
PRISM: A P a r a l l e l Inference System fo r Problem Solving

Simon Kasif Madhur Kohl i Jack Minker

Department of Computer Science, Un ivers i ty of Maryland, College Park, MD 2074

1 . In t roduc t ion

PRISM (a P a r a l l e l Inference System), f o r
p a r a l l e l execution of problems, has been imple­
mented on ZMOB (Rieger [1980]) . PRISM is an exper­
imental t o o l fo r the development of d i s t r i b u t e d AI
problem solvers and is based on l og i c programming.
F a m i l i a r i t y w i th log ic programming (Kowalski
[1979]) is assumed.

In conventional programming systems the log ic
and con t ro l of an a lgor i thm are combined making it
d i f f i c u l t to separate or to modify cont ro l wi thout
a f f e c t i n g the l o g i c . Logic as the s p e c i f i c a t i o n
language, is neut ra l w i th respect to con t ro l and
spec i f i es only the problem semantics. The method
of how the problem is to be solved is external to
the log ic s p e c i f i c a t i o n . Thus, a primary issue in
achieving a p a r a l l e l system is developing an e f f ec ­
t i v e con t ro l s p e c i f i c a t i o n that exp lo i t s p a r a l l e l ­
ism. PRISM permits us to speci fy the problem
independently of the con t ro l and al lows us to
experiment w i th a l t e r n a t i v e con t ro l p o s s i b i l i t i e s
fo r the same problem.

The basic tasks i d e n t i f i e d in the execution of
a problem are : management of the search space;
management and r e t r i e v a l of procedures (deductive
axioms); management and r e t r i e v a l of asser t ions
(f a c t s , or knowledge); and i n t e r a c t i o n w i th the
problem and con t ro l s p e c i f i e r (use r) .

PRISM consis ts of three f unc t i ona l l y d i s t i n c t
sets of machines. The ln tens lona l database
machines (IDB) u n i f i e s a goal w i th a l l procedure
heads wi th the same name. The extensional database
machines (EDB) func t ion as a d i s t r i b u t e d r e l a t i o n a l
database machine and provide fas t access to
func t i on - f ree ground asser t ions . The problem so lv ­
ing machines (PSM) manage the search space. The PSM
is the major por t ion of PRISM and is where the con­
t r o l spec i f i ca t i on i s p r ima r i l y i n t e r p r e t e d . I n
t h i s paper we describe the PSM and i t s support of
the con t ro l f a c i l i t i e s provided in PRISM. (See
Kas i f [1983] fo r f u r the r d e t a i l s and references on
PRISM).

2. Contro l Issues

2.1. Goal t ree and Control Issues

A goal t ree is generated in the problem so lv ­
ing process. The t ree consists of a set of nodes,
where each node consis ts of a set of goa ls .
Subgoals in a node may be character ized as

dependent or independent of one another, A subgoal
is dependent i f i t s execution must await the suc­
cessfu l execution of another subgoal in the same
node. It is independent otherwise. An acyc l i c
p a r t i a l order expresses such a re la t i onsh ip among
subgoals. At any stage of the execution of a node,
a l l independent subgoals may be executed asynchro­
nously. However, goals which are candidates fo r
simultaneous execution must be t reated spec ia l l y i f
they share unbound va r i ab les . There may be several
assert ion/procedure heads which match a selected
goa l . Any procedure head which matches a goal can
p o t e n t i a l l y lead to - so l v i ng tha t goa l , independent
of other matching procedure heads. A l l matching
procedure heads are therefore candidates fo r asyn­
chronous execut ion. Thus one may specify that cer­
t a i n a l t e rna t i ves need be explored only i f other
a l t e rna t i ves have f a i l e d or that some a l t e rna t i ves
are more l i k e l y to succeed than o thers . A l l poss i ­
ble asynchronous operations may be executed on
autonomous machines.

2.2. PRISM Control F a c i l i t i e s and Language

PRISM provides the a b i l i t y to specify p a r t i a l
order f o r the execution of every goal and procedure
body. The p a r t i a l order on goals expresses depen­
dencies among subgoals w i t h i n a goa l . The order is
spec i f ied by a no ta t ion as i l l u s t r a t e d by:

The procedure head is on the l e f t of the arrow,
whi le the body is on the r i g h t . The body consists
of a set of goa ls , separated by commas and formed
i n t o groups by proper ly nested pa i rs of parentheses
and brackets. A l l groups of goals enclosed by
parentheses, must be executed in a l e f t - t o - r i g h t
sequence. Groups of goals enclosed in brackets may
be executed independently of other groups in the
same set of brackets.

PRISM provides a no ta t ion f o r spec i fy ing both
a recommended and a forced order ing of procedures.
Consider the example:

The in tegers represent a recommended order of exe­
c u t i o n . The aster isked in tegers represent a foroed

S. Kasif et al. 545

order ing . The f i r s t two procedures (p r i o r i t y=1)
may be executed simultaneously. The t h i r d pro­
cedure (p r i o r i t y = 2) is less l i k e l y to succeed but
may also be executed in p a r a l l e l w i th the f i r s t
two, or before them if the problem solver so
decides. However, the fou r th procedure (p r i o r -
i t y=*3) cannot be executed unless the preceding
procedures have been completely executed. A
defau l t order ing is provided by PRISM when the pro­
cedures are not numbered.

3. The Problem Solving Machine (PSM)

3 -1 - The Role of the PSM

The cent ra l task of the PSM is to manage the
search space. The complete separat ion of log ic
(the problem spec i f i ca t i on) and cont ro l (the s t r a ­
tegy of so lv ing the problem) al lows f l e x i b i l i t y
whi le executing the program. Not only can the
search strategy be var ied dynamical ly, but due to
the inherent ly non-determin is t ic nature of log ic
programs, several mutually exclusive p o s s i b i l i t i e s
may be explored simultaneously. The PSMs permit
t h i s inherent pa ra l le l i sm to be explo i ted dur ing
problem so l v ing .

I n i t i a l l y a goa l , which represents the problem
to be solved, is sent by the Host to ZMOB and is
read by some PSM. This PSM places the goal as the
root of a proof t r e e .

At any given ins tan t in the problem so lu t ion
process the search space administered by each PSM
consists of a t ree of goal nodes. The root of the
t ree is the o r i g i n a l goal w i th which the PSM was
i n i t i a t e d . The successor of any nodes in t h i s t ree
is the resolvent obtained by reso lv ing program
clauses wi th some atom in the parent node. When an
atom is expanded, several program clauses which
represent a l t e rna t i ve ways to solve the problem,
may resolve wi th i t . These a l te rna t i ves lead to
branching in the search t ree (OR branches). Nodes
in the t ree can be in one of f i v e s ta tes : the empty
node; a f a i l u r e node; an open node not yet selected
for expansion; an ac t i ve node selected for expan­
s ion , but not yet f u l l y expanded; and a closed node
which has been f u l l y expanded.

At any stage the PSM must select an open node
from the search t r e e , and then select one or more
atoms from t h i s node. This selected atom is sent
to an IDB and/or an EDB fo r expansion. While the
IDB and/or EDB are working on t h i s atom, the PSM
can t rans fe r i t s a t t en t i on to other nodes in the
search t r e e . An atom sent to the IDB may un i fy
w i th one or more procedure heads. A l l correspond­
ing bodies are sent baok to the PSM which i n i t i a t e d
the search, e i t he r one at a time or a l l at once.
When more than one procedure body is returned f o r a
given atom, several mutually exclusive subgoal
nodes are generated. These mutually exclusive
goals can then be solved independently in separate
machines. Thus each PSM can dynamically i n i t i a t e
another PSM machine, if one is ava i l ab le . As w i th
the goal t ransmi t ted by the VAX to a PSM, the goal
t ransmi t ted from one PSM to another becomes a root
of a goal t ree in the new PSM whose parent is the
sending PSM. Each PSM can independently develop
and manage subtrees of the search spaoe generated
by the goal node t ransmi t ted to the PSM. Each PSM

is autonomous except f o r knowledge of the parent-
c h i l d r e l a t i o n s h i p . When a goal assigned to a PSM
is completely solved i t t ransmi ts the so lu t i on o r
f a i l u r e to i t s parent PSM. The parent of the PSM
tha t contains the o r i g i n a l goal is the Host (VAX)
machine.

3.2. Control in the PSM

3.2.1_. Control Spec i f i ca t ion Support - Select ion
Process

The se lec t ion procedure determines the con t ro l
s t rategy of the system. The user is permitted to
speci fy guidel ines to d i r ec t the se lec t ion process.
The se lec t ion procedure has four main func t ions :
node (clause) se lec t i on , atom se lec t i on , procedure
se lec t ion and PSM c rea t ion .

Node se lec t i on : Any node not f u l l y expanded is a
candidate for se l ec t i on . A f u l l y expanded node is
a node whose selected atom has been expanded and
a l l lea f nodes descended from the node are e i the r
f a i l u r e nodes or n u l l c lauses. A non- fu l l y
expanded node may be e i the r an ac t ive or an open
node. An ac t i ve node is one from which one or more
atoms have been selected for expansion, but is not
f u l l y expanded. An open node is one from which no
atom has yet been selected for expansion.

Atom se lec t ion is concerned w i th se lec t ing a atom,
fo r expansion, from a selected node in the search
t r e e . There are several system and user defined
cons t ra in ts that a f f ec t atom se lec t i on .

As defined in sect ion 2, the user can speci fy
which atoms in a node may be executed in p a r a l l e l
and which must be done in sequence, i . e . a p a r t i a l
order on the execution of the atoms. These user
spec i f ied const ra in ts l i m i t the atoms which can be
selected at any stage. Only atoms which do not
depend on any other atom or those fo r which the
atoms they depend on have already been solved are
candidates fo r se lec t i on .

In add i t ion to user-def ined order ings , ce r t a i n
orderings are impl ied by the node s t ruc tu re i t s e l f .
Two basic ways in which the contents of a node d i c ­
ta te the order ing on atom se lec t ion a re : dependent
atoms, and specia l p red ica tes . Two or more atoms
in a node are said to be dependent when they share
va r iab les . In t h i s case what is desired is the
f i r s t (or a l l) b ind ing(s) which cause the atoms to
succeed. This can be accomplished e i t h e r by pro­
cessing the atoms in p a r a l l e l and then i n te r sec t i ng
the sets of bindings fo r the shared va r iab les , or
by f i nd i ng a binding which s a t i s f i e s one predicate
and then s u b s t i t u t i n g i t in the others and deter­
mining i f they succeed w i th tha t binding (nested
loops method). In e i t he r method a specia l AND node
is generated w i th the dependent atoms as i t s c h i l ­
dren and one of the above techniques app l ied . Spe­
c i a l predicates are a set of language supplied
predicates whose semantios d i c t a te that ce r ta in
other predicates in the clause must be f u l l y solved
before these system def ined predicates may be
invoked.

Onoe user and system defined const ra in ts have
been s a t i s f i e d , a set of atoms whioh are candidates
f o r se lec t ion w i l l remain. The atom seleoted from
t h i s set w i l l be seleoted based on user or system

546 S. Kasif et al.

suppl ied h e u r i s t i c s .

Procedure se lec t ion is concerned w i th choosing
which procedure body should be given the highest
p r i o r i t y when several bodies match an atom. This
decis ion is made exc lus ive ly by the IDB.

PSM s e l e c t i o n , is concerned wi th the decis ion of
when to i n i t i a t e another PSM wi th a subproblem.
Whenever a branching of the search t ree is induced
by e i t he r mu l t i p le a l te rna te subproblems (0R-
branches) or by independent conjunct ive subproblems
(AND-branches), t h i s branch becomes a candidate fo r
execution in another PSM machine. The actua l p ro­
cess of determining when a new PSM is i n i t i a t e d is
discussed below.

3 .2 .2 . PSM Creat ion

The decis ion of when to i n i t i a t e another PSM
wi th a subproblem is not an easy one. If the
subproblem is too sma l l , a large amount of overhead
would be incurred to solve i t . I f the subproblem
is too l a rge , the parent PSM may complete before
the c h i l d and remain i d l e u n t i l i t s ch i ld ren com­
p l e t e . In general i t i s not possible to determine
how complex a subproblem i s . Thus no attempt is
made to determine the complexity of a subproblem,
in the i n i t i a l system. Instead a new PSM is i n i ­
t i a t e d every time a branching of the search t ree
takes p lace, and a PSM is a v a i l a b l e . At any given
i n s t a n t , there may be several ac t i ve branches
w i t h i n a PSM, and thus several candidate nodes may
be sent to other machines. In t h i s case a l l or
only some of these nodes may be shipped ou t . This
is determined by the user or by system suppl ied
h e u r i s t i c s .

In order to reduce i d l e t ime, machines which
have completed t h e i r a l l o t ed task are permit ted to
accept f resh quer ies , as f o l l ows . I f no f u r t he r
processing can be done then e i the r a l l possible
answers fo r the goals t h i s PSM was invoked w i th
have been found, or a l l paths resu l ted in f a i l u r e ,
or a l l paths l oca l to t h i s PSM have been f u l l y
explored and there are some ch i ld ren of t h i s PSM
which have not yet completed t h e i r work. When a l l
answers have been found or a l l paths have f a i l e d ,
t h i s in format ion is t ransmi t ted to the parent o f
t h i s PSM, and the PSM s ta te is restored to one in
which a new query can be accepted. When a l l l oca l
paths have been explored and some chidren PSMs are
s t i l l a c t i v e , a data s t ruc tu re is constructed which
contains enough in format ion to reconstruct the com­
p le te answer from the in format ion in t h i s PSM and
from the answers from the cu r ren t l y ac t i ve ch i l d ren
PSM. Once t h i s data s t ruc tu re is constructed, the
l oca l proof t ree is destroyed and the PSM s ta te is
restored to permit a new query to be accepted.

In t h i s manner PSMs are not kept i d l e in case
they complete before t h e i r ch i l d ren do. This a lso
al lows a PSM to be i t s own ancestor if so des i red .

3 .2 .2 . AND/OR Para l le l i sm

The existence of mu l t i p le bodies tha t match a
selected atom r e s u l t in the formation of an OR-node
w i th each of these bodies as a c h i l d . Since these
ch i l d ren are independent of eaoh other they may be
exeouted in separate machines.

AND-parallel ism ar ises when a conjunct ion of
two or more atoms appear in a node. Independent
atoms that do not share var iab les are executed in
p a r a l l e l and r e s u l t in the creat ion of an AND-
branch.

3 .2 .4 . Handling Negation

The NOT meta-predicate def ined in most sequen­
t i a l log ic programming is an implementation of
Negat ion-by-Fai lure [Clark 1978]. This is not we l l
defined when one or more of the arguments are
unbound va r iab les . The behaviour of the NOT meta-
predicate can be anomalous in the case where a l l
arguments are not constants. The semantics of
negation is extended to handle atoms wi th var iab les
as arguments by c rea t ing a set of bindings fo r
which the atom f a i l s and assuming the negation of
the atom holds fo r prec ise ly t h i s set of b indings.

4_. Acknowledgements

The work was Supported by AFOSR grant 82-0303
and NSF grant MCS-79-19418.

5. References

[1] C lark , K .L . , "Negation as Fa i l u re ' ' , in Logic
and Databases, H. Ga l l a i re and J. Minker
(Eds .) , Plenum Press, 1978, New York.

[2] Kas i f , S . , K o h l i , M., Minker, J . , "Contro l
F a c i l i t i e s in PRISM: A Pa ra l l e l Inference Sys­
tem fo r Problem So lv ing" , TR, Dept. of Com­
puter S c , U of MD, College Park, MD.

[3] Kowalski , R.A., "Logic fo r Problem So lv ing" ,
Elsevier North Holland I n c . , 1979, New York.

[4] Rieger, C, Bane, J . , T r i gg , R., "ZMOB : A
Highly Pa ra l l e l Mul t iprocessor" , TR-911, Dept.
of Computer S c , U of MD, May 1980, College
Park, MD.

