
THE GEOMETRY TUTOR 

John R. Anderson, C. Franklin Boyle, Gregg Yost 

Advanced Computer Tutoring Project 
Carnegie-Mellon University 

Pittsburgh, PA 15213 

Abstract 

The tutor for doing proofs in high school geometry 
consists of a cot of ideal and buggy rules (IRR), a tutor, and an 
interface. The IBR is responsible for eh iuer t l y computing 
matcher, to all the correct and incorrect rules The interface is 
responsible for interacting with the student and graphically 
representing the proof. The tutor is responsible for directing the 
IBR and interface to achieve a current tutorial strategy. The 
strategy wo employ involves tracing the student's behavior in 
terms of what rules in the IBR it instantiates, correcting the 
student when behavior deviates below a minimum threshold, and 
helping the student over hurdles. While incomplete, current 
evidence indicates the geometry tutor is guite effective. 

The Advanced Computer Tutoring Project has been working on 
the development of intelligent computerhased tutors for 
mathematics and science subjects in the range of senior high-
school to junior college. This paper describes the general 
framework that we have developed and its instantiation in the 
case of a tutor tor generating proofs in geometry. First, we will 
describe the general philosophy of out tutoring efforts. Second, 
we will describe the basic structure of the geometry tutor that we 
have built. Third, we will describe the ongoing efforts to evaluate 
the tutor. 

General Philosophy 

Our approach to tutoring stems from two observations 
about the nature of learning in domains like high-school 
geometry. First, the major learning hurdle is acquiring domain-
specific problem-solving skills (e .g , generating proofs in 
geometry), and the way they are learned is by practicing the 
problem-solving skill. We have intensively observed numerous 
students going through the first half of high school geometry 
(Anderson, 1001). We have not yet seen a case where a student 
was tible to absorb abstract instruction (from the text or the 
teacher) and go off and use that knowledge effectively in 
problem-solving. Students only acquired effective use of 
problem-solving knowledge by struggling with its application 
through a series of problems. 

The second observation is that students learn these 
problem-solving skills much more effectively if they learn with a 
full-time, private, human tutor who knows the domain well than if 

they learn in the standard classroom situation, where students 
solve problems on their own, getting feedback by handing in 
exercises to be graded or comparing their solutions with example 
solutions In our work comparing these two modes of study, we 
have found the students with private tutoring reach the same 
achievement level as much as four times more rapidly than the 
classroom students. Bloom (1984) has compared private tutoring 
with classroom instruction for two school topics: cartography 
and probability. In his research, students spent the same amount 
of time learning, and he looked for differences in achievement 
levels. He found that 98 percent of the students with the private 
tutors performed better than the average classroom-student. 
Interestingly, he also found that the strongest benefit was for the 
poorest students. There was little difference between the 
achievement levels of the best students in the two condit ions. 

There are a number og reasons for the success of the 
private human tutor. Very important is the constant monitoring 
and shuctunng of the student's problem solving attempts The 
tutor can diagnose what contusions that paiticular student has, 
determine what the student needs to know, and provide 
instruction specific to these needs. the teacher can 
communicate the overall goal structure that controls the pioblem 
solving something that is difficult to do outside of the problem 
context and which is seldom attempted in classroom instruction. 
Private tutors are very good at managing student errors They 
provide immediate or near immediate feedback on these errors 
They can point the student back to the right track and prevent the 
student from getting lost. In this way students can partially solve 
problems that they would normally give up on and so can learn 
from their solution attempts. 

The ability to be an effective tutor requires that the tutor 
have an internal model of how the skill should be performed and 
be able to access this model for purposes of instruction. Such a 
model we call an ideal model. The tutor needs to be able to 
supplement this ideal model with various errors that a student 
makes in deviating from the model. We call this the buggy model 
after Brown and Burton (1978). 

One of the major commitments in our tutoring efforts has 
been to instantiate the ideal model and the buggy model as 
production systems. This follows from our psychological analysis 
of such skills in terms of the ACT* production system (Anderson, 



2 J. Anderson et al. 

1963). There are two major consequences of this commitment. 
First, ACT* production systems have well-defined goal structures 
which we try to communicate to the student. Second, these 
production systems imply a commitment to a grain size of 
instruction. Essentially, every production in the system encodes 
a meaningful step of cognition. Therefore, we monitor the 
student's problem-solving production step by production step 
and after each step determine which production (from the ideal or 
buggy model) that step instantiates. 

This leads to what we have called the model-tracing 
paradigm for instruction. Essentially, the tutor traces the 
student's behavior through its ideal and buggy model. At any 
point in time there are a number of productions in the tutor that 
might apply. The tutor infers which rule the student executed by 
determining which one matched the student's output. If it is a 
correct production, the tutor slays quiet and continues to trace 
the students problem solving. If an incorrect production has 
bean applied, the tutor interrupts with appropriate remedial 
instruction The final possibilities are that the student does not 
Know what to do next or that the students behavior matches no 
production, correct or incorrect Usually, this occurs when the 
student is greatly confused We have found that the best thing to 
do in such situations is to tell the student the next step to take. If 
this is explained properly, the student is often able to get back on 
a right track. 

The set of ideal and buggy rules (henceforth called IBRs) 
are based on considerable theoretical analysis of the 
characteristics of the problem domain and on a great deal of 
empirical observation of student behavior. Therefore, it is 
reasonable to suppose that they are more sophisticated than 
those possessed by most private tutors. Also, we have greater 
access to the knowledge encoded in these rules than do typical 
private tutors for whom the ideal model is often tacit and 
incapable of being directly described to students. We think it is 
possible to outperform human tutors in our use of these rules, 
which is not to deny that our computer tutors will be 
outperformed by human tutors on other dimensions such as 
natural language analysis. 

The Architecture of the Geometry Tutor 

In trying to achieve our tutoring paradigm, we have 
realized the need to separate out three components in a tutor. 
These are the IBR, the tutor, and the interface. These three 
components are clearly separated in the current version of the 
geometry tutor, although they were not so clearly separated in 
earlier versions (Boyle & Anderson, 1984). There are a number of 
advantages that come from clearly asperating the components. 
First, from a software engineering point of view it becomes 
possible to develop and test each component independently. 
Second, the components can be optimized for their distinct 
characteristics. Third this is a step towards one of the ultimate 
goals of the Advanced Tutoring Project--which is to develop a 
domain-free theory of instruction. While our current tutor is not 

entirely domain-free it represents a strong step in that direction. 
The IBR and the interface are the components in which most of 
the domain specifics are represented. 

The centra! component in this triad is the tutor It defines 
our current tutoring strategy In our current system the tutor is 
implemented as a production system in the OPS5 language 
(Forgy, 1981). It uses information both from the IBR and from the 
student (via the interface) to control the tutorial interaction. It can 
present information to the student and lequest information from 
the student by invoking the interface It has two means of 
interaction with the IBR: 

(a) It can look at which ideal and buggy rules are currently 
instantiated in the IBR and use these to interpret the students 
behavior. It allows the IBR to trace the student's solution by 
selecting in conflict resolution one of the IBR production rules. It 
then receives an update of the instantiated rules in the IBR after 
firing this rule. 

(b) It can request of the ideal model whether a statement 
can be proven, subject to certain constraints. This will cause the 
IBR to attempt a proof and report back information such as 
whether such a proof exists, how long it is, how optimal it is, what 
rules it involves, etc. 

We will return to a further description of the tutor after 
describing the IBR and the interface. 

The IBR 

There were two major goals in our design of the IBR. The 
first was to have the ideal model generate proofs in what we felt 
was a natural, humanlike way--in contrast to some methods of 
proof. The bugs are hung off the structure generated by the ideal 
model so it is doubly important that it generate human like proofs, 
both in order to instruct students about what is right and to 
interpret their errors. The second goal was to make the IBR 
efficient. It is an important constraint on tutoring that the IBR 
perform its computations rapidly so that feedback to the student 
be rapid. Most of the computation in the geometry tutor is done 
in the IBR. As we will see, both of these goals posed interesting 
challenges in the case of geometry. 

Figure 1 illustrates a geometry proof problem that is 
considered relatively complex for high-school students. The 
important feature to note is that at any point in time there are a 
large number of inferences that can be made. For instance, from 
the given fact that M is the midpoint of it is possible to infer 
that But this is just one of the many inferences that are 
possible. For instance, it is also possible to infer that 

because of the vertical angle configuration formed by 
segments and Moreover, these possible inferences 
can be ordered in a continuum according to aptness, where the 
first is very apt and the second is very inapt. 



J. Anderson et al. 3 

There is another kind of deductive reasoning that students 
engage in when faced with such problems This is reasoning 
backwards from statements to be proven to statements that will 
prove them Thus, a student can reason backwards from the goal 
of proving M is the midpoint of to the subgoal of proving 

This involves the definition of midpoint. It is possible to 
reason backwards from this goal again. For instance, one might 
reason backwards from the goal of proving to the 
subgoal of proving This would involve the use 
of the corresponding parts rule for congruent triangles. On the 
other hand, one might reason back from the goal of proving 

to the subgoals of proving This 
would involve using the transitive property of congruence. Again, 
these backward inferences can be ordered as to their aptness 
with the first two inferences being quite apt but not the third. 

The important observation is that the aptness of an 
inference is not an absolute property of the rule of geometry that 
authorizes it, but rather a function of the context in which it 
occurs. For instance, it does not seem appropriate to make the 
vertical-angle forward inference that However, 
another vertical angle inference, is quite apt, 
particularly after we establish that Then 
we can use these two side congruences and the angle 
congruence to show that by the side-angle-side 
postulate. 

We have created an ideal model for generating proofs in 
geometry that involves forward and backward inference rules 
with contextual restrictions. It takes the form of a production 
system that enables us to model the flexible alternation between 
backward and forward reasoning that we observe in human 
experts, Every significant conlextualized rule of inference is a 
separate production rule Our use of a production system 
enables us to achieve the desired flexibility and to have the 
individual productions used as objects of instruction. Compared 
to other theorem provers for geometry such as Nevms (1074) our 
system is distinguished by the flexibility of its control structure 
and its decomposition of domain knowledge into relatively 
modular rules. 

As an example of a forward inference rule, the following 
"Enflishified" production generates a vertical angle inference 
when that will enable a side angle side inference. 

and there are triangles 

and and are colinear 

THEN infer by vertical angles. 

As an instance of a contextually bound backward rule, consider t 

IF the goal is to prove two lines parallel 

and there is a transversal 

THEN set as a subgoal to prove the alternate 

interior angles are congruent. 

We have developed 300 such rules and have ordered 
them according to aptness. The ideal model applies the best 
inference rule that is satisfied in a situation, whether that is a 
backward or a forward rule. This system can prove all the 
problems in the high school material we have been working with. 
It also generates human-like proofs. Not all the inferences it 
makes are part of the final proof, but when it deviates from the 
final proof, it deviates in the way we have observed in human 
subjects. 

Geometry poses an interesting challenge for efficient 
production-system implementation because of all of the 
symmetries that exist in geometry. Consider matching the rule 
that says if there is a goal to prove two ingles congruent and they 
are parts of corresponding triangles, set a subgoal to prove the 
two triangles congruent Below is the encoding that is close to 
what we actually use for this rule. 

Figure 2 illustrates a situation where this rule should match with 
two distinct bindings of variables 

However, as the astute reader no doubt discerns, there is 
potential for a great many other bindings and the trick is to filter 
them out as unnecessary. Consider, for instance, the binding of 
a. Because of the symmetry of congruence and the symmetry of 
the end points of an angle, it can bind to any of P, R, S, M, U, V, 
W, or N. Having settled on this binding, there can still be two 
bindings for c, four for d, and two for f. (These four bindings 
completely constrain b and e.) Altogether there are 8 x 2 x 4 x 2 
■ 128 possible bindings to be considered, of which only eight 



4 J. Anderson et al. 

correspond to distinct hypotheses about triangle congruence. 
Six of these distinct hypotheses can be 
rejected as implausible given the physical diagram-this 
plausibility check is the same idea used by Gelernter (1963). The 
only two plausible hypotheses about triangle congruence are 

Figure 2 

An immediate reaction to this problem is to try to 
canonicalize the angles, segments, and triangles in the diagram 
and have a unique name for each such object. The problem with 
such attempts is that they fail to uncover all the possible matches 
to geometry rules that exist. These can only be uncovered by 
considering the actual ordering of points as significant. For 
instance, most canonicalizations of this problem would fail to be 
able to retrieve the eight distinct hypotheses about triangle 
congruence in Figure 2. They would have particular difficulty 
with representing the distinction between the two plausible 
hypotheses above which only differ in terms of the 
correspondence between the points of the triangles. It is no 
accident that traditional geometry uses a point representation 
and not a canonicalized object representation. 

Part of our solution is to encode into our statements of the 
rules the symmetries and have our pattern matcher take 
advantage of this. So for the rule above we inform the pattern 
matcher that it need not consider both angle orderings in the 
congruence. Therefore it can assume will match to 
and not worry about the potential match to It also need 
not consider both orders of the ray points (A. C) in the first angle. 
Therefore it can assume A will match to Q. This reduces by a 
factor of four the amount of pattern matching that must be done. 
Secondly, we have a special coding for the points on a ray such 
that we do not have to consider each combination separately. 
For instance in Figure 2, two ray points can match to each of 
points A, C, D, and F in the pattern. However, we do not have to 
consider the combinations. So, rather than having 128 
instantiations of the pattern we have 
128/(4 x 16) - 2 instantiations. As most of the computation in 
the IBR is spent in pattern matching, this is a very significant 
savings. These two instantiations are expanded to eight when we 
consider the various triangles that can be formed, but six of these 
are filtered out on the basis of plausibility. 

These patterns are organized on a modified Rete net to 
obtain much of the efficiency of the OPS family of production 
systems (Forgy, 1982). We estimate that we are able to obtain a 
couple orders of magnitude of efficiency over any previous 

production-rule-based geometry theorem prover. For instance, it 
is able to produce the prototypical expert solution to the problem 
in Figure 1 in eight seconds of CPU time on a Xerox Dandelion. 
Table 1 summarizes the sequence of inferences that it makes. It 
makes three inferences that are not part of the final proof, but 
these are inferences experts frequently make, and these 
inferences actually lead to a slightly longer proof. The important 
fact to note is that eight seconds is much less than human 
performance (usually a minute) and so is definitely within the 
bounds for acceptable tutoring. 

Table 1 

Inferences Made in Generating a Proof for the 
Problem in Figure 1 

The Interface 

A major effort in the design of the interface has been to 
communicate to the student the logical structure of a proof and 
the structure of the problem solving process by which a proof is 
generated. Figures 3-5 illustrate the proof graph that we have 
developed for this purpose. There we have a representation of 
the graph at the beginning of a geometry proof, in the middle of 
the proof, and at the end of the proof. Figure 3 illustrates the 
initial problem-state. The statement to be proven is at the top of 
the screen, the givens at the bottom, and the diagram in the 
upper lefthand corner. The student can reason forward from the 
givens and backward from the statement to be proven. The 
student grows the graph by a combination of pointing to 
statements on the screen and typing in information. Each step of 
inference involves a set of premises, a reason, and a conclusion. 
Reasoning forward, the student points to the premises, types in 
the reason, and points to the conclusion or types it in. Reasoning 



J. Anderson et al. 5 

backwards, the student points to the conclusion, types in the 
reason, and then provides the premises. 

Figures 4 and 5 show some of the possible states in proof 
development. The student is finished when there is a set of 

Figure 3 Initial Problem State 

Figure 4 Immediate Problem State 

Figure 5 Final Problem State 



6 J. Anderson et al. 

logical inferences connecting the givens to the statements to be 
proven. Figure 4 illustrates how inferences can be grown from 
the top and the bottom to meet in the middle. Figure 5 shows the 
screen when a student achieves a final proof. Note that the 
student has made some inferences which were not part of the 
final proof. 

One function of this formalism is to graphically illustrate 
the structure of a complete proof. High school students typically 
do not appreciate how the steps of a proof fit together and find 
this structure to be particularly enlightening. Second, the proof 
graph concretely illustrates critical features of the problem 
space-that inferences can be grown in forward and backward 
mode, that choice points exist where the student must choose 
among multiple inference rules, that the ultimate goal is to 
complete a well-formed logical structure. 

There are a number of other features available in the 
interface which the student finds uselul. The system 
automatically does spelling and syntax checking and so protects 
the student from the misundurstandings that can result from 
mistyping. Numerous help windows can be brought up. The two 
help windows that students find most useful are a window 
providing the currently applicable rules of inference and a 
window giving the statement of any particular postulate, theorem, 
or definition. 

The Tutor 

The tutorial component can be described at two levels. 
First, there is the minimal tutor that we have actually implemented 
and tested with students, and then there are the various 
embellishments that we are in the process of implementing and 
testing. The minimal tutor can be described with respect to three 
steps a student must go through to complete an inference: 
selecting a set of statements from which to make an inference, 
specifying the rule of inference that will apply to these 
statements, and then specifying the statements that result from 
applying this rule of inference. 

In the selection step the student can either select a set of 
statements from which to apply an inference rule or ask for help. 
If the student asks for help, the tutor picks the statement set of 
the most highly rated rule in the conflict set of the IBR, subject to 
the constraint that the inference produced by that rule is actually 
part of a proof. It provides the student with the statements 
(backward or forward) that are part of this rule. If the student 
selects a set of statements and they represent the instantiation of 
any legal rule, the system accepts it even if it is poorly rated and 
even if it is not part of the proof. If the student selects a statement 
set that is not part of any rule, the tutor tells the student so, and 
the student gets to select again. If the student chooses a wrong 
set again, the tutor presents the student with the same statement 
set that It would if the student had asked for help. This "two 
strikes and you're out" principle was instituted to prevent the 
student from looping with guess after guess. 

The tutor treats the rule-selection step similarly. If the 
student asks for help, it provides the highest-rated rule involving 
the statements chosen in the previous step. It will accept any 
legal rule that applies to those statements. If the student twice 
provides illegal rules, it will give the highest-rated legal rule. The 
analogous thing is again done in specifying statements that are 
the result of applying the rule. 

This minimal tutor is one that tries to guide the student to 
a solution with minimal intervention It accepts any legal 
inference that the student wants to make We have found that 
students can get lost in a maze of legal but useless inferences. 
Therefore, one thing we want to do is to prevent students from 
making low-rated inferences that are not part of any reasonable 
proof. The minimal feedback we can provide would be something 
like "It is legal to do that, but it won't get you anywhere." 
However, we would like to build into the tutor recognizers for 
particular false paths as well as unnecessarily long-winded paths 
that students go down. As an example of the latter, students 
often prove theorems as part of a larger proof when they could 
apply that theorem directly. 

Implied in this capacity is the ability of the tutor to query 
the IBR as to whether an unanticipated inference is part of a 
reasonable proof. In reasoning backwards this amounts to 
judging if each of the premises can be proven and how quickly. 
In reasoning forward this amounts to judging whether the 
conclusion of a forward inference figures in a reasonable proof. 

With these facilities in place we can begin to explore the 
issue of how directive to be in our feedback. We can allow 
students to go a fixed number of steps off the path, to override 
the tutor's advice, etc. Given our commitment to immediate 
feedback and reducing working-memory load, we would expect 
that the more structured environment would be better, but there 
is sufficient controversy on this topic to merit empirical 
exploration. 

Another feature we would like to augment the tutor with is 
the ability to recognize student confusions and instruct on these 
confusions. For instance, many students do not realize that in the 
side-angle-side postulate the angle must be included by the two 
sides. This requires that there be a buggy rule in the IBR to 
match this pattern and that the tutor know of this bug and have an 
explanation associated with it. 

A related feature is the ability to give the student strategic 
advice in addition to simply telling the student that an inference is 
inadvisable. For instance, if the student starts out in Figure 1 with 
the inference we would like to be able to say 
something of the order "No, it is not useful to make that vertical 
angle inference here. It is useful to make the vertical angle 
inference when the angles are corresponding parts of triangles 
you want to prove congruent. In this problem why don't you try to 
make an inference involving the fact that M is the midpoint of 



J. Anderson et al. 7 

Yet another feature we would like to provide the tutor with 
is the ability to generate remedial problems tailored to student 
weaknesses. This requires keeping an assessment of how well 
the student knows the various rules in the ideal model. If there is 
a weak rule, the tutor can generate a problem involving this rule 
and tutor the student on the rule. 

Evaluation 

Beginning in the fall of 1985 we intend to have a 
classroom of 10 Xerox Dandetigers in one of the Pittsburgh 
Public High Schools, and to teach four or five geometry classes of 
ten students each based on these tutors. The tutor will be 
devoted to the proof generation portion of high-school geometry, 
which is slightly more than half of a standard curriculum. This 
part of the course will be taught on a self-paced basis. The other 
part of the course (involving ruler and compass construction and 
coordinate geometry) will be taught in the conventional way. 
There will be many issues concerned with coordinating such a 
class which we have yet to work out. However, the outcome of 
this project will be a fairly systematic evaluation of the tutor and 
variations on It. 

In absence of that we have only our pilot work with the 
geometry tutor to report. We have run three students through the 
minimal tutor in various stages of development. One student was 
of above-average ability, one of average ability, and one of below-
average ability (as defined by their math grades). The below-
average student came to us for remedial purposes, having failed 
10th grade geometry. The other two were eighth graders with no 
formal geometry training. All learned geometry quite successfully 
and reached the point where they were solving problems more 
complex than are assigned in the Pittsburgh Public Schools. 
After it was over, all claimed to like geometry, which is 
encouraging given that classroom geometry is usually rated as 
the least liked of all school subjects (Hoffer, 1981). 

Assuming that we can establish equally positive results on 
a larger scale, the next question concerns how we can reproduce 
this tutor on a more economical scale. It is our belief that the 
generation of personal computers slated for the late 1980s will be 
sufficiently powerful to deliver this instruction. For instance, the 
IBM machine being developed on the CMU campus is projected 
to be sufficiently powerful. Moreover, there are optimizations in 
the direction of compiling the real time computations made by the 
IBR and the tutor that might reduce computational time by a 
factor of ten. 

References 

Anderson, J.R. Tuning of March of the problem space for geometry proofs. 
Proceedings of IJCAI.81.1981, pages 165-170. 

Bloom, B.S. The 2 Sigma Problem: The search for methods of group 
instruction as effective as one-to-one tutoring. Educational 
Researcher 13:3.16. 1984. 

Boyle, C.F. & Anderson, J.R. Acquisition and automated Instruction of geometry 
proof skills. Paper presented at the 1984 AERA meetings, 1964. 

Brown, J.S. & Burton, R.R. Diagnostic models for procedure! bugs In basic 
mathematical skills. Coonitive Science 155.192 1978. 

Forgy, C. L OPS5 Manual. Carnegie-Mellon University, Computer Science 
Department, 1981. 

Forgy, C.L Rett: A fast algorithm for the many pattern /many object 
pattern match problem. Artificial intelligence. 19:17.37 1982. 

Qelernter, H. Realization of a geometry theorem-proving machine. 
intelligence Tutoring Systems McGraw-Hill, New York, 1963. 

Hoffer, A. Geometry is more than proof. Mathamatics Teacher : 11 
January, 1961. 

Nevins, A. J. Plane geometry theorem proving using forward chaining. 
Al Memo 303. Cambridge, MA: MIT Al Laboratory, 1974. 

Anderson, J.R. The Architecture of Cognition. Harvard University 
Press, Cambridge, MA, 1983. 


