PRISM: A Parallel Inference System for Problem Solving

Simon Kasif

Madhur Kohli

Jack Minker

Department of Computer Science, University of Maryland, College Park, MD 2074

1. Introduction
PRISM (a Parallel Inference System), for
parallel execution of problems, has been imple-

mented on ZMOB (Rieger [1980]). PRISM is an exper-
imental tool for the development of distributed Al
problem solvers and is based on logic programming.
Familiarity with logic programming (Kowalski
[1979]) is assumed.

In conventional programming systems the logic
and control of an algorithm are combined making it
difficult to separate or to modify control without
affecting the logic. Logic as the specification
language, is neutral with respect to control and
specifies only the problem semantics. The method
of how the problem is to be solved is external to
the logic specification. Thus, a primary issue in
achieving a parallel system is developing an effec-
tive control specification that exploits parallel-
ism. PRISM permits us to specify the problem
independently of the control and allows us to
experiment with alternative control possibilities
for the same problem.

The basic tasks identified in the execution of
a problem are: management of the search space;
management and retrieval of procedures (deductive
axioms); management and retrieval of assertions
(facts, or knowledge); and interaction with the
problem and control specifier (user).

PRISM consists of three functionally distinct
sets of machines. The Intenslonal database
machines (IDB) unifies a goal with all procedure

heads with the same name. The extensional database
machines (EDB) function as a distributed relational
database machine and provide fast access to
function-free ground assertions. The problem solv-
ing machines (PSM) manage the search space. The PSM
is the major portion of PRISM and is where the con-
trol specification is primarily interpreted. In
this paper we describe the PSM and its support of
the control facilities provided in PRISM. (See
Kasif [1983] for further details and references on
PRISM).

2. Control lIssues

2.1. Goal tree and Control Issues

A goal tree is generated in the problem solv-
ing process. The tree consists of a set of nodes,
where each node consists of a set of goals.
Subgoals in a node may be characterized as

dependent or independent of one another, A subgoal
is dependent if its execution must await the suc-
cessful execution of another subgoal in the same
node. It is independent otherwise. An acyclic
partial order expresses such a relationship among
subgoals. At any stage of the execution of a node,
all independent subgoals may be executed asynchro-
nously. However, goals which are candidates for
simultaneous execution must be treated specially if
they share unbound variables. There may be several
assertion/procedure heads which match a selected
goal. Any procedure head which matches a goal can
potentially lead to-solving that goal, independent
of other matching procedure heads. All matching
procedure heads are therefore candidates for asyn-
chronous execution. Thus one may specify that cer-
tain alternatives need be explored only if other
alternatives have failed or that some alternatives
are more likely to succeed than others. All possi-
ble asynchronous operations may be executed on
autonomous machines.

2.2. PRISM Control Facilities and Language

PRISM provides the ability to specify partial
order for the execution of every goal and procedure
body. The partial order on goals expresses depen-
dencies among subgoals within a goal. The order is
specified by a notation as illustrated by:

P o (G.I ¥ [GE’ (GB’GH) ,Gs] » [56|G7] } .

The procedure head is on the left of the arrow,
while the body is on the right. The body consists
of a set of goals, separated by commas and formed

into groups by properly nested pairs of parentheses
and brackets. All groups of goals enclosed by
parentheses, must be executed in a left-to-right
sequence. Groups of goals enclosed in brackets may
be executed independently of other groups in the
same set of brackets.

PRISM provides a notation for specifying both
a recommended and a forced ordering of procedures.
Consider the example:

1t P <-- Gy,0q

1t P <&== G

23 P <== Gy,6;,04
#3: P <-- G,

b: P <—- GB!GQ

The integers represent a recommended order of exe-
cution. The asterisked integers represent a foroed

ordering. The first two procedures
may be executed simultaneously. The third pro-
cedure (priority=2) is less likely to succeed but
may also be executed in parallel with the first

(priority=1)

two, or before them if the problem solver so
decides. However, the fourth procedure (prior-
ity=*3) cannot be executed unless the preceding

procedures have been completely executed. A
default ordering is provided by PRISM when the pro-
cedures are not numbered.

3. The Problem Solving Machine (PSM)

3-1- The Role of the PSM

The central task of the PSM is to manage the
search space. The complete separation of logic
(the problem specification) and control (the stra-
tegy of solving the problem) allows flexibility
while executing the program. Not only can the
search strategy be varied dynamically, but due to
the inherently non-deterministic nature of logic
programs, several mutually exclusive possibilities
may be explored simultaneously. The PSMs permit
this inherent parallelism to be exploited during
problem solving.

Initially a goal, which represents the problem
to be solved, is sent by the Host to 2MOB and is
read by some PSM. This PSM places the goal as the
root of a proof tree.

At any given instant in the problem solution
process the search space administered by each PSM
consists of a tree of goal nodes. The root of the
tree is the original goal with which the P9M was
initiated. The successor of any nodes in this tree
is the resolvent obtained by resolving program
clauses with some atom in the parent node. When an
atom is expanded, several program clauses which
represent alternative ways to solve the problem,
may resolve with it. These alternatives lead to
branching in the search tree (OR branches). Nodes
in the tree can be in one of five states: the empty
node; a failure node; an open node not yet selected
for expansion; an active node selected for expan-
sion, but not yet fully expanded; and a closed node
which has been fully expanded.

At any stage the PSM must select an open node
from the search tree, and then select one or more
atoms from this node. This selected atom is sent
to an IDB and/or an EDB for expansion. While the
IDB and/or EDB are working on this atom, the PSM
can transfer its attention to other nodes in the
search tree. An atom sent to the IDB may unify
with one or more procedure heads. All correspond-
ing bodies are sent baok to the PSM which initiated
the search, either one at a time or all at once.
When more than one procedure body is returned for a
given atom, several mutually exclusive subgoal
nodes are generated. These mutually exclusive

goals can then be solved independently in separate
machines. Thus each PSM can dynamically initiate
another PSM machine, if one is available. As with

the goal transmitted by the VAX to a PSM, the goal
transmitted from one PSM to another becomes a root
of a goal tree in the new PSM whose parent is the
sending PSM. Each PSM can independently develop
and manage subtrees of the search spaoe generated
by the goal node transmitted to the PSM. Each PSM

S. Kasif et al. 545

is autonomous except for knowledge of the parent-
child relationship. When a goal assigned to a PSM
is completely solved it transmits the solution or
failure to its parent PSM. The parent of the PSM
that contains the original goal is the Host (VAX)
machine.

3.2. Control in the PSM

3.2.1_. Selection

Process

Control Specification Support -

The selection procedure determines the control
strategy of the system. The user is permitted to
specify guidelines to direct the selection process.
The selection procedure has four main functions:
node (clause) selection, atom selection, procedure
selection and PSM creation.

Node selection: Any node not fully expanded is a
candidate for selection. A fully expanded node is
a node whose selected atom has been expanded and
all leaf nodes descended from the node are either
failure nodes or null clauses. A non-fully
expanded node may be either an active or an open
node. An active node is one from which one or more
atoms have been selected for expansion, but is not
fully expanded. An open node is one from which no
atom has yet been selected for expansion.

Atom selection is concerned with selecting a atom,
for expansion, from a selected node in the search
tree. There are several system and user defined
constraints that affect atom selection.

As defined in section 2, the user can specify
which atoms in a node may be executed in parallel
and which must be done in sequence, i.e. a partial
order on the execution of the atoms. These user
specified constraints limit the atoms which can be
selected at any stage. Only atoms which do not
depend on any other atom or those for which the
atoms they depend on have already been solved are
candidates for selection.

In addition to user-defined orderings, certain
orderings are implied by the node structure itself.
Two basic ways in which the contents of a node dic-
tate the ordering on atom selection are: dependent
atoms, and special predicates. Two or more atoms
in a node are said to be dependent when they share
variables. In this case what is desired is the
first (or all) binding(s) which cause the atoms to
succeed. This can be accomplished either by pro-
cessing the atoms in parallel and then intersecting
the sets of bindings for the shared variables, or
by finding a binding which satisfies one predicate
and then substituting it in the others and deter-
mining if they succeed with that binding (nested
loops method). In either method a special AND node
is generated with the dependent atoms as its chil-
dren and one of the above techniques applied. Spe-
cial predicates are a set of language supplied
predicates whose semantios dictate that certain
other predicates in the clause must be fully solved
before these system defined predicates may be
invoked.

Onoe user and system defined constraints have
been satisfied, a set of atoms whioh are candidates
for selection will remain. The atom seleoted from
this set will be seleoted based on user or system

546 S. Kasif et al.

supplied heuristics.

Procedure selection is concerned with choosing
which procedure body should be given the highest
priority when several bodies match an atom. This
decision is made exclusively by the IDB.

PSM selection, is concerned with the decision of
when to initiate another PSM with a subproblem.
Whenever a branching of the search tree is induced
by either multiple alternate subproblems (OR-
branches) or by independent conjunctive subproblems
(AND-branches), this branch becomes a candidate for
execution in another PSM machine. The actual pro-
cess of determining when a new PSM is initiated is
discussed below.

3.2.2. PSM Creation

The decision of when to initiate another PSM
with a subproblem is not an easy one. If the
subproblem is too small, a large amount of overhead
would be incurred to solve it. If the subproblem
is too large, the parent PSM may complete before
the child and remain idle until its children com-
plete. In general it is not possible to determine
how complex a subproblem is. Thus no attempt is
made to determine the complexity of a subproblem,
in the initial system. Instead a new PSM is ini-
tiated every time a branching of the search tree
takes place, and a PSM is available. At any given
instant, there may be several active branches
within a PSM, and thus several candidate nodes may
be sent to other machines. In this case all or
only some of these nodes may be shipped out. This
is determined by the user or by system supplied
heuristics.

In order to reduce idle time, machines which
have completed their alloted task are permitted to
accept fresh queries, as follows. If no further
processing can be done then either all possible
answers for the goals this PSM was invoked with
have been found, or all paths resulted in failure,
or all paths local to this PSM have been fully
explored and there are some children of this PSM
which have not yet completed their work. When all
answers have been found or all paths have failed,
this information is transmitted to the parent of
this PSM, and the PSM state is restored to one in
which a new query can be accepted. When all local
paths have been explored and some chidren PSMs are
still active, a data structure is constructed which
contains enough information to reconstruct the com-
plete answer from the information in this PSM and
from the answers from the currently active children
PSM. Once this data structure is constructed, the
local proof tree is destroyed and the PSM state is
restored to permit a new query to be accepted.

In this manner PSMs are not kept idle in case
they complete before their children do. This also
allows a PSM to be its own ancestor if so desired.

3.2.2. AND/IOR Parallelism

The existence of multiple bodies that match a
selected atom result in the formation of an OR-node
with each of these bodies as a child. Since these
children are independent of eaoh other they may be
exeouted in separate machines.

AND-parallelism arises when a conjunction of
two or more atoms appear in a node. Independent
atoms that do not share variables are executed in
parallel and result in the creation of an AND-

branch.

3.2.4. Handling Negation

The NOT meta-predicate defined in most sequen-
tial logic programming is an implementation of
Negation-by-Failure [Clark 1978]. This is not well
defined when one or more of the arguments are
unbound variables. The behaviour of the NOT meta-
predicate can be anomalous in the case where all
arguments are not constants. The semantics of
negation is extended to handle atoms with variables
as arguments by creating a set of bindings for
which the atom fails and assuming the negation of
the atom holds for precisely this set of bindings.

4 . Acknowledgements

The work was Supported by AFOSR grant 82-0303
and NSF grant MCS-79-19418.

5. References
[1] Clark, K.L., "Negation as Failure', in Logic

and Databases, H. Gallaire and J. Minker
(Eds.), Plenum Press, 1978, New York.
[2] Kasif, S., Kohli, M., Minker, J., "Control

Facilities in PRISM: A Parallel Inference Sys-
tem for Problem Solving", TR, Dept. of Com-
puter Sc, U of MD, College Park, MD.

[3] Kowalski, R.A., "Logic for Problem Solving",
Elsevier North Holland Inc., 1979, New York.

[4] Rieger, C, Bane, J., Trigg, R., "ZMOB : A
Highly Parallel Multiprocessor", TR-911, Dept.
of Computer Sc, U of MD, May 1980, College
Park, MD.

