
defined and the interpreters developed 
degenerate to the standard semantics and the 
standard interpreter for logic programs. 

'This research was carried while the author was at Yale 
University, supported by the National Science Foundation, 
grant No. MCS8002447. 

• Since the semantics of logic programs with 
uncertainties is simple, it is easy to apply the 
debugging algorithms developed in [3]. 

We consider the last point to be of great 
importance. Algorithmic debugging can provide the 
essential link between the expert and the executable 
realization of his knowledge, and thus facilitate the 
process of knowledge transfer and debugging. 

The paper defines the syntax and semantics of logic 
programs with uncertainties, develops an interpreter for 
such programs, and suggest how algorithmic debugging 
can be used by an expert to debug such rule-based 
systems. Examples are not included due to space 
limitations. 

2 . L o g i c p r o g r a m s w i t h u n c e r t a i n t i e s 

A definite clause is a clause of the form A«— B, 
where A is an atom and B is a conjunction of zero or 
more atoms. A certainty factor c is a real number, 
greater than zero and less than or equal to one. A 
certainty function f is a function from multisets of 
certainty factors to certainty factors. A logic program 
with uncertainties P i s a f in i te set of pairs < A * - J 3 , / > , 
where A*-B is a definite clause and / is a certainty 
function. 

The certainty function is used to compute the 
certainty of the conclusion of a clause, given the multiset 
of certainties of solutions to goals in the condition of the 
clause. We require from a certainty function / that for 
every multiset S, f (SU{1 } )= / (£ )» and that / be 
monotonic increasing, which means that S<S' implies 
f(S)<f('S , ')» where < is the part ial order over multisets, 
defined as follows. Let S and X * = { x 1 x 2 , . . . , x n } , be two 
multisets, n > 0 . Then X<S iff there is a multiset 
Y = { Y 1 y2 •••» y n } such that ScY and x1<•/,-, 0 < i < n . 
Our theoretical treatment is independent of the particular 
certainty functions chosen, as long as they satisfy these 
two requirements. 



530 E. Shapiro 



E. Shapiro 531 

to the (nonlogical) way the certainty of solutions is 
computed, the second argument of solve can be used for 
output only, or, in other words, the interpreter is 
applicable only in case the certainty factor is not 
instantiated in the input goal. Also, most Prolog 
implementations do not allow expressions of the form 
F(S), where F is a variable symbol. There are standard 
techniques to get around the problem. 

Ideally, one would like to specify some certainty 
threshold, wi th the intention that the interpreter wi l l 
compute only solutions with certainty above this 
threshold. We develop a special purpose pruning 
interpreter for a particular scheme of certainty functions, 
and then show how to generalize i t . 

Since the semantics defined for logic programs with 
uncertainties proves to be insensitive to the particular 
certainty functions chosen, we tend to believe that no 
theoretical argument wi l l be able to decide between the 
reasonable alternatives. Sociologically speaking, this 
conjecture has proved itself so far. Each school of expert 
systems is using its own particular way of computing 
certainties, wi th no noticeable difference in the validity of 
their results. 

So we pick our pick. The certainty functions we 
choose, cf (5), computes the product of c and the 
minimal element of 5, in case S is not empty, and returns 
c otherwise. These functions meets the requirements 
stated above. As the difference between the functions 
associated wi th the different clauses is just the constant 
c, we represent clauses as pairs < A < - B , c > , where c is 
the certainty factor of A+-B in P. The interpreter in 
Figure 3 below has this function scheme buil t- in. This 
interpreter receives as input a goal and a threshold of 
required certainty for solutions, and prunes computations 
for which it is evident that any solution found along 
them wi l l not meet this threshold. The semantics of 
8olvt(A,T,C) is ''A is provable from P wi th certainty 
C,and C>r. 

The way the interpreter prunes low-certainty 
execution paths is via the call t imes*(7",F,7). If the 
results of dividing T by F is greater than one, the call 
fails, as 7" is not a certainty factor then. Note that 
times serves three functions in the interpreter: it 
computes multipl ication and division, and prunes 
computation paths which fail to pass the desired 
certainty threshold. A similar interpreter can be buil t for 
most reasonable schemes of certainty functions. 

This interpreter has the following interesting 
property: it always terminate if every clause in the 



532 E. Shapiro 

certainty threshold F, the computation is hound not to 
meet this threshold. 

4 . A N o t e o n d e b u g g i n g l og i c p r o g r a m s 
w i t h u n c e r t a i n t i e s 

Since a logic program with uncertainties has 
semantics, one can debug it l ike any other program, if 
one knows its intended interpretation. That is, if one 
knows the input-output relations it is supposed to 
compute, and their associated certainties. In particular, 
the diagnosis algorithms described in [3] are applicable in 
such a situation. 

Assume that a logic program .with uncertainties has 
a conclusion A whose computed is judged by the expert 
to be too high. We can conclude that, according to the 
interpretation the expert has in mind, the program 
contains at least one false clause. Such a clause can be 
detected by querying the expert about the t ru th (or 
certainty) of intermediate conclusions obtained during the 
proof of A, as done in [3]. 

The advantage of having such a diagnosis algorithm 
is more valuable for the debugging the rule-base of a 
system by an expert then for normal program debugging: 
In normal program debugging the debugger is a 
programmer, who not only knows the intended 
declarative semantics of the program (i.e. what it should 
compute), but its procedural semantics (i.e. how it 
computes) as well. 

This is not necessarily the case wi th experts and 
rule-based systems. One reason for expert systems being 
composed of a rule-base and an inference mechanism is to 
allow the expert to effectively transfer her knowledge in a 
declarative form to the system, even when she is ignorant 
of the particular inference mechanism used. The 
debugging algorithms allow the expert to maintain this 
appropriate ignorance even when she is debugging the 
rules she suggested, since these algorithms simulate the 
execution of the inference mechanism, and query the 
expert for declarative information only. 

6 . C o n c l u s i o n s 

Logic programs wi th uncertainties provide a sound 
theoretical basis for systems which contain only an 
approximate description of a domain. Their clear 
declarative semantics allows the expert to tune the 
system to reflect his knowledge, while maintaining 

ignorance of the inference mechanism the system 
implements. 

References 

[1] K. L. Clark and F. G. McCabe. 
Prolog: a language for implementing expert 

systems. 
In D. Michie and Y. H. Pao (editors), Machine 

Intelligence 10, . , , 1982. 

[2] M. H. van Emden and R. A. Kowalski. 
The semantics of predicate logic as a programming 

language. 
Journal of the A C M 23:733-742, October, 1976. 

[3] Ehud Y. Shapiro. 
A C M Dist inguished Dissertations Series: 

Algor i thmic Program Debugging. 
The M I T Press, 1983 (in press). 


