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1 . In t roduc t ion 

PRISM (a P a r a l l e l Inference System), f o r 
p a r a l l e l execution of problems, has been imple­
mented on ZMOB (Rieger [1980 ] ) . PRISM is an exper­
imental t o o l fo r the development of d i s t r i b u t e d AI 
problem solvers and is based on l og i c programming. 
F a m i l i a r i t y w i th log ic programming (Kowalski 
[1979]) is assumed. 

In conventional programming systems the log ic 
and con t ro l of an a lgor i thm are combined making it 
d i f f i c u l t to separate or to modify cont ro l wi thout 
a f f e c t i n g the l o g i c . Logic as the s p e c i f i c a t i o n 
language, is neut ra l w i th respect to con t ro l and 
spec i f i es only the problem semantics. The method 
of how the problem is to be solved is external to 
the log ic s p e c i f i c a t i o n . Thus, a primary issue in 
achieving a p a r a l l e l system is developing an e f f ec ­
t i v e con t ro l s p e c i f i c a t i o n that exp lo i t s p a r a l l e l ­
ism. PRISM permits us to speci fy the problem 
independently of the con t ro l and al lows us to 
experiment w i th a l t e r n a t i v e con t ro l p o s s i b i l i t i e s 
fo r the same problem. 

The basic tasks i d e n t i f i e d in the execution of 
a problem are : management of the search space; 
management and r e t r i e v a l of procedures (deductive 
axioms); management and r e t r i e v a l of asser t ions 
( f a c t s , or knowledge); and i n t e r a c t i o n w i th the 
problem and con t ro l s p e c i f i e r (use r ) . 

PRISM consis ts of three f unc t i ona l l y d i s t i n c t 
sets of machines. The ln tens lona l database 
machines (IDB) u n i f i e s a goal w i th a l l procedure 
heads wi th the same name. The extensional database 
machines (EDB) func t ion as a d i s t r i b u t e d r e l a t i o n a l 
database machine and provide fas t access to 
func t i on - f ree ground asser t ions . The problem so lv ­
ing machines (PSM) manage the search space. The PSM 
is the major por t ion of PRISM and is where the con­
t r o l spec i f i ca t i on i s p r ima r i l y i n t e r p r e t e d . I n 
t h i s paper we describe the PSM and i t s support of 
the con t ro l f a c i l i t i e s provided in PRISM. (See 
Kas i f [1983] fo r f u r the r d e t a i l s and references on 
PRISM). 

2. Contro l Issues 

2.1. Goal t ree and Control Issues 

A goal t ree is generated in the problem so lv ­
ing process. The t ree consists of a set of nodes, 
where each node consis ts of a set of goa ls . 
Subgoals in a node may be character ized as 

dependent or independent of one another, A subgoal 
is dependent i f i t s execution must await the suc­
cessfu l execution of another subgoal in the same 
node. It is independent otherwise. An acyc l i c 
p a r t i a l order expresses such a re la t i onsh ip among 
subgoals. At any stage of the execution of a node, 
a l l independent subgoals may be executed asynchro­
nously. However, goals which are candidates fo r 
simultaneous execution must be t reated spec ia l l y i f 
they share unbound va r i ab les . There may be several 
assert ion/procedure heads which match a selected 
goa l . Any procedure head which matches a goal can 
p o t e n t i a l l y lead to - so l v i ng tha t goa l , independent 
of other matching procedure heads. A l l matching 
procedure heads are therefore candidates fo r asyn­
chronous execut ion. Thus one may specify that cer­
t a i n a l t e rna t i ves need be explored only i f other 
a l t e rna t i ves have f a i l e d or that some a l t e rna t i ves 
are more l i k e l y to succeed than o thers . A l l poss i ­
ble asynchronous operations may be executed on 
autonomous machines. 

2.2. PRISM Control F a c i l i t i e s and Language 

PRISM provides the a b i l i t y to specify p a r t i a l 
order f o r the execution of every goal and procedure 
body. The p a r t i a l order on goals expresses depen­
dencies among subgoals w i t h i n a goa l . The order is 
spec i f ied by a no ta t ion as i l l u s t r a t e d by: 

The procedure head is on the l e f t of the arrow, 
whi le the body is on the r i g h t . The body consists 
of a set of goa ls , separated by commas and formed 
i n t o groups by proper ly nested pa i rs of parentheses 
and brackets. A l l groups of goals enclosed by 
parentheses, must be executed in a l e f t - t o - r i g h t 
sequence. Groups of goals enclosed in brackets may 
be executed independently of other groups in the 
same set of brackets. 

PRISM provides a no ta t ion f o r spec i fy ing both 
a recommended and a forced order ing of procedures. 
Consider the example: 

The in tegers represent a recommended order of exe­
c u t i o n . The aster isked in tegers represent a foroed 
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order ing . The f i r s t two procedures ( p r i o r i t y=1 ) 
may be executed simultaneously. The t h i r d pro­
cedure ( p r i o r i t y = 2 ) is less l i k e l y to succeed but 
may also be executed in p a r a l l e l w i th the f i r s t 
two, or before them if the problem solver so 
decides. However, the fou r th procedure ( p r i o r -
i t y=*3 ) cannot be executed unless the preceding 
procedures have been completely executed. A 
defau l t order ing is provided by PRISM when the pro­
cedures are not numbered. 

3. The Problem Solving Machine (PSM) 

3 -1 - The Role of the PSM 

The cent ra l task of the PSM is to manage the 
search space. The complete separat ion of log ic 
( the problem spec i f i ca t i on ) and cont ro l (the s t r a ­
tegy of so lv ing the problem) al lows f l e x i b i l i t y 
whi le executing the program. Not only can the 
search strategy be var ied dynamical ly, but due to 
the inherent ly non-determin is t ic nature of log ic 
programs, several mutually exclusive p o s s i b i l i t i e s 
may be explored simultaneously. The PSMs permit 
t h i s inherent pa ra l le l i sm to be explo i ted dur ing 
problem so l v ing . 

I n i t i a l l y a goa l , which represents the problem 
to be solved, is sent by the Host to ZMOB and is 
read by some PSM. This PSM places the goal as the 
root of a proof t r e e . 

At any given ins tan t in the problem so lu t ion 
process the search space administered by each PSM 
consists of a t ree of goal nodes. The root of the 
t ree is the o r i g i n a l goal w i th which the PSM was 
i n i t i a t e d . The successor of any nodes in t h i s t ree 
is the resolvent obtained by reso lv ing program 
clauses wi th some atom in the parent node. When an 
atom is expanded, several program clauses which 
represent a l t e rna t i ve ways to solve the problem, 
may resolve wi th i t . These a l te rna t i ves lead to 
branching in the search t ree (OR branches). Nodes 
in the t ree can be in one of f i v e s ta tes : the empty 
node; a f a i l u r e node; an open node not yet selected 
for expansion; an ac t i ve node selected for expan­
s ion , but not yet f u l l y expanded; and a closed node 
which has been f u l l y expanded. 

At any stage the PSM must select an open node 
from the search t r e e , and then select one or more 
atoms from t h i s node. This selected atom is sent 
to an IDB and/or an EDB fo r expansion. While the 
IDB and/or EDB are working on t h i s atom, the PSM 
can t rans fe r i t s a t t en t i on to other nodes in the 
search t r e e . An atom sent to the IDB may un i fy 
w i th one or more procedure heads. A l l correspond­
ing bodies are sent baok to the PSM which i n i t i a t e d 
the search, e i t he r one at a time or a l l at once. 
When more than one procedure body is returned f o r a 
given atom, several mutually exclusive subgoal 
nodes are generated. These mutually exclusive 
goals can then be solved independently in separate 
machines. Thus each PSM can dynamically i n i t i a t e 
another PSM machine, if one is ava i l ab le . As w i th 
the goal t ransmi t ted by the VAX to a PSM, the goal 
t ransmi t ted from one PSM to another becomes a root 
of a goal t ree in the new PSM whose parent is the 
sending PSM. Each PSM can independently develop 
and manage subtrees of the search spaoe generated 
by the goal node t ransmi t ted to the PSM. Each PSM 

is autonomous except f o r knowledge of the parent-
c h i l d r e l a t i o n s h i p . When a goal assigned to a PSM 
is completely solved i t t ransmi ts the so lu t i on o r 
f a i l u r e to i t s parent PSM. The parent of the PSM 
tha t contains the o r i g i n a l goal is the Host (VAX) 
machine. 

3.2. Control in the PSM 

3.2.1_. Control Spec i f i ca t ion Support - Select ion 
Process 

The se lec t ion procedure determines the con t ro l 
s t rategy of the system. The user is permitted to 
speci fy guidel ines to d i r ec t the se lec t ion process. 
The se lec t ion procedure has four main func t ions : 
node (clause) se lec t i on , atom se lec t i on , procedure 
se lec t ion and PSM c rea t ion . 

Node se lec t i on : Any node not f u l l y expanded is a 
candidate for se l ec t i on . A f u l l y expanded node is 
a node whose selected atom has been expanded and 
a l l lea f nodes descended from the node are e i the r 
f a i l u r e nodes or n u l l c lauses. A non- fu l l y 
expanded node may be e i the r an ac t ive or an open 
node. An ac t i ve node is one from which one or more 
atoms have been selected for expansion, but is not 
f u l l y expanded. An open node is one from which no 
atom has yet been selected for expansion. 

Atom se lec t ion is concerned w i th se lec t ing a atom, 
fo r expansion, from a selected node in the search 
t r e e . There are several system and user defined 
cons t ra in ts that a f f ec t atom se lec t i on . 

As defined in sect ion 2, the user can speci fy 
which atoms in a node may be executed in p a r a l l e l 
and which must be done in sequence, i . e . a p a r t i a l 
order on the execution of the atoms. These user 
spec i f ied const ra in ts l i m i t the atoms which can be 
selected at any stage. Only atoms which do not 
depend on any other atom or those fo r which the 
atoms they depend on have already been solved are 
candidates fo r se lec t i on . 

In add i t ion to user-def ined order ings , ce r t a i n 
orderings are impl ied by the node s t ruc tu re i t s e l f . 
Two basic ways in which the contents of a node d i c ­
ta te the order ing on atom se lec t ion a re : dependent 
atoms, and specia l p red ica tes . Two or more atoms 
in a node are said to be dependent when they share 
va r iab les . In t h i s case what is desired is the 
f i r s t (or a l l ) b ind ing(s) which cause the atoms to 
succeed. This can be accomplished e i t h e r by pro­
cessing the atoms in p a r a l l e l and then i n te r sec t i ng 
the sets of bindings fo r the shared va r iab les , or 
by f i nd i ng a binding which s a t i s f i e s one predicate 
and then s u b s t i t u t i n g i t in the others and deter­
mining i f they succeed w i th tha t binding (nested 
loops method). In e i t he r method a specia l AND node 
is generated w i th the dependent atoms as i t s c h i l ­
dren and one of the above techniques app l ied . Spe­
c i a l predicates are a set of language supplied 
predicates whose semantios d i c t a te that ce r ta in 
other predicates in the clause must be f u l l y solved 
before these system def ined predicates may be 
invoked. 

Onoe user and system defined const ra in ts have 
been s a t i s f i e d , a set of atoms whioh are candidates 
f o r se lec t ion w i l l remain. The atom seleoted from 
t h i s set w i l l be seleoted based on user or system 
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suppl ied h e u r i s t i c s . 

Procedure se lec t ion is concerned w i th choosing 
which procedure body should be given the highest 
p r i o r i t y when several bodies match an atom. This 
decis ion is made exc lus ive ly by the IDB. 

PSM s e l e c t i o n , is concerned wi th the decis ion of 
when to i n i t i a t e another PSM wi th a subproblem. 
Whenever a branching of the search t ree is induced 
by e i t he r mu l t i p le a l te rna te subproblems (0R-
branches) or by independent conjunct ive subproblems 
(AND-branches), t h i s branch becomes a candidate fo r 
execution in another PSM machine. The actua l p ro­
cess of determining when a new PSM is i n i t i a t e d is 
discussed below. 

3 .2 .2 . PSM Creat ion 

The decis ion of when to i n i t i a t e another PSM 
wi th a subproblem is not an easy one. If the 
subproblem is too sma l l , a large amount of overhead 
would be incurred to solve i t . I f the subproblem 
is too l a rge , the parent PSM may complete before 
the c h i l d and remain i d l e u n t i l i t s ch i ld ren com­
p l e t e . In general i t i s not possible to determine 
how complex a subproblem i s . Thus no attempt is 
made to determine the complexity of a subproblem, 
in the i n i t i a l system. Instead a new PSM is i n i ­
t i a t e d every time a branching of the search t ree 
takes p lace, and a PSM is a v a i l a b l e . At any given 
i n s t a n t , there may be several ac t i ve branches 
w i t h i n a PSM, and thus several candidate nodes may 
be sent to other machines. In t h i s case a l l or 
only some of these nodes may be shipped ou t . This 
is determined by the user or by system suppl ied 
h e u r i s t i c s . 

In order to reduce i d l e t ime, machines which 
have completed t h e i r a l l o t ed task are permit ted to 
accept f resh quer ies , as f o l l ows . I f no f u r t he r 
processing can be done then e i the r a l l possible 
answers fo r the goals t h i s PSM was invoked w i th 
have been found, or a l l paths resu l ted in f a i l u r e , 
or a l l paths l oca l to t h i s PSM have been f u l l y 
explored and there are some ch i ld ren of t h i s PSM 
which have not yet completed t h e i r work. When a l l 
answers have been found or a l l paths have f a i l e d , 
t h i s in format ion is t ransmi t ted to the parent o f 
t h i s PSM, and the PSM s ta te is restored to one in 
which a new query can be accepted. When a l l l oca l 
paths have been explored and some chidren PSMs are 
s t i l l a c t i v e , a data s t ruc tu re is constructed which 
contains enough in format ion to reconstruct the com­
p le te answer from the in format ion in t h i s PSM and 
from the answers from the cu r ren t l y ac t i ve ch i l d ren 
PSM. Once t h i s data s t ruc tu re is constructed, the 
l oca l proof t ree is destroyed and the PSM s ta te is 
restored to permit a new query to be accepted. 

In t h i s manner PSMs are not kept i d l e in case 
they complete before t h e i r ch i l d ren do. This a lso 
al lows a PSM to be i t s own ancestor if so des i red . 

3 .2 .2 . AND/OR Para l le l i sm 

The existence of mu l t i p le bodies tha t match a 
selected atom r e s u l t in the formation of an OR-node 
w i th each of these bodies as a c h i l d . Since these 
ch i l d ren are independent of eaoh other they may be 
exeouted in separate machines. 

AND-parallel ism ar ises when a conjunct ion of 
two or more atoms appear in a node. Independent 
atoms that do not share var iab les are executed in 
p a r a l l e l and r e s u l t in the creat ion of an AND-
branch. 

3 .2 .4 . Handling Negation 

The NOT meta-predicate def ined in most sequen­
t i a l log ic programming is an implementation of 
Negat ion-by-Fai lure [Clark 1978]. This is not we l l 
defined when one or more of the arguments are 
unbound va r iab les . The behaviour of the NOT meta-
predicate can be anomalous in the case where a l l 
arguments are not constants. The semantics of 
negation is extended to handle atoms wi th var iab les 
as arguments by c rea t ing a set of bindings fo r 
which the atom f a i l s and assuming the negation of 
the atom holds fo r prec ise ly t h i s set of b indings. 
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