
H e u r i s t i c a n d F o r m a l M e t h o d s i n A u t o m a t i c P r o g r a m D e b u g g i n g

Wi l l iam R. Murray
Department of Computer Sciences

University of Texas at Aust in

Aust in , Texas 78712

A B S T R A C T
TALUS is an automatic program debugging system

that both detects and corrects nonsyntactic bugs in
student programs wr i t ten to solve small but nontr ivial
tasks in pure LISP. TALUS permits significant
var iabi l i ty in student solutions by using heuristic
methods to recognize different algorithms and formal
methods to reason about computational equivalence of
program fragments. A theorem prover intensionally
represents an inf ini te database of rewrite rules, thus
allowing for unanticipated implementations. TALUS
detects bugs using formal methods in both symbolic
evaluation and case analysis. Heuristic methods
conjecture the exact location of bugs and alterations
necessary to correct the bugs. Final ly, formal methods
establish or disprove these heuristic conjectures,
reflecting a generate and test methodology.

I . I n t r o d u c t i o n

TALUS acts as the domain expert of an intelligent
tu tor ing system to teach LISP. A complete intelligent
tutor ing system would include a student model, a dialog
manager, courseware, and additional domain expertise.

Input to TALUS consists of one or more student
functions intended to solve an assigned task. Typical
tasks include REVERSE, MEMBER, U N I O N ,
I N T E R S E C T I O N , F A C T O R I A L , and F L A T T E N .
Outpu t consists of the debugged student functions and
bug annotations.

Whi le TALUS wi l l not recognize unanticipated
algorithms, unanticipated implementations are
permit ted. Associated w i th each task are
representations of algorithms that solve the task.
Heuristics match the student's buggy solution w i th the
algori thm most similar to i t . Formal methods detect
bugs in the student's functions by comparing them wi th

This work was sponsored in part by NSF CER grant
MCS-8122039 and Army Research Office grant DAAG29-84-
K-0060.

stored functions. Heuristic methods suggest minimal
alterations to the student's functions to remove the
bugs; formal methods accept or reject the proposed
alterations.

I I . P r e v i o u s A p p r o a c h e s t o
A u t o m a t i c P r o g r a m D e b u g g i n g

Heuristic approaches to automatic program
debugging parse student programs into an abstract
representation and match that representation against
either stored plan templates f rom a l ibrary [John84;
Solo82], or a model program [Adam80]. Bugs appear as
unaccountable differences between stored correct plans
and the parsed program. Plan transforms increase the
range of programs that can be accepted by statically
representing common implementation variants.
However, some correct student implementations wi l l
require inductive proofs or unanticipated transforms to
establish their equivalence to stored plans. These
implementations are rejected as buggy or unanalyzable.

A formal approach to automatic program
debugging, by Katz and Manna [Katz76], extends the
logical analysis of programs to include program
incorrectness and a means of correcting incorrect
programs. Program statements are related to
synthesized inductive invariants. When these invariants
are insufficient to establish a proof of correctness,
program statements are altered so the necessary
inductive invariants are derived. Synthesizing these
inductive invariants and determining what program
statements to alter is di f f icul t ; no implementation of
their design exists to date.

Shapiro [Shap82] traces the execution of pure
PROLOG programs to isolate the presence of bugs in
procedures whose traces are incorrect. The user
supplies informat ion about examples to t ry , the
correctness of program traces and violations of well
founded relationships. Bugs are corrected by
synthesizing correct clauses or by searching among
perturbations of buggy clauses. This method can be
applied to other functional programming languages, but

16 W. Murray

requires user query and only debugs the program wi th
respect to the examples provided.

Other approaches include analysis by synthesis
[Mill182], analysis of program execution [Shap8l], plan
parsing [Mil l79; Ruth73], and analysis of program
output [Gold74].

H I . A u t o m a t i c D e b u g g i n g i n T A L U S

The debugging approach of TALUS, described in
this section, attempts to increase the acceptable
var iabi l i ty in student solutions and the robustness of
the debugging process, while not relying on the student
to assist in the debugging or to understand formal
verif ication techniques. Debugging occurs in three
stages: algori thm recognition, bug detection, and bug
correction.

A . A l g o r i t h m R e c o g n i t i o n

A l l functions, stored or student, are parsed into
E-frames. Algor i thms and solutions are collections of
functions. E-Frame slots represent abstract properties
of recursive functions that (part ial ly) enumerate the
elements of a recursively defined data structure. A
function's E-frame has slots representing its recursion
type (tree, l ist, or number), recursive calls,
terminations, variable updates, and task role (main,
constructor, or predicate). The E-frame representation
facilitates a robust algor i thm recognition process by
allowing part ia l matching to occur on the semantic
features of abstract enumerations and the role of
functions in solving tasks, rather than on code
structure.

Figure 1 provides an overview of how TALUS
recognizes buggy algorithms. The student writes one or
more functions to solve an assigned task. TALUS
determines the stored algori thm that best matches the
student's algori thm by part ia l matching, and maps the
stored functions associated w i th that algori thm to the
student's functions.

F i g u r e 1 : A lgor i thm Recognition i n TALUS

TALUS performs a best first search to cho
between competing algorithms and to map stud
functions to stored functions. Nodes are part
mappings of student and stored functions for one of
competing algorithms.

Funct ion mappings allow for missing or superflu<
student functions while using constraints to reduce
search space. Student functions map to sto
functions or to E X T R A ; stored functions map
student functions or to MISSING. Two functions <
be paired only if their parents have already been pai
and the functions have the same task role.

A measure of dissimilarity is computed for ea
part ial mapping. Each funct ion pair contributes
penalty that is a weighted sum of the differen
between the slots of the corresponding E-fram
Addi t ional penalties are added for functions mapped
MISSING or E X T R A .

Al ternat ive functional decompositions of algorith
are represented either extensionally as addit ional t;
solutions or intensionally through the use of solut
transforms (discussed in Section IV) .

B . B u g D e t e c t i o n

Figure 2 il lustrates how TALUS debugs a stud
funct ion matched to a stored funct ion. A binary t
represents each funct ion, w i th nonterminal not
representing conditional tests and terminal not
representing funct ion terminations or recursions (
recursive calls). The terms that must be true or false
reach a terminal node are the terms governing tl
node. Each set of terms governing a terminal node i
case.

For each case, TALUS symbolically evaluates b
the student and the stored funct ion. For each functi
symbolic evaluation involves reducing its conditional!
a symbolic value (i.e. a terminat ion or recursk
Formal methods determine if a case implies tha

W.Murray 17

conditional test is true or false. Case spl i t t ing can
occur resulting in more than one symbolic value being
returned.

TALUS compares the symbolic values returned by
the student and stored functions to determine if they
are equal under the assumed case. A theorem prover is
used to check that a case implies the computational
equivalence of two symbolic values. If they are not
equal, a bug is present.

C . B u g C o r r e c t i o n

TALUS debugs a student's code fragment by
comparing it to the corresponding stored code fragment.
Considering only top level expressions, TALUS
tentatively replaces one expression in the student's code
wi th the corresponding expression in the stored code. If
the two code fragments are now functionally equivalent
then the altered code fragment has no remaining bugs.
TALUS applies its debugging procedure recursively to
the expression replaced whenever possible.

If bugs remain after the replacement then another
replacement is t r ied. If no further replacements are
possible then the stored code fragment replaces the
entire student code fragment.

I V . A n n o t a t e d Scenar io

The scenario below is edited for brevity. The
scenario starts in the middle of a tutor ial session, after
the student has had some instruction in LISP
programming.

Task MEMTREE
W r i t e a f u n c t i o n t h a t d e t e r m i n e s w h e t h e r
an a tom is one o f t h e l e a v e s o f a t r e e .

(DEFUN MEMTR (AT CONS)
(I N AT (FLAT N I L CONS)))

(DEFUN FLAT (ANS TR)
(I F (ATOM TR) ANS

(FLAT (FLAT ANS (CDR TR))
(CAR T R))))

(DEFUN IN (X L)
(I F (L ISTP L)

(I F (EQUAL L (L I S T X))
L

(I F (NOT (EQUAL (CAR L) X))
(I N X (CAR D)

D)
N I L))

F i g u r e 3: A Buggy Solution to
the M E M T R E E Task

A . A l g o r i t h m R e c o g n i t i o n

TALUS must now recognize the algorithm the
student has used. First , the functions M E M T R , F L A T ,
and IN are parsed into E-frames. The three E-frames
together represent the student's solution.

TALUS knows of two different algorithms for the
M E M T R E E task. The T R E E - W A L K algorithm
explores the CAR and the CDR of a tree separately to
see if an atom is in the tree. The M E M T R E E -
F L A T T E N algorithm first flattens the tree and then
determines if the atom is a member of the resulting
bag. The result of the algorithm recognition process is:

A l g o r i t h m u s e d : MEMTREE-FLATTEN.

S t u d e n t Fns Ma tched t o S t o r e d F n s :
FLAT to FLATTEN
IN to MEMBER
MEMTR to MEMTREE

S o l u t i o n T r a n s f o r m A p p l i e d :
T r a n s f o r m i n g FLATTEN t o MCFLATTEN t o
b e t t e r ma tch t h e s t u d e n t f u n c t i o n FLAT.

TALUS selects the M E M T R E E - F L A T T E N
algori thm as being more similar to the student's
solution than the T R E E - W A L K algori thm. The stored
functions F L A T T E N , MEMBER, and M E M T R E E ,
whose E-frames comprise the M E M T R E E algori thm, are
mapped to the student functions F L A T , I N , and
M E M T R .

TALUS has stored global solution transforms that
allow it to transform one solution to an equivalent
solution, more closely matching the student's solution.
Thus, when appropriate, M C F L A T T E N replaces
F L A T T E N , and calls to M C F L A T T E N replace calls to
F L A T T E N . A similar transform allows predicates and
predicate calls to be simultaneously logically inverted.

TALUS now maps the formal variables of matched
functions by using heuristics that take into account
variable data type:

FLAT to MCFLATTEN: (TR/TREE, ANS/ANSWER).
IN t o MEMBER: (L /BAG, X / I T E M) .
MEMTR to MEMTREE: (CONS/TREE, A T / I T E M) .

B . B u g D e t e c t i o n

TALUS now debugs the student functions by
comparing them to the stored functions they have been
matched w i t h . TALUS matched F L A T to F L A T T E N
and then transformed F L A T T E N to M C F L A T T E N to
match F L A T better. The stored definit ion of
M C F L A T T E N is:

18 W.Murray

(DEFUN MCFLATTEN (TREE ANSWER)
(IF (ATOM TREE)

(CONS TREE ANSWER)
(MCFLATTEN (CAR TREE)

(MCFLATTEN (CDR TREE)
ANSWER))))

In order to facil i tate bug detection and allow
TALUS to replace buggy student code w i t h stored code
to correct bugs, the code above is normalized by
replacing the stored funct ion and formal variable names
w i th the student's, and then permuting the formal
variable order to match the student's. The result is:

(DEFUN FLAT (ANS TR)
(IF (ATOM TR)

(CONS TR ANS)
(FLAT (FLAT ANS (CDR TR))

(CAR TR))))

By examining the stored funct ion, TALUS
determines that there are two cases to consider: either
(A T O M TR) is true or (N O T (A T O M TR)) is t rue. By
comparing the student's funct ion (see Figure 3) and
stored functions for these two cases, we can determine if
they compute the same values under the same
conditions. If they do not then a bug is present. The
case analysis follows:

[Bug f o u n d :

(IMPLIES (ATOM TR) ;Case
(EQUAL (CONS TR ANS) from Stored Fn

ANS)) ;and Student Fn

I s i n v a l i d .]

HINT: Looks l i k e you used the v a r i a b l e ANS
i ns tead of the f u n c t i o n c a l l (CONS TR ANS)
in FLAT.

[Check:

(IMPLIES (NOT (ATOM TR))
(EQUAL (FLAT (FLAT ANS (CDR TR))

(CAR TR))
(FLAT (FLAT ANS (CDR TR))

(CAR TR))))

is a theorem.]

Conjectures are f i rst checked by a conjecture
disp rover that runs counterexamples. Counterexamples
are stored sets of bindings of formal variables for each
funct ion in a stored task algor i thm. If the conjecture
evaluates t rue for all counterexamples then it is
believed, otherwise it is definitely false.

Conjectures that are believed are then passed to the

Boyer Moore Theorem Prover [Boye79] for formal
veri f icat ion. Functions involved in the conjectures are
previously defined using the normalized stored funct ion
definit ions.

If a conjecture is formal ly proved then no bug is
present in the student's code for that case. If the proof
of a believed conjecture fails, then either the conjecture
is false or necessary lemmas for the proof to succeed are
missing. In the example presented in this paper all
conjectures that are believed are proven to be theorems
by the Boyer Moore Theorem Prover.

For more complex examples, proofs may fail due to
the absence of necessary lemmas. When this happens
correct implementations are considered buggy and
replaced by stored code fragments. W i t h this approach,
buggy implementations are always detected.

A more practical but less elegant approach is to
accept as true the conjectures believed by the
conjecture disprover. The claim that TALUS relies on
formal methods is weakened while its practical
performance improves markedly. More complex
programs can be debugged since the conjecture
disprover needs no lemmas, but some bugs may be
missed if no counterexample is found to an inval id
conjecture. On the other hand, correct
implementations are never considered buggy, and true
conjectures that are di f f icul t to prove formal ly are
easily checked by the conjecture disprover.

C . B u g C o r r e c t i o n

When a conjecture is inval id, TALUS debugs the
student's code by min imal ly altering the student's code
so that the conjecture becomes a theorem. Essentially,
TALUS attempts to verify the student's program using
the stored funct ion both as its specification and as a
source of corrections. Debugging consists of enforcing
the verif ication conditions when necessary. Since the
student and stored functions are not always equal when
(A T O M TR) is t rue, a bug is present. TALUS fixes the
student's code by replacing only the student's code
fragment for this case w i t h the corresponding stored
code fragment. The debugged code is shown below:

(DEFUN FLAT (ANS TR)
(IF (ATOM TR)

(CONS TR ANS)
(FLAT (FLAT ANS (CDR TR))

(CAR TR))))

The funct ion IN (see Figure 3) is debugged similar ly
by comparing i t to the stored funct ion M E M B E R ,
which is normalized to:

W.Murray 19

(DEFUN IN (X L)
(I F (NLISTP L)

N I L
(I F (EQUAL X (CAR L))

T
(I N X (CDR L)))))

TALUS generates the following conjectures to check
whether the student and stored functions are logically
equivalent predicates:

(IMPLIES (NLISTP L) (I F F N IL N I L))

(IMPLIES (AND (NOT (NLISTP L))
(EQUAL X (CAR L))
(EQUAL L (L IST X)))

(I F F T L))

(IMPLIES (AND (NOT (NLISTP L))
(EQUAL X (CAR L))
(NOT (EQUAL L (L IST X))))

(I F F T L))

(IMPLIES (AND (NOT (NLISTP L))
(NOT (EQUAL X (CAR L))))

(I F F (I N X (CDR D)
(I N X (CAR L))))

The first three conjectures are theorems while the
last is not, indicating a bug which TALUS corrects:

(DEFUN IN (X L)
(I F (L ISTP L)

(I F (EQUAL L (L IST X))
L
(I F (NOT (EQUAL (CAR L) X))

(I N X (CDR L))
D)

NIL))
The remaining funct ion, M E M T R , has no bugs and

its analysis is omi t ted.

V , S u m m a r y

This paper has i l lustrated a new approach to
program debugging that combines both heuristic and
formal methods to achieve greater power than either
approach alone. Heuristic methods are not used merely
to enhance efficiency but in a fundamentally different
way: to represent inexact notions that are dif f icult to
express formal ly, to allow robust algorithm recognition
in the presence of bugs, and to generate conjectures to
be formal ly tested.

Formal methods are equally important to the
performance of TALUS. Rather than relying on a fixed
set of rewrite rules to establish that one implementation
is computat ional ly equivalent to another, the fu l l power

of a theorem prover capable of inductive proofs can be
brought to bear. Implementation equivalences that are
only val id under certain conditions can be established.
Logical implications, necessary for symbolic evaluation,
can be determined.

By using heuristic and formal methods together,
TALUS allows significant variabi l i ty in student input ,
ful ly automatic and robust program debugging, and
provides debugging skills necessary to a complete
intell igent tutor ing system that teaches programming.

A c k n o w l e d g e m e n t s

Elaine Rich, Bruce Porter, Mark Miller, and Jim Miller have
provided invaluable assistance in this research and its presentation
here.

References

[Adam80] Adam, A. and J. Laurent, "LAURA, A System to Debug
Student Programs." Art i f icial Intelligence 15 (1980) 75 - 122.

[Boye79] Boyer, R. and J Moore. A Computational Logic.
Academic Press, Inc. 1979.

[Gold74] Goldstein, I. "Understanding Simple Picture Programs."
M I T Art i f ic ial Intelligence Laboratory, TR 294. 1974.

[John84] Johnson, L. J. and E. Soloway, "Intention-Based
Diagnosis of Programming Errors" In Proc. AAAI-84. Aust in,
Texas, August, 1984, pp. 162-168.

[Katz76] Katz, S. and Z. Manna, "Logical Analysis of Programs."
Communications of the A C M 19:4 (1976) 188-206.

[Mill79] Mil ler, M.L. "A Structured Planning and Debugging
Environment for Elementary Programming." International
Journal of Man-Machine Studies 11 (1979) 79 - 95.

[Mill82] Miller, J., T. Kehler, P. Michaelis, and W. Murray.
"Intelligent Tutoring for Programming Tasks." Technical Report
ONR-TR-82-0818F, Texas Instruments, Dallas. 1982.

[Ruth73] Ruth, G. "Analysis of Algorithm Implementations." M I T
Project M A C TR 130. 1973.

[Shap8l] Shapiro, D. "Sniffer: A System that Understands Bugs."
A . I . Memo 638, M I T Art i f ic ial Intelligence Laboratory. 1981.

[Shap82] Shapiro, E. "Algorithmic Program Debugging." PhD
thesis. Department of Computer Science, Yale University. 1982.

[Solo82] Soloway, E., E. Rubin, B. Woolf, J. Bonar,
W. L. Johnson. "MENO-I I : An AI-Based Programming Tutor."
Research Report 258. Department of Computer Science, Yale
University. 1982.

