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A B S T R A C T 
TALUS is an automatic program debugging system 

that both detects and corrects nonsyntactic bugs in 
student programs wr i t ten to solve small but nontr ivial 
tasks in pure LISP. TALUS permits significant 
var iabi l i ty in student solutions by using heuristic 
methods to recognize different algorithms and formal 
methods to reason about computational equivalence of 
program fragments. A theorem prover intensionally 
represents an inf ini te database of rewrite rules, thus 
allowing for unanticipated implementations. TALUS 
detects bugs using formal methods in both symbolic 
evaluation and case analysis. Heuristic methods 
conjecture the exact location of bugs and alterations 
necessary to correct the bugs. Final ly, formal methods 
establish or disprove these heuristic conjectures, 
reflecting a generate and test methodology. 

I . I n t r o d u c t i o n 

TALUS acts as the domain expert of an intelligent 
tu tor ing system to teach LISP. A complete intelligent 
tutor ing system would include a student model, a dialog 
manager, courseware, and additional domain expertise. 

Input to TALUS consists of one or more student 
functions intended to solve an assigned task. Typical 
tasks include REVERSE, MEMBER, U N I O N , 
I N T E R S E C T I O N , F A C T O R I A L , and F L A T T E N . 
Outpu t consists of the debugged student functions and 
bug annotations. 

Whi le TALUS wi l l not recognize unanticipated 
algorithms, unanticipated implementations are 
permit ted. Associated w i th each task are 
representations of algorithms that solve the task. 
Heuristics match the student's buggy solution w i th the 
algori thm most similar to i t . Formal methods detect 
bugs in the student's functions by comparing them wi th 
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stored functions. Heuristic methods suggest minimal 
alterations to the student's functions to remove the 
bugs; formal methods accept or reject the proposed 
alterations. 

I I . P r e v i o u s A p p r o a c h e s t o 
A u t o m a t i c P r o g r a m D e b u g g i n g 

Heuristic approaches to automatic program 
debugging parse student programs into an abstract 
representation and match that representation against 
either stored plan templates f rom a l ibrary [John84; 
Solo82], or a model program [Adam80]. Bugs appear as 
unaccountable differences between stored correct plans 
and the parsed program. Plan transforms increase the 
range of programs that can be accepted by statically 
representing common implementation variants. 
However, some correct student implementations wi l l 
require inductive proofs or unanticipated transforms to 
establish their equivalence to stored plans. These 
implementations are rejected as buggy or unanalyzable. 

A formal approach to automatic program 
debugging, by Katz and Manna [Katz76], extends the 
logical analysis of programs to include program 
incorrectness and a means of correcting incorrect 
programs. Program statements are related to 
synthesized inductive invariants. When these invariants 
are insufficient to establish a proof of correctness, 
program statements are altered so the necessary 
inductive invariants are derived. Synthesizing these 
inductive invariants and determining what program 
statements to alter is di f f icul t ; no implementation of 
their design exists to date. 

Shapiro [Shap82] traces the execution of pure 
PROLOG programs to isolate the presence of bugs in 
procedures whose traces are incorrect. The user 
supplies informat ion about examples to t ry , the 
correctness of program traces and violations of well 
founded relationships. Bugs are corrected by 
synthesizing correct clauses or by searching among 
perturbations of buggy clauses. This method can be 
applied to other functional programming languages, but 
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requires user query and only debugs the program wi th 
respect to the examples provided. 

Other approaches include analysis by synthesis 
[Mill182], analysis of program execution [Shap8l], plan 
parsing [Mil l79; Ruth73], and analysis of program 
output [Gold74]. 

H I . A u t o m a t i c D e b u g g i n g i n T A L U S 

The debugging approach of TALUS, described in 
this section, attempts to increase the acceptable 
var iabi l i ty in student solutions and the robustness of 
the debugging process, while not relying on the student 
to assist in the debugging or to understand formal 
verif ication techniques. Debugging occurs in three 
stages: algori thm recognition, bug detection, and bug 
correction. 

A . A l g o r i t h m R e c o g n i t i o n 

A l l functions, stored or student, are parsed into 
E-frames. Algor i thms and solutions are collections of 
functions. E-Frame slots represent abstract properties 
of recursive functions that (part ial ly) enumerate the 
elements of a recursively defined data structure. A 
function's E-frame has slots representing its recursion 
type (tree, l ist, or number), recursive calls, 
terminations, variable updates, and task role (main, 
constructor, or predicate). The E-frame representation 
facilitates a robust algor i thm recognition process by 
allowing part ia l matching to occur on the semantic 
features of abstract enumerations and the role of 
functions in solving tasks, rather than on code 
structure. 

Figure 1 provides an overview of how TALUS 
recognizes buggy algorithms. The student writes one or 
more functions to solve an assigned task. TALUS 
determines the stored algori thm that best matches the 
student's algori thm by part ia l matching, and maps the 
stored functions associated w i th that algori thm to the 
student's functions. 

F i g u r e 1 : A lgor i thm Recognition i n TALUS 

TALUS performs a best first search to cho 
between competing algorithms and to map stud 
functions to stored functions. Nodes are part 
mappings of student and stored functions for one of 
competing algorithms. 

Funct ion mappings allow for missing or superflu< 
student functions while using constraints to reduce 
search space. Student functions map to sto 
functions or to E X T R A ; stored functions map 
student functions or to MISSING. Two functions < 
be paired only if their parents have already been pai 
and the functions have the same task role. 

A measure of dissimilarity is computed for ea 
part ial mapping. Each funct ion pair contributes 
penalty that is a weighted sum of the differen 
between the slots of the corresponding E-fram 
Addi t ional penalties are added for functions mapped 
MISSING or E X T R A . 

Al ternat ive functional decompositions of algorith 
are represented either extensionally as addit ional t; 
solutions or intensionally through the use of solut 
transforms (discussed in Section IV) . 

B . B u g D e t e c t i o n 

Figure 2 il lustrates how TALUS debugs a stud 
funct ion matched to a stored funct ion. A binary t 
represents each funct ion, w i th nonterminal not 
representing conditional tests and terminal not 
representing funct ion terminations or recursions ( 
recursive calls). The terms that must be true or false 
reach a terminal node are the terms governing tl 
node. Each set of terms governing a terminal node i 
case. 

For each case, TALUS symbolically evaluates b 
the student and the stored funct ion. For each functi 
symbolic evaluation involves reducing its conditional! 
a symbolic value (i.e. a terminat ion or recursk 
Formal methods determine if a case implies tha 
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conditional test is true or false. Case spl i t t ing can 
occur resulting in more than one symbolic value being 
returned. 

TALUS compares the symbolic values returned by 
the student and stored functions to determine if they 
are equal under the assumed case. A theorem prover is 
used to check that a case implies the computational 
equivalence of two symbolic values. If they are not 
equal, a bug is present. 

C . B u g C o r r e c t i o n 

TALUS debugs a student's code fragment by 
comparing it to the corresponding stored code fragment. 
Considering only top level expressions, TALUS 
tentatively replaces one expression in the student's code 
wi th the corresponding expression in the stored code. If 
the two code fragments are now functionally equivalent 
then the altered code fragment has no remaining bugs. 
TALUS applies its debugging procedure recursively to 
the expression replaced whenever possible. 

If bugs remain after the replacement then another 
replacement is t r ied. If no further replacements are 
possible then the stored code fragment replaces the 
entire student code fragment. 

I V . A n n o t a t e d Scenar io 

The scenario below is edited for brevity. The 
scenario starts in the middle of a tutor ial session, after 
the student has had some instruction in LISP 
programming. 

Task MEMTREE 
W r i t e a f u n c t i o n t h a t d e t e r m i n e s w h e t h e r 
an a tom is one o f t h e l e a v e s o f a t r e e . 

(DEFUN MEMTR (AT CONS) 
( I N AT (FLAT N I L CONS))) 

(DEFUN FLAT (ANS TR) 
( I F (ATOM TR) ANS 

(FLAT (FLAT ANS (CDR TR)) 
(CAR T R ) ) ) ) 

(DEFUN IN (X L) 
( I F (L ISTP L ) 

( I F (EQUAL L ( L I S T X ) ) 
L 

( I F (NOT (EQUAL (CAR L) X ) ) 
( I N X (CAR D ) 

D) 
N I L ) ) 

F i g u r e 3: A Buggy Solution to 
the M E M T R E E Task 

A . A l g o r i t h m R e c o g n i t i o n 

TALUS must now recognize the algorithm the 
student has used. First , the functions M E M T R , F L A T , 
and IN are parsed into E-frames. The three E-frames 
together represent the student's solution. 

TALUS knows of two different algorithms for the 
M E M T R E E task. The T R E E - W A L K algorithm 
explores the CAR and the CDR of a tree separately to 
see if an atom is in the tree. The M E M T R E E -
F L A T T E N algorithm first flattens the tree and then 
determines if the atom is a member of the resulting 
bag. The result of the algorithm recognition process is: 

A l g o r i t h m u s e d : MEMTREE-FLATTEN. 

S t u d e n t Fns Ma tched t o S t o r e d F n s : 
FLAT to FLATTEN 
IN to MEMBER 
MEMTR to MEMTREE 

S o l u t i o n T r a n s f o r m A p p l i e d : 
T r a n s f o r m i n g FLATTEN t o MCFLATTEN t o 
b e t t e r ma tch t h e s t u d e n t f u n c t i o n FLAT. 

TALUS selects the M E M T R E E - F L A T T E N 
algori thm as being more similar to the student's 
solution than the T R E E - W A L K algori thm. The stored 
functions F L A T T E N , MEMBER, and M E M T R E E , 
whose E-frames comprise the M E M T R E E algori thm, are 
mapped to the student functions F L A T , I N , and 
M E M T R . 

TALUS has stored global solution transforms that 
allow it to transform one solution to an equivalent 
solution, more closely matching the student's solution. 
Thus, when appropriate, M C F L A T T E N replaces 
F L A T T E N , and calls to M C F L A T T E N replace calls to 
F L A T T E N . A similar transform allows predicates and 
predicate calls to be simultaneously logically inverted. 

TALUS now maps the formal variables of matched 
functions by using heuristics that take into account 
variable data type: 

FLAT to MCFLATTEN: (TR/TREE, ANS/ANSWER). 
IN t o MEMBER: (L /BAG, X / I T E M ) . 
MEMTR to MEMTREE: (CONS/TREE, A T / I T E M ) . 

B . B u g D e t e c t i o n 

TALUS now debugs the student functions by 
comparing them to the stored functions they have been 
matched w i t h . TALUS matched F L A T to F L A T T E N 
and then transformed F L A T T E N to M C F L A T T E N to 
match F L A T better. The stored definit ion of 
M C F L A T T E N is: 
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(DEFUN MCFLATTEN (TREE ANSWER) 
( IF (ATOM TREE) 

(CONS TREE ANSWER) 
(MCFLATTEN (CAR TREE) 

(MCFLATTEN (CDR TREE) 
ANSWER)))) 

In order to facil i tate bug detection and allow 
TALUS to replace buggy student code w i t h stored code 
to correct bugs, the code above is normalized by 
replacing the stored funct ion and formal variable names 
w i th the student's, and then permuting the formal 
variable order to match the student's. The result is: 

(DEFUN FLAT (ANS TR) 
( IF (ATOM TR) 

(CONS TR ANS) 
(FLAT (FLAT ANS (CDR TR)) 

(CAR TR) ) ) ) 

By examining the stored funct ion, TALUS 
determines that there are two cases to consider: either 
( A T O M TR) is true or ( N O T ( A T O M TR)) is t rue. By 
comparing the student's funct ion (see Figure 3) and 
stored functions for these two cases, we can determine if 
they compute the same values under the same 
conditions. If they do not then a bug is present. The 
case analysis follows: 

[Bug f o u n d : 

(IMPLIES (ATOM TR) ;Case 
(EQUAL (CONS TR ANS) from Stored Fn 

ANS) ) ;and Student Fn 

I s i n v a l i d . ] 

HINT: Looks l i k e you used the v a r i a b l e ANS 
i ns tead of the f u n c t i o n c a l l (CONS TR ANS) 
in FLAT. 

[Check: 

(IMPLIES (NOT (ATOM TR)) 
(EQUAL (FLAT (FLAT ANS (CDR TR)) 

(CAR TR)) 
(FLAT (FLAT ANS (CDR TR)) 

(CAR TR) ) ) ) 

is a theorem. ] 

Conjectures are f i rst checked by a conjecture 
disp rover that runs counterexamples. Counterexamples 
are stored sets of bindings of formal variables for each 
funct ion in a stored task algor i thm. If the conjecture 
evaluates t rue for all counterexamples then it is 
believed, otherwise it is definitely false. 

Conjectures that are believed are then passed to the 

Boyer Moore Theorem Prover [Boye79] for formal 
veri f icat ion. Functions involved in the conjectures are 
previously defined using the normalized stored funct ion 
definit ions. 

If a conjecture is formal ly proved then no bug is 
present in the student's code for that case. If the proof 
of a believed conjecture fails, then either the conjecture 
is false or necessary lemmas for the proof to succeed are 
missing. In the example presented in this paper all 
conjectures that are believed are proven to be theorems 
by the Boyer Moore Theorem Prover. 

For more complex examples, proofs may fail due to 
the absence of necessary lemmas. When this happens 
correct implementations are considered buggy and 
replaced by stored code fragments. W i t h this approach, 
buggy implementations are always detected. 

A more practical but less elegant approach is to 
accept as true the conjectures believed by the 
conjecture disprover. The claim that TALUS relies on 
formal methods is weakened while its practical 
performance improves markedly. More complex 
programs can be debugged since the conjecture 
disprover needs no lemmas, but some bugs may be 
missed if no counterexample is found to an inval id 
conjecture. On the other hand, correct 
implementations are never considered buggy, and true 
conjectures that are di f f icul t to prove formal ly are 
easily checked by the conjecture disprover. 

C . B u g C o r r e c t i o n 

When a conjecture is inval id, TALUS debugs the 
student's code by min imal ly altering the student's code 
so that the conjecture becomes a theorem. Essentially, 
TALUS attempts to verify the student's program using 
the stored funct ion both as its specification and as a 
source of corrections. Debugging consists of enforcing 
the verif ication conditions when necessary. Since the 
student and stored functions are not always equal when 
( A T O M TR) is t rue, a bug is present. TALUS fixes the 
student's code by replacing only the student's code 
fragment for this case w i t h the corresponding stored 
code fragment. The debugged code is shown below: 

(DEFUN FLAT (ANS TR) 
( IF (ATOM TR) 

(CONS TR ANS) 
(FLAT (FLAT ANS (CDR TR)) 

(CAR TR) ) ) ) 

The funct ion IN (see Figure 3) is debugged similar ly 
by comparing i t to the stored funct ion M E M B E R , 
which is normalized to: 



W.Murray 19 

(DEFUN IN (X L) 
( I F (NLISTP L ) 

N I L 
( I F (EQUAL X (CAR L ) ) 

T 
( I N X (CDR L ) ) ) ) ) 

TALUS generates the following conjectures to check 
whether the student and stored functions are logically 
equivalent predicates: 

( IMPLIES (NLISTP L ) ( I F F N IL N I L ) ) 

( IMPLIES (AND (NOT (NLISTP L ) ) 
(EQUAL X (CAR L ) ) 
(EQUAL L (L IST X ) ) ) 

( I F F T L ) ) 

( IMPLIES (AND (NOT (NLISTP L ) ) 
(EQUAL X (CAR L ) ) 
(NOT (EQUAL L (L IST X ) ) ) ) 

( I F F T L ) ) 

( IMPLIES (AND (NOT (NLISTP L ) ) 
(NOT (EQUAL X (CAR L ) ) ) ) 

( I F F ( I N X (CDR D ) 
( I N X (CAR L ) ) ) ) 

The first three conjectures are theorems while the 
last is not, indicating a bug which TALUS corrects: 

(DEFUN IN (X L) 
( I F (L ISTP L ) 

( I F (EQUAL L (L IST X ) ) 
L 
( I F (NOT (EQUAL (CAR L) X ) ) 

( I N X (CDR L ) ) 
D ) 

NIL) ) 
The remaining funct ion, M E M T R , has no bugs and 

its analysis is omi t ted. 

V , S u m m a r y 

This paper has i l lustrated a new approach to 
program debugging that combines both heuristic and 
formal methods to achieve greater power than either 
approach alone. Heuristic methods are not used merely 
to enhance efficiency but in a fundamentally different 
way: to represent inexact notions that are dif f icult to 
express formal ly, to allow robust algorithm recognition 
in the presence of bugs, and to generate conjectures to 
be formal ly tested. 

Formal methods are equally important to the 
performance of TALUS. Rather than relying on a fixed 
set of rewrite rules to establish that one implementation 
is computat ional ly equivalent to another, the fu l l power 

of a theorem prover capable of inductive proofs can be 
brought to bear. Implementation equivalences that are 
only val id under certain conditions can be established. 
Logical implications, necessary for symbolic evaluation, 
can be determined. 

By using heuristic and formal methods together, 
TALUS allows significant variabi l i ty in student input , 
ful ly automatic and robust program debugging, and 
provides debugging skills necessary to a complete 
intell igent tutor ing system that teaches programming. 
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