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ABSTRACT

The well known Knuth and Bendix completion proce-
dure computes a convergent term rewriting system
from a given set of equational axioms. This proce-
dure was extended to handle mixed sets of rules
and equations in order to deal with axioms that
cannot be used as rules without loosing the requi-
red termination property. The developed technique
requires the termination property of the rules
modulo the equations. We describe here an abstract
model of computation, assuming the termination
property of the set of rules only. We show that
two abstract properties, "uniform confluence
modulo” and "uniform coherence modulo" are both
necessary and sufficient ones to compute with
these models. We then give sufficient properties
that can be checked on "parallel critical pairs",
assuming the rules are left linear. These results
allow to deal with sets of axioms including
coramutativity, associativity and idempotency.

INTRODUCTION

Term Rewriting Systems (TRS in short) are
used for a lot of Artificial Intelligence applic-
ations. TRS express computations based on directed
equalities, whenever properties are satisfied. The
well known Confluence property expresses roughly
that the result of a computation does not depend
on the choice of the rules to be applied. When a
TRS is not confluent, it can be transformed into
an "equivalent" confluent one, using the well
known Knuth and Bendix completion procedure
[K&B,70]. This procedure can be seen as a way to
compile equational specifications into confluent
sets of rules. Then these rules can be used as
well as 'PROLOG like" programs [DER,82].

During the ten past years, the Knuth and
Bendix completion procedure was shown to be a
major tool for a wide class of problems, mainly
the word problem in universal algebras [K&B,70],
equivalence proofs of sets of axioms in algebra
[LES,83], wunification in equational theories
[JKK,83], proving consistency and assertions in
algebraic specifications of data types [H&H,80],
theorem proving in first order logic [H&D,83],
program synthesis from specifications [DER,82]
[H&P,82], computing with rewrite programs
[DER,82]. The Knuth and Bendix completion procedu-
re is based on using equations as rewrite rules
and computing "critical pairs" when left members
of rules overlap. If a critical pair has distinct

irreducible forms, then a new rule must be added
and the procedure recursively applies until it
eventually stops. This procedure requires the
termination property of the set of rules, which
can be proved by various tools. A full implementa-
tion of these techniques is described in [LES,83].

The method was extended to handle the
case of Equational Temm Rewriting Systems (ETRS
in short) i.e. sets A of axioms split into a set
R of rules and a set E of equations, in order to
allow axioms such as commutativity, which cannot
be directed without loosing the termination
property. A first approach by Lankford and
Ballantyne [L&B,77] studies permutative axioms
that generate finite E-congruence classes. The
case of infinite E-congruence classes was studied
by Peterson and Stickel [P&S,81] and Huet [HUE,77-
&80]. These approaches are unified and generalized
in [JOU,83], where two properties, E-confluence
and E-coherence, are shown to be both necessary
and sufficient ones to compute with ETRS. When an
ETRS is not E-confluent and E-coherent, it can be
transformed into an equivalent E-confluent and E-
coherent one by computing "E-critical pairs". In
addition to a complete E-unification algorithm,
this E-completion procedure requires the terminat-
ion of the relation induced by the rules in the E-
congruence classes.

The termination of a set of rules can be
checked by various tools such as the recursive
path ordering [DER,79] and the recursive decompos-
ition ordering [JLR,82]. On the contrary, checking
the E-terraination of a set of rules is actually
an open problem except for the special case of
associative and commutative equations.

Moreover, a set of rules can be terminating and
not E-terminating as noticed by Jeanrond [JEA,80].
The following counterexample is extracted from a
set theory or from a boolean ring theory:

Assume + is an idempotent function symbol and let
I->r be any rule. Then 1 - 1+1 -> 1+r , which
induces an infinite derivation even if the set of
rules itself was terminating.

To solve this problem, Padawitz developed
in [PAD,82] rnew techniques based on a so called
"strong confluence" property, proved to be
sufficient for a Church-Rosser property. However,
it is rather complicated to express and carries
on a lot of technical restrictions, in addition
to the left linearity of the set of rules.

Our first goal in this paper is to give a
well suited framework in order to simplify and
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generalize Padawitz's results. This is achieved
by describing an abstract model of computation in
the same way as in [JOU,83J: It makes clear that
two properties, "uniform confluence modulo" and
"uniform coherence modulo" are both necessary and
sufficient conditions for the Church-Rosser
property that we need. Uniform confluence modulo
ensures that the normal form of any term, using
the rules of R, is unique up to the equality
generated by the equations of E. Uniform coherence
modulo says roughly that the wuniqueness is also
true if the reduction is applied to terms that
are equal, up to the E-equality.

Applying then this abstract model to ETRS,
we obtain easily a more general version of
Padawitz's results as well as new ones. More
precisely, we introduce sufficient conditions for
uniform confluence modulo and uniform coherence
modulo called local confluence in one step and
local coherence in one step, that can be checked
on critical pairs or on "parallel critical pairs"
as in [PAD,82].

Section | is devoted to recall classical
notions about TRS. A purely axiomatic approach
working with arbitrary relations is developed in
section |1. Abstract results obtained in section
Il are applied to EIRS in section [Il. Equalities
are used as usual in a first subsection, whereas
they are used in a parallel way in a second one
and in a recursive parallel way In a third one.

I-PRELIMINARIES

Definitions 1: Given a set X of variables and a

graded set F of function symbols
T(F,X) denotes the free algebra over X. Elements
of T(F,X) are called terms. Temms may be viewed
as labelled trees in the following way : a terra

t is a partial application of N* into F X such
that its domain D(t) satisfies:

(1) The empty word e is in D(t).

(2) iu is in D(f(... ti ...)) iff u is in D(t).
D(t) is the set of occurrences of t, 0(t) the
subset of non variable occurrences of D(t), V(t)
the set of variables of t and #(x,t) the number
of occurrences of x in t. A term t is said to be
linear iff //(x,t)*l for any x in V(t). Let t/u be
the subterm of t at occurrence u and t[u<-t'] the
terra obtained by replacing t/u by t" in t. 1]
Definations_2' Substitutions s are defined to be
endomorphisms of T(F,X) with a
finite domain D(s) - {x In X | s(x) 4 xj.
Composition of two substitutions s and s
denoted by s s'.

The subsumption preorder < on T(F,X) is defined
by: t< t' iff t'- s(t) for a substitution s
called a match from t to t'. Given a subset V of
X, we define s<s' [V] iff s(x) 4 s'(x) for all
x in V, which is equivalent to s'=s'o s [V] for
some substitution s". V is omitted if equal to X.
A substitution s is a unifier of two terms t and
t'" iff s(t)=s(t'). For any unifiable terms t and
t', there exists a minimum unifier of t and t'

(for the ordering < [V(t)UV(t')] ), called most

general unifier (mgu for short) of t and t'. 11

is

definations-2° we call axiom or equation any pair
(t,t') of terms and write it

t-t'. The A-equality -A (or |-*-|A) is the

smallest congruence closed under instanciation

and generated by a finite set A of axioms.

I — I A denotes one step of A-equality.

|—— A denotes n steps of A-equality. 1]

Many theoretical problems in equational
theories (word problem,...) can be approached by
using rewrite rules that is oneway equations.
Working with rules requires good properties as
shown by Knuth and Bendix [K&B,70],

Definitions 4: A term rewriting system R is a set
of pairs g>d s.t. V(d)cV(g).

We say that a term t R-reduces at occurrence u to

a terra t' using the rule g->d, and we write

t >R t" , iff there exists a match s from

g to t/u and t' - tfu <- s(d)]. We may omit R.

A term rewriting system R is left (resp. right)

linear if g (resp. d) is linear for all g->d in R.

-*->R is the reflexive transitive closure of ->R,

-+->R the transitive closure of >R and

=R the generated equational theory.

An irreducible term' for -> is said in normal

form, t! denotes a normal form of t, that is a

term t" in normal form s.t. t -*-> t'.

A term rewriting system R is terminating (or

noetherian) if there Is no infinite sequence of

the form: tO >R tl >R ... th >R .... [

ILABSTRACT PROPERTIES OF CONFLUENCE

From now on, we deal with weakly terminat-
ing Equational Tem Rewriting Systems (ETRS in
short), that is sets A of axioms split into a
terminating TRS R and a set E of equations with a
decidable E-equality. These EIRS are said to be
weakly terminating because the relation -E ->R =E
induced by ->R in the E-equivalence classes is
not necessarily terminating as required in other
works [HUE,77&80] [P&S.81] [JOU,83].

We start here using abstract relations:
In this section, |-|E is any symetric relation
whose reflexive transitive closure is -E , ->R is
any relation and -A is the reflexive, symmetric
and transitive closure of ->R U =E . This abstract
approach allows us to generalize Padawitz's
results and provides new ones by appropriate
choices of the relation |-|E in section I11.

To decide A-equality, the classical way is
to require a Church-Rosser property, which allows
to decide whether tl "A t2 or not by computing the
normal forms of tl and t2 and checking for their
E-equality. Two properties called confluence and
coherence are needed to ensure the Church-Rosser
property. The style of properties we use here is
quite different from Jouannaud's [JOU,83] or Huet's
[HUE,77&80], because we explicitely use normal
forms in the definitions. This difference is quite
important in the abstract part of the paper: it
allows removing the so-called E-termination
property of the set of rules. It will however
carry on other restrictions in section 111.



Definition 5: B is said to be:
Uniformly Church~Rosser modulo E

1ff ¥tl,t?2 wp.t. tl =A £2 , then tl! =E t2! .
Uniformly confluent modulo E 1iff ¥t,tl,c2 a.r.
tl =#= p =k=) 2 . then 1l =E t21.

Uniformly coherent modulo E  {ff W¥t,tl,t2 E.t.
tl <= t =E t2 , then tl1! =E t2! []

Notice that wunder these hypotheses, a
term may have sgeveral Jdifferent normal forms.
Therefore, each upper formula tl1! =E t2! s
exigtencially quantified and must read: there
exist tll and t2! such that tl! =E t2!. On the
other hand, the property of uniform confluence
modulo E implies obviously that different normal
formg of a same term are E-equal, avoliding the
drawback of having to choose each time the good
one. Therefore, normal forms are universally
quantified as well as existenclally quantifiedl

Lemma_l: Let R be uniformly eonfluent modulo E.
Then R 15 uniformly coherent modulo E
iff £ «E t° dimplies ¢! =E t7! . [1

E 1ff B 4ie wuniformly confluent
modulo E and uniformly coherent modulo E.

Proof: The "only 1f” part is obvious. The “if"
part 15 proved by Induction on the length of the
A=-equality with the help of lemma 1. []

A ugually, we now reduce global properties
te local ones.

Definitions 6: R is said to be;

locally unifoermly confluent modulo
E iff ¥Ye,tl,t2 s.t. tl <—t=> t2, then tl! =F t21 .
locally uniformly coherent module E 1ff ¥t,tl, t2
s.t, tl |=lE t ->t2, then ¢tl1! =E t2! [1

Propesition 2: Assume R is ncetherian. Then R is

unifermly confluent modulo E and
uniformly cohetent modulo E Iff R 1s 1locally
uniformly confluent modulo E and locally uniformly
coherent module E.

Proof : The "only {f" part is obviocus . For the
“{1f" part, we first prove that 1local uniform
confluence modulo E implies uniform confluence
modulo E by noetherian induction on =->:
Let t —-> tl —%=>t" and t ->t2 -%-> t" .
tl! =E t2! by uniform local confluence hypothesis.
t”1 =E t11 by induction hypotheeis applied to tl.
t"l =E £2! by induction hypotheeis applied to t2.
Therefore, t“! =E t"! achleving the first part.
We now prove that local uniform coherence wmodulo
E implies uniform coharence module E, by induction
onn if t |=n~|E tl. The case n=0} 1is obvious.
For the case mtl, let agsume t |-|E t” [-n-] £l .
Applying first local uniform coherence module E,
we then discuse the two following cases;
= if t° is irreducible and tl 1 reducible into t”
the result is obtained by induction hypothesis.
- if t” 18 reducible, the result 18 obtained
by induction hypothesis and the already proved
uniform confluence modulo E property. [

It should be noticed that, on the contrary
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to Huet“s approach [HUE,77&80], the ctermination
property of R 18 sufficient here, because we
compute normal forme for closing the dlagrama.

Unfortunately, these local properties
cannot be of any help, because they don"t carry
on an eagy check on the rewriting system. Againat
this drawback, we introduce two new local propert—
ies which carry on sufficient conditiona only.

Definition 7: We write t |-E-|E t” iff either
tet” ar t |-IE t°., A palr {(p,q)

iz confluent In one step modulc E and we write

p '0,1'F q 1ff there exist two terms t and ¢t~

such that p =*~> p” 1= £ =|E q” <=*- q.

R i locally confluent in one step 1ff W¥We,tl,t2

g.t. tl <=1t =>¢2, then tl !D,l!E €2 .

R is locally coherent in one step Lff V¥e,tl,t2

s.t. tl ¢~ ¢t |=-]E t2 , then tl 10,1} t2 . [1

We now show that these new local properties
imply the previous local cnes:

Proposition 3: Assume R 1is noetherian, locally
confluent in one step and locally

coherent in one step. Then R ia both:

a) locally uniformly coherent medulo E

b) locally uniformly confluent modulo E

Proof : we prove a) using a noetherfan {nduction

on the pairs of terms, then b).

Let us define the relatfon ==> by :

{x,yy==>{x",y") 1ff efther {1) x—+=>x" and y-*->y~

or {2) x=+=>y" and y=-*->x"

As R is terminating, cases 1 and 2 are separately

noetherian. As case 1 steps can be {1Incorporated

into case 2 steps, ==> i@ also noetherian.

Let now go back to the main proof of:

- a). Let t2 <~ t [-]| tl. Using local coherence

modulo E in one step, there exist ul and u2 s.t.
tl =#=> pul, €2 -%> y?2 and ul |=&=lE u2 .
If neither ul nor w2 is reducible, or if ul and
u2 are aqual, then we are done. FElse gssume ul
reduces to ul™: The regult {8 obtained hy
applying the induction hypotheais a) to the
palr (ul,u2) which is a proper son of the palr
{t,tl) for a=),

= b). Let £l {-t => t2 . Using local confluence
modulo £ in one step, there exist ul and u2 s.t.
tl =%=> u}, t2 ~*> u? and ul [-E-|E u2 .

The result now follows from property a}), [1

I'1'1. APPLICATION_TO EQUATIONAL , REWRITINGSYSTEMS

From now on, we assume that=E Is the

equality generated by a set of axoms E and |—IE
is one step of some relation whose transitive
closure is equal to -E. This relation will first

bewestep of E-equality, then one step of parallel
E-equality, finally one step of recursive
parallel E-equality. In each case, a pair (p,q)
is said to be confluent in one step I-IE, iff
there exists terms p" and q' such that:

p _*_> pI |_.e lllE ql <_*_ q.

I.LE=EQUALITY

In this section, |—IK is one step of E-
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equality. In the case of left and right 1linear
rewrite rules, we show how to check our local
properties on claasical critical pairs.
Definition 8: A term t” overlaps a term t at
occurrence u in O{t), with a
substitution 8 1ff s {8 a mgu of t” and t/u. Given
two pairs (g,d} end (g",d7) s.t. V(g)AV(g™) = &
and g overlaps g~ at occurrence u with a
substitution s, (p=s(d”), gqus(g"fu<~d})) 18 a
critical pair of (g,d) on (g",d”) at occurrence u.
Let SCP(R) be the set of all critical pairs of
tules of R on rules of R, SCP{E,R) the set of all
critical pairs of equations of E {oriented both
sidea} on rules of R and SCP(R,E) the set of all
critical palra of rules of R on equations of E. [}

With the concept of critical pair 1is
assoclated the so0 called:

Critical pairs lemma [HUE,77580]: Assume that
t —>[e,g~>d] tl
and t ->[v,1->r] t2 with v in 0(g). Then, there
exists a critical pair {p,q) and a substitution s
guch that tl = g(p) and t2 = g{q).
The pair (p,q) i3 in SCP{R) 1if g~>d and 1-Dr are
rules of R, in SCP{E,R) if ped is an equatfon of
E and 1=>r a rule of R and in SCP{R,E) if g~>d iz
a rule of R and l=r an equation of E. (]

The following propoaitions are modified
verafons of lemmas 3.1 and 3.5 of |HUE,77&80].
The proofs are based on the critical pairs lemma.

Proposition 4: R is locally confluent in one step
|-1E 1ff all critical pairs of R
are confluent in one step |-IE. [1

Proposition 5: Assume R is right and left linear.

Then R {3 1loccally coherent 1in
one ptep [=|E Lff all critical pairs in SCP{R,E)
and SCP(E,R) are confluent in one step |~]E.

Proof : Let us prove the non obvious "1if" part:
Assume t [=1E tl wuelng axiom gl=dl at occurrence
u with a match sl and t -2 t2 wusing rule g2->d2
at occurrence v with a match a2.
Three cases muat be distinguished :
1. u and v are disjoint occurrences: then rule
and axiom commite.
2. u g v, with tw subcases, assuming u=e without
logs of generalicy:
aubcase 1: v 18 not in 0{gl).
Then, there exipts a variable % such that sl(x)
1s reducible by g2->d2 and local coherence In
one step 18 proved as usually {see [JOU,83)}.
subcase 2: v is in O(gl).
From critical pair lemma, a critical pair (p,q)
in SCP(R,E) and a subatitution s exist s.t.
t2=a(p), tl=a(gqg) and p =*=>p” {-{~|E q <% q .
Therefore, t2 ~%=3 g(p”) |=£~|E 8{q" )} ¢-*= tl .
3. v{u, with two subcases, aspuming vee without
logs of generality:
subcame 1! v is not in O{g2).
Then a variable x exists a.t. the axiom gl=dl
applies to a subterm of 82(x) at occurrence w.
Define 872 by B2(x)= 82(x)[wl-s1(dl)]
8°2(y)= 22{y) Aif y is distinct of x.
Then t2=g2(d2) <~ t=s2(g2) |-IE s"2({g2)=tl and

since g2 and 42 are both linear,

t2 = g2(d2) |-1E 872{d2) <= 8B"2(g2) = tl .
gubcase 2: v is in O{(g2).

Using the critical pairs lemma, there existe a
critical pair of SCP(E,R), and the proof 1s
achieved as in case 2, subcase 2. [

Ag a corollary of these two propositions
and propositions 1, 2 and 3:

Theorem l:

Let ® be a right and left linear,
terminating term rewriting system and
E a aet of axioms such that =E is decidable. Then
R is uniformly Church-Rosser module E 1if all
critical pairs (p,q) In SCP{R), BSCP(R,E} and
SCP{E, R} are confluent in one step |[-|E. [1

The following sets of rules and axloms
satisfy these conditions:

1. R={ hixty) => h(x)+h{y) ; f(f(x)) -> x }
E={ {xty)tz = x+(ytz) ; x+y = y42 ; x+u = x |}
2. idempotent groups:
Rm | xta =D x ; px => x ; i{e) => e ;
1(1(x)Y) =2 x 3 L0why) => 1{y)*(x) }
F o= x%y = yhx ; x*(y*z) = (x*y)*z ; x*x = x |}

ITI.2. PARALLEL E-EQUALITY

In order to drep out the right linearicy
regtriction, we are now going to apply several
steps of E=equality at the same time. More
formally, we define the parallel E-equality |=|E,
whose reflexive trvansitive closure lg also =E :

bDefinition 9: The parallel E-equality relation
|=|E i defined am fallows:

t I=|E t” 1ff there exist disjoint occurrences

vl, «os ,vn 1in D{r}, axiome gi=di 4in E and

substitutions 51 s.t. t/vli = gi(gl) for any i in

[1..n] and t” = t[vi<{=-al(d1)] ... [vn{-sn{dn)]. []

Warking with this unew equality requires
new eritical pairs [PAD,82]:

Definition 10: Terms gl,z2,..., gn are sald to
overlap the term g at disjolint
occurrences vl,v2,...,vn in O{g) with the subati-
tution s 1ff s is the most general unifier of the
set of pairs {{g/vl, gl),..., {(g/vn, gn)}.
The pair (p=s{d), q=s(g[v1<=dl}...[vn{=dn])} i=
sald to be a parallel critical pair of the axioms
gl=dl,..,,gn=dn on the rule g->d at occurrences
vl,.su,vn in O(g) 1ff gl,...,gn overlap g at
these occurrences with the substitution .
Let SPCP{E,R) be the set of all parallel critical
pairs of E on R obtained by all possldle overlap~
pings of geta of axlioms of E on rules of R. [1

Notlce that a eritical pair 18 a particular
case of a parallel critical pair. With parallel
eritical pairs is associated the so called:

Parallel critical paira lemma: Let t=s(g) for g->d

in R and for any 1
in [l..n] t/vi=si(gl) with vi dis}oint occurrences
in O{(g) and gi=~di or di=gi in E. Then there exist




a parallel critical pair (p,q) and & substitutioan
r &8.t. e{d) = r(p)
and 8(g)[vl<{-8l(d1)]...[vn<-sn(dn)] = r(q).

Proof: as Huet"s proof of critlcal pair lemma. (]

An easy generalization of propoaition 4
glves first :

Proposition_6: R ia locally confluent modulo E
in one step |=|E iff all critical
pairs of R are confluent in one step |=|E. [}
Using now parallel critical pairs, we get:
Proposition 7: A left linear TRS R 1is locally
coherent in one step [=|E 1if:
= all eritical pairs of R in £ are confluent 1in
one step |=|E.
= all parallel critical pairs of E in R arte
confluent.

Proof : Assume that t |[={E tl at occurrences
vl,+..,vnh with substitutions s5l,...sn and axioms
gl=dl,... gn=dn and that t -> t2 at occurrence u
with the rule g=>d and the substitution s0.

Three cases are to be distinguished:

l. u is disjoint from all the vi, i=1,...,n. Then
=> and |=1E commute.

2. vigu for an 1., Then the proof works as the
correspending case 2 In propoaition 5.

3. Let J be the subset of [1,n] such that udvi for
i in J. Without loss of generality, we assume
that J={1 ,m"»m=-1]. Let now K be the subset of J
such that vi is in O(g) for any 1 in K. Let us
agsume that K=[1,k"=k~1]. The proof consists of
sharing the step t |=|E tl in three parts:

£ I=IE ¢” I=[E t" I=IE t1 with

t7 = t[vl<{-s1(d1)] +.. [vk“<=8k"{dk")}]
t” = 7 [vk<=sk{dk)] ... [vm " <-sm " {dm")]
tl = t"[vmk-em{dm) | [vn{-en(dn)]

lat part : applying the parallel critical pair
lemma, there exist a critical pair (p,q) fn
SPCP(E,R) and a substitution B such that:

t2 = t{ud-a(p}] and t"= t[u<-8n(q)].

As p and q reduce both to a glven term, say pg,
t2 and t” reduce both teo t72 = t2[ud-s{pq}].

2nd part: for any ] in K, there exists a
variable x in V(g) and an occutrence wj such
that a0(x)/wj 1s an Instance of g}. Let Z be
the gset of all these variables. As g 1ia
linear, the terme s0(x) do not change in t~.
Furthermore any variable x in Z is a variable
0f q and gatisfies s0{x)=a(x)}.
Let us now define the gubstitution s~ :
B (x) = 8{x) Iif x is in V(q)\Z and
8°(x) = a0({x)[wi{-s)(d$)] Lf x 18 in Z,

Then t"= t{u—a"{q)] ~*+> t"2 = pjui=8"(p”}]
and a{q") I=|E 8°(q") , therefore t"2 {={E t"2
at occurrenceg which are guffixes of u.

3trd part: Aa t" =%=> t"Z and t” {=«[E tl at
digjoint occurrences, tl =*=> t71 |=|E t"2.

Finally t"2 {=|E t"2 |=IE t"1 at disjoint eets
of occurrences, therefore t72 |={E t71. [1
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A a corollary of Propositioms 1, 2, 1, 6
and 7, we obtaln now:

Theorem 2: Let R be a left linear and terminating
term rewriting esystem, and E a get oF
axjoms such that =E 18 decidable. Then R is
unlformly Church-Rosser if:
- all critical pairs 1in SCP{R) are confluent
wodule E In one step |=1E
- all critical pairs in SCP(R,E) are confluent
modu:lo E in one step |=IE
- all paraliel ericical pairs in SPCP(E,R) are
confluent.

Example: Removing the right linearity hypothesis
on the rules allows to deal with rules
like distributivicy. The following ETRS satisfies
thecrem 2:
R = { zh(xky)y=>(z*x)+(z*y) ;
z40 => ¢ ; 04z =D z ; 2*%0 => O ;
E=1{ x+y = yix }

z*(eky)=>(2*y yH{2*x);
O%z => 0 }

II1,3. RECURSIVE_PARALLEL_E-EQUALITY

In this section, we wuse the tecursive
parallel equality introduced by Padawitz [PAD,B2],
in order to allew parallel critlical pairs of E in
R to be confluent Iin one step of this equality.

Definition 11:

The recursjve parallel E-equality
ia defined by: t I=rec=|Et” 1ff

there exiat disjoint occurrences vi,v2,...,va in
D(t}, axioms (gl=dl),...,(gn=dn) ir E,
substitutions sl,82,...,sm and 8°1,872,...,8"n
s-t. t/vl = 8l{gl),...,t/vyn = gn(gn),
a”1{x) |=rec=|E si(x) or s7i(x) = si(x)
for any 1 and any variable x
and t7 = t[vl<-s"1(dl}] ... [vn<=a"n(dn)]. @]

_____ With E = { xty = y+x }
(a+bY+(c+d) |=rec=|E (d+c)+{b+a).
Notice that equality stepa do not overlap
in |=rec=|E and let us point out some easy proper—
ties of |=rec=|F, freely used in what follows:

a) For any terms t,tl,...,tn,t"1,,..,t"n and any
digjoint occurrences vl,..., wvn 1in D{t), If
tl |=ree=|E t71,..,tn |=rec=|E t"n, then t[vl<{-
tl]...[vn¢—tn] [=rec=}E t{vi<-t"1l]...[vn<=t"n]
{compatibility).

b) For any terma t, t” and any subatitution =,
t (=rec=IE t° implies s{t} |=tec=|E s{t”}

¢} For any term t and any substitutions s and s
guch thar s(x) {=rec=|E 8"(x) for any x In
¥{t), then &{t) |=rec=|E 87(Lt) .

-

Composition lemma: For any terms t,t” such that
t |=rec=|E ¢" and substitu-

tiona 8,8” &.t. 8{x) |=rec=|E s°(x) for any x,

then &(t) jmrec=|E s"(t"). [1

Proof: We may that a relation is clesed by recur-
sive application if, for any sexiowm g=d and any
substitutions »,s8”, a(g) and s"(d} are related
when a(x) and 8" (x) are related for any variable.
Clearly |=rec={E 1s the smalleat relation on terms
closed by recursive application and compatible
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with the operations of the algebra.
For two substitutions s and 8°, let us now define
the relatlon CMP{s,s") on any terms t, t~ by:

t CMP{a,&”) t° 1ff s(t) |=rec={E g”(t").
It 18 now easy to prove that Comp 1g compatible
with the operations of the algehra and closed by
tecursive application.
Therefore |=rec=|E 13 included into CMP{s,s"). []

Again, the property of local confluence
modulo E in one step |=rec=|E {5 an easy generali-
zation of proposition 4&:

Propogition 8: R 1is locally confluent modulo E in
one step |=rec=|E iff all critical
paire of R are confluent in one step |=rec={E. []

The property of local coherence modulo E {n
in one step {=rec=|E ia more difficult to ensure.
It 1s possible to define rvecursive paraliel
critical pairs of E In R; however, in addition to
a complex formalism, tricky cases can appear.
According to Padawitz, we therefore prefer to add
conditions on the rewrite rules and axioms {in
order to avold these problems and keep parallel
eritical pairs of £ in R only:

inte axioms except at occurrence
e. It"s not too reatrictive for abstract data
types, where top symbols of rules are usually new
symbole, distinct from constructors.

is not too restrictive fer data
types, because definitions of functions uge
different variables.

"""" E in R, say (p.q), obtained by
superpoaition of axioms gi=di {nte g, the most
general unifier s of the pairs {(g/vi,gi)} 1s a
match from g/vi te gi. As a consequence, variables
of gl are lnstancifated and belong to ¥{q).

The proof of local coherence wmadulo E in
one step |=rec=|E conslats of two steps: we ghow
first that local ¢oherence modulo E in one atep
{=rec=|E holds when rewriting t at the top of ¢,
agguming hypotheses 2, 3 and a closure property
on the parallel critical palirs of E in R. Then we
are able to prove local ccherence in the general
case, assuming hypothesis L.

Aggume that hypotheses 2 and 3 are true
and all parallel critical paira of E
in R are confluent modulo E in one step {=rec=|E.
Then, for any terme t, £l and t2, auch that
t=s0{g)} -> tl=s0(d) and t |=rec=|E t2, then

t2 =%=> t"2 |wrecw|E t"1 <{—*— tl.

Proof: Let vl,...,vn the smallest (for the prefix
ordering) occurrences of D(t) where the rtecuraive
parallel E-equality applies. Let um first dietin-
gulsh the subset K of [l,n] such that for any 1
in K, vi belengs to 0O(g) and assume, without loss
of generality that K=([1,k].

The recursive parallel equality step from t to tl
is shared into two steps t |=]|E t"1 |=rec=|E tl
such that t°1 is obtained from t by applying the
axiome of E at cccurrences vl,...,v.

Applying the parallel critical pairs lemma, there
exist a parallel critical pair (p,q) and a substi-
tution s such that t2=s(p) and t'l-s(q). Since p
and q reduce to p' and q' s.t. p' |=rec"C-=|E ('
t2-s(p) -*-> s(p') |-rec-e-|E s(q') <-*- s(q)-t'l.
Let now Z be the set of variables x in V(g) s.t.
sO(x) contains a subterm si(gi) at some occurrence
wi, for i in [k+l.-n]. Since g is linear, such
variables are not instanciated in the critical
pair, belong to V(q) and satisfy sO(x) = s(x). On
the other hand, with the hypothesis 3 on parallel
critical pairs, for any y in V(dl), y belongs to
V(g)\Z and satisfies s(y)-sl(y).

Let vy finaly define the substitution 87 by:
for any x in V(dl):
87(x) = 5"1(x) [wreec=|E 6l(x) = g(x)
for any x in Z:
87 (x) = s0(x)[w<~8"1{d1)] {=rec=|E a0{x) = s(x)
for any x in V{q)\Ww(dl): 87 (x) = s(x)}.
Applying finally the composition lemma, we obtain
the desired result 8(p”) I=rec=I|E 87(q")- 1]

Then R is locally coherent in one
ptep |=ree=|E {ff all parallel critical pairs of E
in R are confluent todulo £ in one step |=rec=|E.

Proof : Let ua prove the non obvious "if" part.
Let wl,...,vn be as previously the smallest
occurrences whete parallel recursive equalities
apply and u the occurrence in D(t} where the rule
applies with the substitution af}.
We ©prove the property by induction on the depth
d{u,t |=rec=|E t2) of rhe occurrence u in the
recursive equality, defined as follows:
IF t=t2 or u !5 not a suffix of some v{

THEN d{u, t|=rec=|E t2) = O
ELSE an unique vi {gay v1) is a prefix of wu;
As there i3 no superposition of any rule inte an
axfom, there exists an occurrence w of gl such
that gl{w) 1s a variable x and v=vl.w.u” . Let
A{u,t (=rec={E £2) = 1+d{u”,s8l{x) {=rec=|E 571(x)}.

—Azsume d{u,t |=recw=|E t2)=0: the result is efther
obvious or results frem lemma 2 1if u is a preflx
of pome of the vi.

—-Assume d{u,t |=rec=|E t2)}=n: let vl, w, u” and
x be ag in the definirion of the depth, gl=dl the
axiom applied at occurrence vl, &1 and 8”1 the
substitutions used and t"= sl{x)[ua"<-80{d)].

As d(u,sl(x) |=rec=]E 8°1{x)) 18 leas then n, by
induction hypothesis there exist two terms t"2 and
t"l 8.t. t" =*=3> "2 |=rec=|E r"1 {=*=-571(x).

Let ua now define the substiturions 82 and 872,

respectively equal to sl and 8”1 except for the

variable x where s2(x)=t"2 and 8"2(xX)=t"l. Of

course, 82(z) |=rec=|E 8°2(z) for any variable.

Therefore:

al{gl) [wé=t"]~*=>82(gl) !=rec=|E g"2{dl)<{-*-5"1(dl)
Futhermore, the occurrence vl being disjoint from
the occurrences v2,...,vn , we can apply property

(a) of compatibility to achieve the proof. n

As a corollary of propositions !, 2, 3, B and 9:

Theorem 3: Let E be a set of axioms such that =F
is decidable and R a left linear



and terminating term rewriting eystem., Then R is

uniformly Church-Rosser modulo E 41f:

= all critical pairs in SCP{R) are confluent in
one step {=rec=|E,

= there 1s no superpositfon of the rules into
axioms except at occurrence e.

— for any parallel critical pair of SPCP(E,R),
obtained by superposition of the axioms {gi=di}
into g, the moet general unifier s of the pairs
(g/vi,gl) 18 a match from g/vy to g! and {p,q}
is confluent in one step |=rec=|E. [1

Examples:

1. E= {xty = ytx, (xty)tz = x+{y+z), x+x = x}
R = {x*{y+z) => (x*y){x*z)}|

2. A specification of integers with conetructors

G0, 1, +, OPP :

E = {xty=ytx, (xty)rz = x+(y+z), nt+0PP(x) = 0,
x+) = x, OPF(xty) = OPP{y)+0PP(x),
OFP{OPP(x)) = x, OPP{0) = O}

R = {0%x =30, l¥x -> x, x®(y+z)} => (xty)+(xrz),
X*OPP(y) =>CPP{x*y}]|

Remark that there are no parallel critical pairs
here, but only classical ones. Notice that some
critical pairs are not confluent, but confluent
in one step, which was net allowed In section
II1.2 . For instance, in example 1:

x*{y+z) I=|E x*{z+ty)

v
(x*y)}+(x*z} [=|E (x%kz)+({x*y)

CONCLUSION

Local confluence in one step and local
coherence in one step are defined in an abstract
way for arbitrary symmetric relations.

Three different relations are then used with
their corresponding critical pairs, that carry on
sufficient conditions to be checked on critical
pairs.

Simple equality is classical, as also the associa-
ted notion of critical pair. The corresponding
theorem requires the rules to be left and right
linear.

Parallel equality requires parallel critical pairs
and allows to remove the condition of right
linearity. However, critical pairs resulting from
the superposition of equational axioms on rules
have to be confluent, without any step of parallel
equality.

This restriction can be simply explained. Consider
an instanciation of a parallel critical pair which
affects a variable that is not used in the super-
position. By the way of rewritings, this variable
can be mixed with the other variables. As a conse-
quence, the term substituted for this variable
can be embedded in a member of the parallel
equality. Replacement of this term by an equival-
ent one introduces one more step of equality.

An elegant way of solving this problem is to
define a recursive one step equality as Padawitz.
Indeed we obtain a strictly more powerfull result
without any more restriction on the equational
axioms and we can deal with Padawitz's examples
and also with a lot of other ones. An interesting
point is that we do not define recursive critical
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pairs. Instead, we require equational axioms to
superpose on rules only by the way of a matching
of subterms of these rules: recursive equalities
occur only outside of parallel critical pairs.

Finally, as confluence and coherence in
one step are checked on critical pairs, a Knuth
and Bendix like completion algorithm can be hoped
from these results.
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