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| INTRODUCTION

A basic attribute of the human visual system
is its ability to group elements of a perceived
scene or visual field into meaningful or coherent
clusters; in addition to clustering or
partitioning, the visual system generally imparts
structure and often a semantic interpretation to
the data. In spite of the apparent existence
proof provided by human vision, the general
problem of scene partitioning remains unsolved for
computer vision.

Part of the difficulty resides In the fact
that it is not clear to what extent semantic
knowledge (e.g., recognizing the appearance of a
straight line or some letter of the English
alphabet), as opposed to generic criteria (e.g.,

grouping scene elements on the basis of geometric
proximity), is employed in examples of human
performance. Since, at present, we cannot hope to
duplicate human competence in semantic
interpretation, it would be desirable to find a
task domain in which the Influence of semantic
knowledge is limited. In such a domain it might
be possible to discover the generic criteria
employed by the human visual system. Ore of the

main goals of the research effort described in
this paper is to find a set of generic rules and
models that will permit a machine to duplicate

human performance in partitioning planar curves.

I THE PARTITIONING PROBLEM

Even If we are given a problem domain in
which explicit semantic cues are missing, to what
extent Is partitioning dependent on the purpose,
vocabulary, data representation, and past
experience of the "partitioning instrument," as
opposed to being a search for context Independent
"intrinsic structure" in the data? We argue that
rather than having a unique formulation, the
partitioning problem must be paramaterized along a
number of basic dimensions. In the remainder of
this section we enumerate some of these dimensions
and discuss their relevance.

The research reported herein was sulgported b
(Contract MDA 903-83-C-0027) and by the National

A. Intent (Purpose) of the Partitioning Task

In the experiment described in Figure 1,
human subjects were presented with the task of
partitioning a set of two-dimensional curves with

respect to three different objectives: (1) choose
a set of contour points that best mark those
locations at which curve segments produced by
different  processes were "glued" together;

(2) choose a set of contour points that best allow
one to reconstruct the complete curve; (3) choose
a set of contour points that would best allow one
to distinguish the given curve from others. Each
person was given only one of the three task
statements. Even though the point selections
within a task varied from subject to subject,
there was significant overlap and the variations
were easily explained in terms of recognized
strategies invoked to satisfy the given
constraints; however, the points selected In the
three tasks were significantly different. Thus,
even in the case of data with almost no semantic
content, the partitioning problem is NOT a generic
task independent of purpose.

B. Partitioning Viewed As An Explanation of Curve
Construction

With  respect to  "process partitioning"
(partitioning the curve Into segments produced by
different processes), a partition can be viewed as
an explanation of how the curve was constructed.
Explanations have the following attributes which,
when assigned different "values," lead to different
explanations and thus different partitions:
(1) Vocabulary (primitives and relations) — what
properties of our data should be represented, and
how  should these properties be  computed?
(2) Definition of Noise — in a generic sense, any
data set that does not have a "simple (concise)"
description Is noise. Thus, noise Is relative to
both the selected descriptive language and an
arbitrary level of complexity. The particular
choices for vocabulary and the acceptable
complexity level determine whether a point is
selected as a partition point or considered to be a
noise element. (3) Believability — depending on
the competence (completeness) of our vocabulary to
describe any curve that may be encountered, the
selected metric for judging similarity, and the
arbitrary threshold we have chosen for believing
that a vocabulary term corresponds to some segment
of a given curve, partition points will appear,
disappear, or shift.
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C. Representation

The form in which the data is presented (i.e.,
the input representation), as well as the type of
data, are critical aspects of the problem
definition, and will have a major impact on the
decisions made by different approaches to the
partitioning task. Same of the key variables are:
(1) analog (pictorial) vs digital (quantized) vs
analytic description of the curves; (2) single vs
multiple  "views" (e.g., single vs. multiple
quantizations of a given segment); (3) simply-
connected (continuous) curves vs self-intersecting
curves or curves with "gaps;" (4) for complex
situations, is connectivity provided, or must it be
established; (5) if a curve possesses attributes
(e.g., gray scale, width) other than "shape" that
are to serve as partitioning criteria, how are they
obtained — by measurement on an actual "image," or
as symbolic tags provided as part of the given data
set?

D. Evaluation

Hov do we determine if a given technique or
approach to the partitioning problem is successful?
How can we compare different techniques? We have
already observed that, to the extent that
partitioning is a "well-defined" problem at all, it
has a large number of alternative formulations and
parameterizations.  Thus, a technique that is
dominant under one set of conditions may be
inferior under a different parameterization. Never
the less, any evaluation procedure must be based on
the following considerations: (1) Is there a known
"correct" answer (e.g., due to the way the curves
were constructed)? (2) Is the problem formulated
in such a way that there is a "provably" correct
answer?  (3) Hw good is the agreement of the
partitioned data with the descriptive vocabulary

(models) in which the "explanation" is posed?
(4) How good Is the agreement with (generic or
"expert") subjective human judgment? (5) What is

the trade-off between "false-alarms" and "misses"
in the placement of partition points. To the
extent that it is not possible to ensure a perfect
answer (in the placement of the partition points),
there is no way to avoid such a trade-off. Even If
the the relative weighting between these two types
of errors is not made explicit, it is inherent in
any decision procedure — including the wuse of
subjective human judgment.

In spite of all of the previous discussion in
this section, it might still be argued that if we
take the union of all partition points obtained for
all reasonable definitions and parameterizations of
the partition problem, we would still end up with a

"small" set of partition points for any given
curve, and further, there may be a generic
procedure for obtaining this covering set. While a

full discussion of this possibility is is not
feasible here, we can construct a counterexample to
the unqualified conjecture based on selecting a
very high ratio of the cost of a miss to a false-
alarm In selecting the partition points. A (weak)
refutation can also be based on the observation
that if a generic covering set of partition points
exists, then there should be a relatively
consistent way of ordering all the points on a
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given curve as to their being acceptable partition
points; the experiment presented in Figure 1
indicates that, in general, such a consistent
ordering does not exist.

Il  PRINCIPLES OF EFFECTIVE (ROBUST)
MODEL-BASED INTERPRETATION

What underlies our choice of partitioning
criteria? We  assert that any competent
partitioning  technique  will incorporate  the
following principles.

A.  Stability

The "principle of stability," is the assertion
that any valid perceptual decision should be stable
under at least small perturbations of both the
imaging conditions and the decision algorithm
parameters. This generalization of the assumption
of "general position" also subsumes the assertion
(often presented as an assumption) that most of a
scene must be describable in terms of continuous
variables if meaningful interpretation is to be
possible.

It is interesting to observe that meny of the
constructs in  mathematics (e.g., the derivative)
are based on the concepts of convergence and limit,
also subsumed under the stability principle.
Attempts to measure the digital counterparts of the
mathematical concepts have traditionally employed
window type ‘"operators" that are not based on a
limiting process; it should ocome as no surprise
that such attempts have not been very effective.

In practice, if we perturb the various imaging
and decision parameters, we observe relatively
stable decision regions separated by obviously
unstable intervals (e.g., the two distinct percepts
produced by a Necker cube). The stable regions
represent alternative hypotheses that generally
cannot be resolved without recourse to either
additional and more restrictive assumptions, or
semantic (domain-specific) knowledge.

B. Complete, Concise, and Complexity Limited
Explanation
The  decision-making process in image
interpretation, i.e. matching image derived data

to a priori models, not only must be stable, but
must also explain all the structure observable in
the data. Equally important, the explanation must
satisfy specific criteria for believability and
complexity. Believability is largely a matter of
offering the simplest possible description of the
data and, in addition, explaining any deviation of
the data from the models (vocabulary) used In the
description. Even the simplest description,
however, trust also be of limited complexity;
otherwise or it will not be understandable and thus
not believable.

By making the foregoing principles explicit,
we can directly invoke them (as demonstrated In the
following  section) to  formulate effective
algorithms for perceptual organization.
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IV INSTANTIATION OF THE THEORY:
SPECIFIC TECHNQUES FCR
QRE PARTITIONING

In this section we present two effective new
algorithms for curve partitioning. In each case,
we first describe the the algorithm, and later
indicate how it was motivated and constrained by
the principles just presented. In both algorithms,
the key ideas are: (1) to view each point, or
segment of a curve, from as many perspectives as

possible, retaining only those partition points
receiving the  highest level of multiple
confirmation; and (2) inhibiting the further
selection of partition points when the density of

points already selected exceeds a preselected or
computed limit.

A. Curve Partitioning Based on Detecting Local

Discontinuity

In this sub-section we present a new approach
to the problem of finding points of discontinuity
("critical points") on a curve. Our criterion for
success is whether we can match the performance of
human subjects given the same task (e.g., see
Figure 1). The importance of this problem from the
standpoint of the psychology of human vision dates
back to the work of Attneave [1954]. However, it
has long been recognized as a very difficult
problem, and no satisfactory computer algorithm
currently exists for this purpose. An excellent
discussion of the problem may be found In in Davis
[1977]; other  pertinent references include
Rosenfeld [1975], Freeman [1977], Kruse [1978], and
Pavlidis [1980]. Results and observations akin and
complementary to those presented here can be found
In Hoffman [1982] and in Witkin [1983].

Most approaches equate the search for critical
points with looking for points of high curvature.
Although this intuition seems to be correct, it is
incomplete as stated (l.e., it does not explicitly
take into account "explanation”  complexity);
further, the methods proposed for measuring
curvature are often inadequate in their selection
of stability criteria.

We have developed an algorithm for locating
critical points that Invokes a model related to,
but distinct from, the mathematical concept of
curvature. The algorithm labels each point on a
curve as belonging to one of three categories:
(a) a point in a smooth interval, (b) a critical
point, or (c) a point in a noisy interval. To make
this choice, the algorithm analyzes the deviations
of the curve from a chord or "stick" that is
iteratively advanced along the curve (this will be
done for a variety of lengths, which is analogous
to analyzing the curve at different resolutions)
If the curve stays close to the chord, points in
the interval spanned by the chord will be labeled
as belonging to a smooth section. If the curve
makes a single excursion away from the chord, the
point in the interval that is farthest from the
chord will be labeled a critical point (actually,
for each placement of the chord, an accumulator
associated with  the farthest point will be

incremented by the distance between the point and
the chord). If the curve makes two or more
excursions, points in the interval will be labeled
as noise points.

We should note here that "noisy" intervals at
low resolution (large chord length) will have many
critical points at higher resolution (small chord
length). The distance from a chord that defines a
significant excursion is a function of the expected
noise along the curve and the length of the chord.

At each resolution (i.e., stick size), the
algorithm orders the critical points according to
the values in their accumulators and selects the
best ones first. To avoid setting an arbitrary
"goodness" threshold for distinguishing critical
from ordinary points, we use a complexity
criterion. To halt the selection process, we stop
when the points being suggested are too close to
those selected previously at the given resolution.
In our experiments we define "too close" as being
within a quarter of the stick length used to
suggest the point.

After the critical points have been selected
at the coarsest resolution, the algorithm is
applied at higher resolutions to locate additional
critical points that are outside the regions
dominated by previously selected points. Figure 2
shows the critical points found along several
curves. (We note that this critical point
detection procedure does not Ilocate inflection
points or smooth transitions between segments, such
as the transition from an arc of a circle to a line
tangent to the circle.)

The above algorithm appears to be very
effective, especially for finding obvious partition
points and in not making "ugly" mistakes (i.e.,
choosing partition points at locations that none of
our human subjects would pick). Its ability to
find good partition points is based on evaluating
each point on the curve from multiple viewpoints
(placements of the stick) — a direct application
of the principle of stability. Requiring that the
partition points remain stable under changes In
resolution (i.e., small changes in stick length)
did not appear to be effective and was not
employed; in fact, stick length was altered by a
significant amount in each iteration, and partition
points found at these different scales of
resolution were not expected to support each other,
but were assumed to be due to distinct phenomena.

The avoidance of ugly mistakes was due to our
method of limiting the number of partition points
that could be selected at any level of resolution,
or in any neighborhood of a selected point (i.e.,
limiting the explanation complexity). One concept
we invoked here, related to that of complete
explanation, was that the detection procedure could
not be trusted to provide an adequate explanation
when more than a single critical point was in Its
field of view, and in such a situation, any
decision was deferred to later iterations at higher
levels of resolution (i.e., shorter stick lengths).

Finally, in accord with our
discussion, the algorithm has
that provide control over its
(i.e., variations too small or

previous
two free parameters
definition of noise
too close together



to be of interest), and its willingness to miss a
good partition point so as to be sure it does not
select a bad one.

B. Curve Partitioning Based on Detecting Process
Homogenity

To match human performance in partitioning a
curve, by recognizing those locations at which one
generating process terminates and another begins,
is orders of magnitude more difficult than
partitioning based on local discontinuity analysis.

As noted earlier, a critical aspect of such
performance is the size and effectiveness of the
vocabulary (of a priori models) employed.

Explicitly providing a general purpose vocabulary
to the machine would entail an unreasonably large
amount of work — we hypothesize that the only
effective way of allowing a machine to acquire such

knowledge is to provide it with a learning
capability.

For our purposes in this investigation, we
chose a problem in which the relevant vocabulary

was extremely limited: the curves to be partitioned
are composed exclusively of straight lines and arcs
of circles. Our goal here was to develop a
procedure for locating critical points along a
curve in such a way that the segments between the
critical points would be satisfactorily modeled by
either a straight-line segment or a circular arc.
Relevant work addressing this problem has been done
by Montanari [1970], Ramer [1972], Pavlidis [1974],
Liao [1981], and Lowe [1982].

Our approach is to analyze several "views" of
a curve, construct a list of possible critical
points, and then select the optimum points between
which models from our vocabulary can be fitted.
For our experiments we quantized an analytic curve
at several positions and orientations (with respect
to a pixel grid), then attempted to recover the
original model.

For each view (quantization) of the curve we
locate occurrences of lines and arcs, marking their
ends as prospective partition points. This is
accomplished by randomly selecting small seed
segments from the curve, fitting to them a line or
arc, examining the fit, and then extending as far
as possible those models that exhibit a good fit.
After a large number of seeds have been explored in
the different views of the curve, the histogram
(frequency count as a function of path length) of
beginnings and endings is used to suggest critical
points (in order of their frequency of occurrence).
Each new critical point, considered for inclusion
in the explanation of how the curve is constructed,
introduces two new segments which are compared to
both our line and circle models. If one or both of
the  segments have  acceptable fits, the
corresponding curve segments are marked as
explained. Otherwise, the segments are left to be
explained by additional critical points and the

partitions they imply. The addition of critical
points continues until the complete curve is
explained.

While admittedly operating in a relatively

simple environment, the above algorithm exhibits
excellent performance. This is true even in the
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difficult case of finding partition points along
the smooth interface between a straight line and a
circle to which the line is tangent.

Both basic principles, stability and complete
explanation, are deeply embedded in this algorithm.
Retaining only those partition points which persist
under different "viewpoints" was motivated by the
principle of stability. Our technique  for
evaluating the fit of the segment of a curve
between two partition points, to both the line and
circle models, requires that the deviations from an
acceptable model have the characteristics of
"white" (random) noise; this is an instantiation of
the principle of complete explanation, and is based
on our previous work presented in Bolles [1982].

VvV DISCUSSION

We can summarize our key points as follows:

(1) The partition problem does not have a
unique definition, but is parameterized
with respect to such items as purpose,
data representation, trade-off between
different error types (false-alarms vs
misses), etc.

(2) Psychologically acceptable partitions are
associated with an implied explanation
that must satisfy criteria for accuracy,
complexity, and believability. These
criteria can be formulated in terms of a

set of principles, which, in turn, can
guide the construction of effective
partitioning  algorithms (i.e., they
provide necessary conditions).

Ore implication contained in these
observations is that a purely mathematical
definition of "intrinsic structure" (i.e., a
definition justified solely by appeal to
mathematical criteria or principles) cannot, by

itself, be sufficiently selective to serve as a
basis for duplicating human performance in the
partitioning  task; generic partitioning (i.e.,
partitioning in the absence of semantic content) is
based on psychological "laws" and physiological
mechanisms, as well as on correlations embedded in
the data.
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