
The Architecture of the FA IM-1 Symbolic Multiprocessing System
A. L. Davis

S. V R o b i s o n

Ar t i f i c ia l Intelligence Laboratory
Schlumberger Palo A l t o Research

3340 Hi l lv iew Avenue
Palo A l t o , CA 94304

ABSTRACT

The F A I M - 1 is an ultra-concurrent symbolic multipro-
cessor which attempts to significantly improve the perfor
mance of AI systems. The system includes a language
in which concurrent AI application programs can be writ
ten, a machine which provides direct hardware support for
the language, and a resource allocation mechanism which
maps programs onto the machine in order to exploit the
program's concurrency in an efficient manner at run-time.
The paper provides a brief synopsis of the nature of the
language and resource allocation mechanism, but is pri
marily concerned with the description of the physical ar
chitecture of the machine. The architecture is consistent
with high performance VLSI implementation and packag
ing technology, and is easily extended to include arbitrary
numbers of processors.

I Introduct ion

The goal of the F A I M - 1 machine is to provide a high per
formance symbolic mult iprocessor, one hundred or more times
faster than current machines in common use (e.g., a Symbolics
3670) to meet the voracious computat ional demands of fu ture
Ar t i f i c ia l Intelligence applications. Th is implies a real machine
— one that works, is affordable and that people can program.
Such a machine should entice researchers in to the area of dis
t r ibuted AI problem solving and encourage its widespread use
in the research community. It is hoped that such usage w i l l fa
ci l i tate development of the necessary expertise to make sophis
t icated, cost-effective machine intelligence applications pract ical .
The FA IM-1 is also an architecture which is conveniently extensi
ble, bo th in terms of scale (number of processors) and for future
improvements to incorporate the benefits of new technology and
systems ideas.

The system's funct ional i ty is pr imar i ly mot ivated f rom the top
by the needs of AI symbolic computat ion, bu t the system struc
ture is also restr icted by the need to produce a high-performance,
cost-effective system in an available technology. We feel tha t it
is necessary to provide a consistent system which is designed
f rom f i rst principles to meet the needs of AI applications rather
than adopt ing an ad hoc combinat ion of systems ideas and com
ponents tha t were developed for sequential, p r imar i ly numeric
applications. Such a system must also be complete enough to
permi t viable use and evaluation. The F A I M - 1 system therefore
includes a language, programming environment, architecture (a
hardware prototype is under development), and a resource al
locat ion mechanism. The focus of this paper is to describe the
physical architecture of the F A I M - 1 system. A br ief synopsis of
the language and resource al locat ion strategy w i l l be presented
in order to provide some perspective for the architecture in the
context of the overall system.

In order to achieve our goals for an appreciably higher perfor
mance generation of intel l igent machine systems based on concur
rent mult iprocessing, it is necessary to make a significant break
w i t h conventional archi tectural principles. Some of the t radi
t ional mechanisms simply are not viable in a highly concurrent
environment. On the other hand, a dramatic shift of compu
tat ional base f rom sequential to concurrent processing w i l l be
dif f icult after 30 years of highly refined experience w i th unipro
cessing. In practice programmers are not going to readily make
the diff icult shift if the new systems require a significant change
in the style in which they solve problems, or if the speed of the
target machine is too slow to motivate the effort. Our approach in
satisfying these confl ict ing constraints is to provide a reasonably
small shift in th ink ing at the programming language level in order
to incorporate concurrency, whi le making major changes in the
structure of bo th the system software and hardware architecture
in order to achieve the necessary level of system performance.

The design of the FA IM-1 system is intended to exploit con
currency at a l l levels of the system, and to pursue technological
performance mechanisms in the implementat ion of the prototype
hardware.

II Language and Resource Allocation

A . T h e O I L Language

O I L (Our Intermediate Language) can be viewed both as the
kernel of a high level, concurrent, AI symbolic programming lan
guage and as the machine language for the FA IM-1 multiprocess
ing system. The design of O I L was pr imar i ly influenced by cur
rent AI programming practices. Commonly used are languages
for knowledge representation, logic programming, object-oriented
programming, product ion rules, procedural code, etc. Future
complex AI applications may require several (or all) of these
programming styles. Emulat ing one programming style w i t h i n
another is inefficient, and therefore a need exists for a better l in
guistic mechanism that efficiently supports many of the major
styles. O I L can be viewed as a blend of object-oriented, logic,
and procedural programming semantics into a single and inter
nal ly consistent l inguistic f ramework. Effort has been made to
retain as much as possible f rom existing and fami l iar AI program
ming languages. Some modif ications to fami l iar mechanisms have
been incorporated into O I L which were pr imar i ly induced by the
need to provide concurrent semantics where possible.

An O I L program is a collection of objects tha t communicate
by sending messages. Each object is viewed semantically as an
independent and therefore potent ia l ly concurrent program mod
ule. The communicat ion structure expl ic i t ly indicates the level of
concurrency represented by the program. An O I L object consists
of some local state in format ion (local variables and data struc
tures) and several porta through which messages are sent and
received in F I F O order. A behavior, associated w i t h each por t ,

A. Davis and S. Robison 33

describes what the object does in response to a message. The
behavior is a program, that may modify the local state and/or
send messages to other objects. Atomic OIL objects are of two
dist inct types: logical and procedural.

Logical behaviors are wr i t ten in a declarative style that is es
sentially a parallel version of Prolog [Clocksin and Mel l ish, 1981].
Numerous parallel logic programming semantics are being inves
tigated w i th in the research community. O I L logical behaviors
are semantically OR-paral lel , restricted AND-paral le l [DeGroot,
1984] logic programs.

Procedural behaviors are wr i t ten imperatively in a parallel
lexically scoped dialect of LISP based on the language T [Rees
et a/., 1984]. Behaviors can be nested heterogeneously to form
other objects to permi t control to pass between declarative and
imperative behaviors.

The programmer may also annotate the O I L code w i t h prag
mas which are used to provide information about the dynamic
aspects of how the code may behave at run t ime. These program
mer supplied hints are used by the static resource allocator in an
at tempt to properly par t i t ion the concurrency extant in the pro
gram onto the physical resources of the machine. The goal of this
act iv i ty is to maximise the benefit of concurrent operation at run
t ime. This pragma informat ion gives the programmer opt ional
control over some aspects of the allocation strategy. Pragmas,
as the name implies, are purely pragmatic informat ion and are
therefore orthogonal to the funct ional correctness of the program
itself. If no pragma informat ion is supplied, the program w i l l s t i l l
run although perhaps not efficiently.

B. Resource A l l o c a t i o n

Given a program that is a collection of concurrent tasks and
a machine composed of a number of processors on which to run
the program, there is an inherent problem of how to allocate the
tasks onto the physical resources in an efficient manner. In sys
tems such as the Cosmic Cube [Seitz, 1984] the burden of task
allocation is left for the programmer; for certain highly regu
lar cases this is neither a complex nor diff icult task. In general
however, it is impor tant that the task structure reflect the pro
grammer's organization of the solution and be independent of the
machine architecture. Efficient task allocation is a cr i t ical prob
lem that must be solved if advanced, highly concurrent machine
systems are to mature and be t ru ly useful. Several mechanisms
have been studied, but generally three main options exist:

1. P r o g r a m m e d resource allocation relies on a smart pro
grammer to wr i te specific load modules for each indiv idual
processing element (PE). The disadvantage is that the task
may be complex and the solution non-intui t ive. An ad
di t ional problem is that such code does not por t to new
machine structures, and therefore effectively returns to the
dark ages of machine dependent programming. The ad
vantage is that in many cases the programmer knows the
op t ima l al location better than any automatic mechanism.

2. D y n a m i c resource allocation employs a smart operating
system to observe how load is distr ibuted in the system. If
an inefficient al location exists, then the operating system re
distr ibutes some of the load f rom busy processors to l ight ly
loaded or idle processors. The advantage of this mechanism
is tha t if the load changes rapidly, then neither the pro
grammed nor the static mechanisms can adapt properly.
The drawback is that the overhead of dynamic allocation
must be paid at runt ime and therefore can decrease system
performance.

3. S t a t i c resource allocation relies on a smart compiler to an
alyse the program text and to par t i t ion the result ing object

code into a set of cooperating, concurrent sub tasks tha t
conform to the grain size of the PE's and their interconnec
t ion topology. The pr imary advantage of this mechanism is
that i t does not directly increase the programmer's burden
and also does not diminish the run-t ime performance of the
system. The pr imary disadvantages are that the compiler
based resource allocator can be very complex, and if the
program exhibits highly dynamic behavior, then the result
may be far f rom opt imal .

Since the major goal of the FA IM-1 system is very high per
formance, the focus for resource allocation strategies is on static
methods. Aspects of both the programmed and dynamic meth
ods exist in that pragmas are both a way in which the program
mer can influence allocation decisions, and a mechanism by which
predictions about dynamic run-t ime behavior can be specified.
Due to the highly dynamic nature of many AI appl icat ion pro
grams, some form of addit ional dynamic load balancing support
w i l l also need to be provided by the run-t ime kernel. However,
our present interest is to experiment w i th how far we can push
static methods. The FA IM-1 static resource allocation decisions
are made in a post-compiler process called the Allocator.

The intermediate compiled code and the associated pragmas
are passed to the allocator by the O IL compiler. The alloca
tor then performs a dataflow analysis on the procedural code,
a communication connectivity analysis on the program objects,
and an inference connectivity analysis on the logical behaviors to
produce a directed-program graph. This graph is then manipu
lated into a more abstract graph form which encapsulates much
of the program graph detai l . This intermediate graph form is
then embedded into the machine graph representing the physical
machine resources v ia a simulated annealing process [Ki rkpatr ick
et al., 1984]. Whi le opt imal graph embedding is in general an NP
hard problem, the method used here fortunately is not concerned
w i t h an opt imal allocation and runs in polynomial t ime in order
to find an adequate allocation par t i t ion.

I l l FA IM-1 System Architecture

The pr imary purpose of the FAIM-1 architecture is the ef
f icient, high-performance execution of O IL programs. The ob
jective is accomplished by support ing, direct ly in hardware, the
computat ional model on which O I L is based.

The FA IM-1 is a multiprocessor system consisting of a number
of identical processing elements, called Hectogons (the result of
an inside joke w i t h no other interesting meaning), interconnected
by a communication network. Each Hectogon is a complete, self-
t imed computer capable of sequentially executing any compiled
O I L program that can be stored in its local memory. Hecto
gons communicate w i t h each other via messages which are sent
through communication ports. Note the simi lar i ty between this
model and the organization of an O I L program. Each Hectogon
has 6 ports that may potent ial ly be concurrently active. Com
municat ion lines run between ports on different Hectogons; the
exact configuration of connections is called the communication
topology.

A Hectogon is composed of 6 self-timed [Seitz, 1979] subsys
tems - named the FRISC, ISM, CxAM, SPUN, SRAM, and Post
Office. Three of these subsystems (ISM, C x A M , S R A M) are
specialised memory systems that provide intelligent storage, the
Post Office supports inter-Hectogon communicat ion, the FRISC
element is the processor, and unif ication support is provided by
the SPUN element. For the in i t ia l 19 processor F A I M - 1 proto
type, four of the subsystems are being implemented as custom
CMOS VLS I components and the other two (SPUN and S R A M)

34 A. Davis and S. Robison

subsystems are being constructed f rom commercially available
components.

One of the key features of this design is to experiment w i t h the
u t i l i t y of specialised storage subsystems to relieve the processor
f rom much of the storage management duties which are typ i
cally very t ime consuming in AI applications. These intelligent
memory components permit a higher level of processor memory
interact ion, which inherently alleviates the classic memory bot
tleneck of conventional Von Neumann architectures.

Each of the 6 subsystems can be be viewed as concurrent sys
tem modules, and as an ensemble they support a considerable
level of concurrent act iv i ty w i th in the confines of a single process
ing element. Larger grain concurrency, corresponding to parallel
program tasks, is exploited by d is t r ibut ing the tasks across mul
t iple processing elements.

A. Communication Topology

The FA IM-1 communication topology is divided into two lev
els. At the b o t t o m level, Hectogon elements are wired together
to fo rm a processing surface. At the t o p level, an arb i t rary num
ber of processing surfaces are connected together to produce a
mult ip le surface instance of a FA IM-1 system. A processing sur
face is a planar hexagonal mesh structure and Hectogons which
are on the edges of the plane are called peripheral. When a con
nection leaves the surface from a peripheral Hectogon's ports, it
is routed to a simple 3-ported switch. One of the remaining ports
of the switch is used for connection to an adjacent surface while
the other is wrapped around to a switch on the opposite edge
of the same hexagonal surface. Figure 1 shows a 19 processor
surface, w i t h the switches and wrap lines on one axis only. The
switches and wrap lines have been omi t ted on the other two axes
for clarity. This wrapped, hexagonal mesh is a 3-axis variant of a
twisted toroidal topology [Mar t in , 1981]. This part icular variant
has a communication diameter of N-1 where N is the number of
processors on an edge of the surface and each wrap is twisted
N- l increments on each axis. The N- l twist creates a provably
opt imal switching diameter and can be supported by a rather
simple rout ing a lgor i thm which scales to permit mult ip le sur
faces to be interconnected as well . This N- l twist topology can
also be viewed as a uni form hexagonal mesh of processors which
covers the surface of a sphere.

Hex Display with one Wrapped Axis

Figure 1: An E-3 Processing Surface

The wrap lines reduce the max imum communication distance

between elements on the surface. It is hoped that the resource
allocation strategy w i l l be able to allocate tasks onto this sur
face such that a high degree of communication locality w i l l be
achieved. However, it is unlikely that str ict locality can be effi
ciently achieved for highly dynamic AI programs. Therefore re
ducing worst-case communication times between non-local pro
cessing elements (by reducing communication distance) is also
impor tant .

Mul t ip le F A I M - 1 surfaces can be arbi t rar i ly tessellated in a
planar array, by connecting the adjacent Hectogon off-surface
switch wires. Figure 2 i l lustrates this multi-surface interconnec
t ion plan. In this figure, Hectogons on the same surface have
similar textures. The switches and wrap lines have been omit ted
for clarity. The t i l ing of a plane w i t h several processor surfaces
produces a large number of peripheral ports that can be attached
to non-Hectogon devices. This is useful for I /O purposes, pro
v id ing a large number of connections to secondary storage units
or a host processor. By varying the surface size and the number
of surfaces that are connected together it is possible to produce
a system containing any desired number of processors.

Figure 2: The T i l ing of Mul t ip le Surfaces

The pr imary advantage in using a hex communication topology
is that it is easily extensible. The periphery of a processing sur
face forms a regular hexagon. In the 19 processor instance, each
peripheral edge contains 3 processing elements. This part icular
configuration is therefore called an £ - 3 surface. An interesting
art i fact of this surface configurat ion, is that up to an £-7 sur
face, the number of processing elements on a surface is a prime
number. This can be exploited dur ing surface ini t ia l izat ion to
concurrently determine indiv idual Hectogon status and identity.

A secondary advantage of the surface topology is that the on-
surface w i r i ng scheme is str ic t ly planar and therefore amenable
to wafer-scale packaging, either as a hybr id or a fu l l wafer-scale
integrat ion design. We do not anticipate using wafer-scale in
tegration in the near term due to the inherent problems asso
ciated w i t h yield induced component failures. However, immer
sion cooled, hybr id wafer-scale packaging (Stopper, 1985] is an
at t ract ive opt ion. In general i t w i l l be impor tant for fu ture high-
performance architectures to be amenable to fabrication in mod
ern circui t and packaging technology. Namely it does not make
sense for multiprocessor architectures which exploit concurrency
for increased performance to sacrifice an order of magnitude in
speed due to a poor choice of implementat ion technology.

Fault tolerance is an impor tant aspect of any highly replicated

A. Davis and S. Robison 35

multiprocessor architecture, since the probabil i ty of at least one
processor being down increases w i th the number of processors in
the system. Homogeneous multiprocessor architectures intr insi
cally contain redundant elements which could be used to support
faul t tolerant behavior. Unfortunately most of these architec
tures to date have not ut i l ised this feature, and have by default
become fault intolerant. Koren [Gordon et a/., 1985] has shown
that hexagonal mesh structures are part icular ly attract ive faul t
tolerant topologies. In addi t ion, communication fault tolerance
is enhanced in a hex mesh topology because each element has a
number of paths by which it may send messages to any part icular
destinat ion.

B. Pott Office

Hectogons communicate w i th each other by sending messages.
The Post Office subsystem is a highly concurrent, autonomous
communications controller. It is responsible for the physical de
livery of messages which are sent between communicat ing Hec
togons. In i t ia l ly messages are created by the FRISC and linked
into the D E L I V E R A B L E - M E S S A G E S list stored in the S R A M .
The Post OfBce can independently access this structure and route
indiv idual messages to their intended destinations.

Messages are variable length structures and contain two sub-
fields: a l ist of destinations, and the message body. A destination
is a relative address which indicates the physical offset of the re
ceiving Hectogon in the hexagonal mesh. Physically, FA IM-1
Post Offices form an independent packet rout ing network on the
hexagonal mesh topology. Messages are therefore decomposed by
the PoBt Office into a series of fixed length packets. Each packet
contains a destination and a packet body. Rout ing of indiv id
ual packets is done separately and recomposition of a message
f rom a collection of packets is done by the receiving Post Office.
This implies tha t packet arr ival at the destination Post Office is
inherently unordered, since several physical rout ing paths may
be used for member packets of a part icular message. Whi le this
increases the level of responsibil i ty in the receiving Post Office,
it permits congestion delays to be avoided dynamical ly in the
switching topology.

Rout ing decisions are made algori thmical ly in the Post Office
by a finite state machine as follows:

• If the destination is one of the neighboring Hectogons, then
the packet is sent out on the appropriate por t if it is avail
able. If the por t is not available, then the Post Office waits
unt i l i t is. This model assumes that ports do not fa i l and
can be easily generalised to permit a more lenient failure
model.

• If the destination is not a local neighbor then the packet
is sent out on any por t which reduces the Manhat tan dis
tance to the destination. If no such por t is available after
a t ime specified by a C R I T I C A L - T I M E parameter, then
the packet is sent out to the first available por t . This ran
domised rout ing after a cr i t ical t ime permits messages to
be routed around areas of congestion. Simulation results
demonstrate that this mechanism permits congested areas
to be gradually dissipated by spreading the communication
load over a wider spectrum of the physical communication
resources.

Upon receipt of a packet, the receiving Post Office determines
if the packet has arrived at i ts destination. If it has, the packet is
stored in to the appropriate location in the S R A M . I f this packet
completes the receipt of a message then the FRISC is interrupted
by the Post Office to handle the received message. If the local
Hectogon is not the final destination then the packet is forwarded
using the rout ing a lgor i thm described above. The f inal word of

each packet contains a CRC which is monitored by the receiving
Post Office to validate packet integri ty dur ing transmission. If
the CRC check indicates that a transmission error has occurred,
the receiving Post Office signals the sender to retransmit the last
packet.

Physically the Post Office is composed of the fol lowing com
ponents:

• The Packe t B u f f e r P o o l is a mul t ipor ted storage module
consisting of a set of packet buffers.

• The E x t e r n a l C o n t r o l l e r is a f inite state machine which
makes rout ing decisions, manages the packet buffer pool ,
and connects por t controllers to packet buffers.

• The P o r t C o n t r o l l e r s (there are six - one for each Hecto
gon por t) , are responsible for receiving a packet and placing
it in the assigned packet buffer (vice versa for ou tpu t) . They
also perform bus master nominat ion duties and control the
asynchronous handshaking of the bus wires used to asyn
chronously control word transmissions dur ing packet trans
fer. The por t controllers are also responsible for checking
the CRC codes and signalling retransmission when neces
sary.

• The I n t e r n a l C o n t r o l l e r performs D M A accesses between
the S R A M and the packet buffer pool. It is responsible for
packetizing and depacketizing messages. The internal con
trol ler interrupts the FRISC when a complete message has
been received and has been composed in the S R A M . The in
ternal controller contains a M A I L - T A B L E which is used to
store target addresses in the S R A M for incoming messages,
and to indicate which packets of a part icular message have
been received. A similar table is maintained for S T R E A M
communications which require that the order in which mes
sages are sent w i l l be the order in which they are handled
by the receiving program object.

Potential ly the Post Office can keep all 6 external Hectogon
ports active concurrently, freeing the FRISC element f rom using
its cycles on communicat ion overhead. This is a significant im
provement over designs such as the Transputer [INMOS, 1984]
which steals processor cycles to drive the ports and where only
one of the four ports can be active at any part icular t ime. In
addit ion the hardware support for the rout ing a lgor i thm is inte
grated into the architecture and does not have to be par t of the
run- t ime kernel.

C . I n s t r u c t i o n S t r e a m M e m o r y

The Instruct ion Stream Memory (ISM) is a specialized high
speed instruct ion delivery subsystem. In the F A I M - 1 , the locus
of control for instruct ion delivery resides solely in the I S M . The
I S M provides storage for the FRISC object code, and provides
the control to decide what instruct ion should be executed next
and delivers i t to the FRISC.

The instruct ion stream can be viewed as a sequence of instruc
tions broken by calls or j umps , bo th of which may be condit ional .
Modern programming practices tend to produce relatively short
instruct ion sequences that correspond to small procedures. The
role of either a j u m p or call is to select a next instruct ion tha t is
not in lexical order. Since the j u m p and cal l instruct ions are seen
by the I S M before they are evaluated, the ISM can predict when
one w i l l appear and plan for it in advance. The use of specialised
hardware to enhance instruct ion delivery is certainly not new;
branch predict ion and instruct ion prefetch have been used to im
prove performance in many conventional architectures. Most of
these systems (for example the scoreboards in the I B M System
360/91 [Bell and Newell, 1971], t ranslat ion look aside buffers,

36 A. Davis and S. Robison

and instruct ion caches [Smith, 1982)) increase speed by interpos
ing a piece of specialised hardware between the memory and the
processor.

The I S M takes this approach a step further. It provides a spe
cialised instruct ion memory rather than merely placing a spe
cialised interface in f ront of a conventional memory. The obvious
disadvantage is that the I S M is only useful for storing instruc
t ions, and therefore the I S M cannot serve mul t ip le storage roles
as in conventional systems. The advantages, however are numer
ous:

• The I S M can be tuned for i ts sole funct ion of high-speed
instruct ion delivery.

• The processor complexity can be reduced.

• Code density can be increased since jumps and calls are
removed from the code stream.

• A separate parallel data path for instruct ion delivery can
be used.

• Operat ional concurrency is increased, since the I S M and
FRISC can operate as concurrently cooperating partners.

• A more flexible in ter rupt and t rap structure is permi t ted .

The code density issue is an impor tan t one since the power
of the FA IM-1 machine is derived pr imar i ly f rom the high level
of repl icat ion of processing elements tha t the architecture sup
por ts , and not from the power of the ind iv idual processor de
sign. In order to permi t high repl icat ion levels it is necessary
that the size of the ind iv idual processor be small . Therefore
the amount of storage available to each Hectogon is much less
than that typical ly associated w i t h conventional main frame ar
chitectures. The reduced storage sise provides significant mot i
vation to any mechanism which can improve code density, hence
the removal of branch instruct ions and the use of a stack based
micro-architecture for the FRISC element are steps in the r ight
direct ion.

The current I S M design at tempts to improve performance by
capital ising on the fact that instruct ion access patterns are not
random. Hence the use of R A M memory for instruct ion storage
is both slow and unnecessarily complex. The I S M essentially
performs instruct ion prefetch of a l l inst ruct ion paths that can be
taken w i t h the exception of in ter rupt and t rap sequences, and
has them ready for delivery at the t ime they are needed.

Physically the ISM organises i ts storage into a set of tracks,
each of which contains 16 instruct ion packets. An ind iv idua l
packet is 6 bits long. The FRISC instruct ion format permits
two types of instruct ion lengths. Short instruct ions are a sin
gle packet and long instruct ions are formed as a pair of packets.
The I S M decodes the instruct ions and sends properly format ted
instruct ions over the 12 b i t wide instruct ion bus. Hence it dy
namical ly delivers a code stream of the r ight length instruct ions
f rom a packed array of stored instruct ion packets. This reduces
the amount of dead storage caused by fragmentat ion that might
be incurred by permi t t i ng mul t ip le instruct ion lengths. A track
is viewed as a linear sequence of instruct ions which terminate by
a j u m p or call ins t ruc t ion, or by the physical end of the track. If
sequential object code segments are longer than one track, they
are continued on the next track. If they terminate by a call or
j u m p then each track header contains a tag indicat ing where the
cal l or j u m p target is located. Th is tag replaces what would nor
mal ly be j u m p and cal l opcodes in the instruct ion stream. Since
2-way condi t ional ca l l / j ump structures are supported, two pos
sible targets exist. One w i l l always be located on the next track
and the other w i l l po in t to what is termed the remote t rack.

Three track buffers are connected to the inst ruct ion output
bus, they are the current , remote, and next track buffers. In
struct ions are delivered from the current track buffer. Concur

rent w i t h the delivery of the f irst inst ruct ion, the current track
buffer tag is examined to determine the address of the appropri
ate remote track. The next and remote track buffers are then
loaded. Since the machine is a completely asynchronous system,
there is no way to determine the exact synchronization of these
activi t ies. However, in normal operation (no t rap or in terrupt
occurs), two instruct ions are delivered f rom the current track
buffer whi le the remote and next track buffers are loaded. This
corresponds to fu l l prefetch of bo th possible branch targets. I f
the branch does not occur in the first two instruct ion times of
the current track then no delay w i l l occur on either a call or a
jump.

When a condit ional branch is taken, due to the two stage
pipeline of the processor, the condit ion line w i l l not be valid
unt i l two stage times after the branch instruct ion. The strategy
used is similar to the delayed branch technique used in the M IPS
machine [Prsybylski tt a/., 1984], i.e. to insert non-condit ion
modi fy ing instruct ions in the code stream in order to prevent
dead-time in the evaluation pipeline. Since most of the FRISC
instruct ions do not modify the condit ion f lags, this is typical ly
fair ly easy.

The communicat ion between the FRISC and ISM units is self-
t imed, and control led by a 4 cycle request/acknowledge protocol .
Typical ly the ISM is ready w i th the next instruct ion long before
the FRISC has completed evaluation of the previous one. The
I S M also fields interrupts and traps and provides the proper in
struct ion streams in these cases. In the case of a t rap or in ter rupt ,
a 2 stage delay occurs since this is the only case when the ISM
cannot predict where the desired instruct ion w i l l be in advance
and prefetching is therefore not possible.

In cases where a context switch between user processes is nec
essary the I S M can predict this case and prefetch the desired
code as well as preset the appropriate status bits in the FRISC
to create the context switch. It is noteworthy that not only does
the I S M execute certain control instruct ions such as branch and
cal l , but it also makes up instruct ions that are not in the code
stream in order to ini t ial ise the processor status word when con
text switching is performed. For testabi l i ty, it is possible for the
FRISC to read or wr i te any packet in the I S M .

Whi le implementat ion details have been suppressed here for
brevity, it is interesting to note that the ISM is a significant
performance enhancement over t rad i t ional instruct ion delivery
mechanisms. It also uses instruct ion bus bandwidth more effi-
ciently, and is a design that would not be economical if bu i l t
f rom commercial ly available components. The ISM is being fab
ricated as a 64 pin custom CMOS component, where each part
contains storage for 2K instruct ion packets. These parts can be
cascaded w i t h no performance penalty into a group of up to 32
I S M chips to fo rm the instruct ion storage and delivery subsys
tem for a part icular Hectogon. The max imum amount of code
storage per Hectogon is therefore 64K short instruct ions.

D . T h e F R I S C a n d S R A M

The FRISC (for Fanatically Reduced Instruct ion Set Com
puter) is a specialised processor which supports the operations
of O I L and coordinates the other Hectogon subsystems. It is also
designed to be an efficient mul t i task ing evaluation engine. Inter
nal ly the FRISC contains a 20 b i t wide data-path (4 tag b i ts ,
and 16 data b i ts) , and is essentially a stack machine. Paral lel
tag hardware permits tag based traps to be used in order to op
t imise main l ine instruct ion streams for the common case. Th is
is similar to the mechanism used in other high speed symbolic
uniprocessor architectures such as the Symbolics 3600 [Symbol
ics, 1984]. Th is approach makes complex microprogramming sup
por t for the most general case unnecessary, and removes a level

A. Davis and S. Robison 37

of control indirect ion which improves the overall performance of
the FRISC element [Patterson and Sequin, 1981].

The instruct ion set is tailored to support O IL user programs.
Al together, the FRISC supports 64 basic instructions, corre
sponding to O I L functions such as U N I F Y , C A R , etc. Inte
ger ar i thmetic is supported by the A L U , but mult ip l icat ion and
division are performed iteratively using M U L T I P L Y - S T E P and
D I V I D E - S T E P instructions. It is also interesting to examine the
functions that are not in the FRISC instruct ion set. Jump and
Cal l opcodes are absent since they are handled directly by the
ISM. Also missing are complex str ing search instructions since
they are supported directly by the C x A M .

The FRISC is actually composed of two processors, the eval
uation or E processor and the switching or S processor. The S
processor is responsible for manipulat ing the run-l ist and load
ing/unloading shadow registers to permit rapid context switch
ing. This considerably increases the physical complexity of the
FRISC element but provides high performance direct hardware
support for mul t i tasking. The goal is to keep as much of the
F A I M - l ' s physical resources active as the process structure war
rants. For example if a task init iates a C x A M search it w i l l block
and another task can be executed in overlap fashion pending ar
r ival of the answers f rom the C x A M . The S processor is actually
a small finite state machine w i th a couple of index registers which
permi t it to drive the data paths in the E processor and access
the S R A M .

In the E processor, al l of the pr imary registers in the data-path
exist in t r ip l icate, one register for each of the three contexts that
the hardware supports: USERO, USER1, and K E R N E L . The
status word indicates which set of shadow registers are active
for the current process. The pr imary registers are the Index
Register, Frame Pointer, Stack Pointer, Stack Top, Stack Next,
and the Stack Buffer. The stack buffer acts as a stack cache,
and is actually 16 words deep. The stack buffer has its own
memory controller which attempts to keep the buffer half fu l l .
This implies that a sequence of pops or pushes w i l l not typical ly
need immediate access to the SRAM memory bus. Non-shadowed
registers include the Q register used dur ing mul t ip ly and divide
step loops, and the memory data and address registers. The
A L U takes sources f rom two internal busses, one of which can
be shifted prior to the A L U . Results f rom the A L U pass through
a barrel shifter and are posted on a result bus which is used to
deliver the result to the selected target. This shift arrangement
facil itates the ar i thmetic and bi t f ield manipulat ion instructions
of the FRISC instruct ion set.

The FRISC views most data structures as objects; a conven
t ional paged memory w i th a small finite-state machine attached
to each page (collectively called the SRAM) provides an object-
oriented memory system for the FRISC. The S R A M (Structure
R A M) stores al l procedural data structures, as well as logical
variable bindings and the bodies of logical rules in list form. The
SRAM's atomic addressable entity is a word, which is composed
of two port ions: a 4-bit tag and a 16-bit data field. Mul t ip le-
word objects (e.g. simple vectors, bignums, or continuations)
are represented as a structure containing one or more header
words followed by indexable data fields. The tag bits support
the common dynamic data types allowed in many AI languages.
Using the data tag b i ts , the S R A M can (concurrently w i th other
FRISC computat ion) follow a pointer chain to retrieve an object
requested by the FRISC.

The close connectivi ty between the FRISC and its small S R A M
removes the usual performance gap between registers and pr i
mary memory. In our case, registers have at most a 2:1 speed
advantage over memory, so the complexity of a general register
architecture is not easily just i f ied. Stack architectures are a more
natura l fit as a compiler target, providing improved instruct ion

code density, reduced data path complexity, and faster context
switches. The result ing simple data path and simple instruct ion
set is a candidate for straightforward control implementat ion.

E . C o n t e x t A d d r e s s a b l e M e m o r y

The Context Addressable Memory (CxAM) is a highly paral
lel associative storage subsystem capable of searching for and re
tr ieving structured data. Pattern matching and associative stor
age accesses are common operations in many AI applications.
The C x A M provides direct hardware support for this impor tant
act ivi ty. Rule headers for logical O I L behaviors, and procedural
data structures which are associatively accessed are stored in the
C x A M .

In previous systems, a variety of hashing schemes have been
used in lieu of C A M components. This choice makes sense in
t radi t ional architectures where the "smart processor w i th big,
dumb memory" par t i t ion is cast in concrete. The typical C A M
does not provide sufficient associative support for AI match func
tions, since they match either tag bits or single word contents. In
FA1M-1, the C x A M can match structures as well as slot contents.

The structure of both entries and queries in the C x A M is a
LISP S-expression. Each slot therefore can either be a structure
or an atom. Atoms can be symbols, numbers, variables, or don't
cares. Semantically, variables are treated as don't cares by the
C x A M . The inclusion of variables as atom types for the C x A M is
based on F A I M - l ' s support of logic programming. The retrieval
and sett ing of logical variable bindings is supported elsewhere in
the Hectogon.

The C x A M responds to four commands: Find Match, Give
Match, Delete Structure, and Add Structure. The Find and Give
functions are optimized for speed, while the Delete and A d d func
tions are implemented w i th more concern for min imiz ing circui t
area than performance. The frequency of Find and Give is much
higher dur ing program execution than that for Delete and A d d .
The C x A M also manages its own free space and removes garbage
automatical ly, thereby freeing the FRISC element to process user
instructions rather than manage storage.

Physically the C x A M consists of a storage area and a number
of parallel search engines which share a mul t ipor ted query buffer
which contains the pattern to be matched. Each search engine
concurrently searches a subset of the storage area. A complete
and very detailed exposition of this device, implemented as a
custom CMOS component, can be found in [Brunvand, 1984].

F . S t r e a m e d P i p e l i n e U n i f i e r

The Streamed Pipelined UNifier (SPUN) provides direct hard
ware support for unif icat ion of logical O IL behaviors. The C x A M
can be used to find the next rule or set of rules to be t r ied , but
the C x A M does not perform fu l l unif ication since i ts match func
t ion does not consider variable bindings. The SPUN uni t takes
the query and the streamed set of matched structures f rom the
C x A M , detects which variable bindings st i l l need to be matched,
fetches bindings in the current context f rom the S R A M , and com
pletes the unif icat ion. This may entail b inding a variable, in
which case the SPUN uni t must post this binding back in the
S R A M . I t may also entail s tar t ing another subgoal uni f icat ion,
in which case the present state must be stacked, and a new query
must be presented to the C x A M .

I V Conclusions

In this paper, we have presented an architectural overview
for the design of a highly parallel symbolic processor known as

38 A. Davis and S. Robison

F A I M - 1 . In general there have been two approaches taken in
the design of simi lar systems. The first is to bui ld concurrent
processing ensembles out of conventional processor and memory
components as has been done for the Cosmic Cube [Seits, 1984],
Bu t te r f l y [Gurw i ts , 1984], and D A D O (Stolfo, 1983] systems. In
general we feel that to t ru ly achieve a new generation of viable
symbolic processors which are a major performance improvement
over existing systems, it w i l l be necessary to significantly reallo
cate the transistor budget to support tasks which are specific to
the domain of symbolic processing. Th is is not possible by merely
assembling old components in new ways. The other approach is
to experiment w i t h radical new models of computat ion which
are inherently highly paral lel as is the case w i t h the Connec
t ion [Hi l l is, 1981] and Bol tsmann[Hinton et al., 1984] machines.
The problem w i t h this approach is that the ways in which we
solve problems must change radically as wel l , and the incorpora
t ion of 30 years of expertise in programming is al l but impossible
in the short te rm. We feel that bo th approaches are viable: the
f irst in the short term and the second in the long te rm. The
F A I M - 1 design at tempts to fi l l the gap by provid ing a rather dif
ferent but specialised architecture for performance, whi le requir
ing only a smal l change in programming practice to incorporate
concurrency.

V Acknowledgments

The F A I M - 1 system is the result of a wide variety of ideas f rom
a number of project members, and does not represent the sole ef
fo r t of the authors. Key contr ibut ions have also been made by:
Judy Anderson, A l lan Schiffman, Shimon Cohen, Ken Stevens,
Ian Robinson, Mike Deering, Mar ty Tenenbaum, Dick Lyon, Er ik
Brunvand, B i l l Coates, B i l l Athas, Dan Carnese, Barak Pearl-
mut ter , Bob Hon , John Conery, A l v i n DeSpain, and Gary L ind-
st rom.

References

[Bell and Newell , 1971] C. G. Bell and A. Newell. Computer
Structures: Readings and Examples. McGraw-H i l l , 1971.

[Brunvand, 1984] £. Brunvand. Context Addressable Memory
for Symbolic Processing Systems. Masters Thesis, Univer
sity of U tah , Dept. of Computer Science, August 1984.

[Clocksin and Mel l ish, 1981] W. F. Clocksin and C. S. Mel l ish.
Programming in Prolog. Springer- Verlag, 1981.

[Conery and K ib ler , 1981] J. S. Conery, D. F. Kib ler . Parallel
Interpretation of Logic Programs. Functional Programming
Languages and Computer Architecture, October 1981, 163-
171.

[DeGroot, 1984] D. DeGroot . Restricted AND-Parallelism. Pro-
ceedings of the International Conference on Fifth Generation
Computer Systems 1984, Ins t i tu te for New Generation Com
puter Technology, 1984, pp. 471-478.

[Gurwi ts , 1984] R. Gurw i t z . The Butterfly Multiprocessor. Talk
presented at the 1984 A C M Nat ional Convent ion, San Fran
cisco, October, 1984.

[Hi l l is, 1981] D. Hi l l is . "The Connection Machine9 (Computer
Architecture for the New Wave). AI Memo 646, M. I .T . Ar
t i f ic ia l Intell igence Laboratory, 1981.

[Hinton et a l . , 1984] G. H in ton , T J. Sejnowski and D. H. Ackley.
Boltxmann Machines: Constraint Satisfaction Networks that
Learn. CMU-CS-84-119, Carnegie Mel lon University, May
84.

[INMOS, 1984] I N M O S L im i ted . IMS T424 Transputer Refer
ence Manual. I N M O S L im i t ed , 1984.

[K i rkpat r ick et a/., 1984] S. K i rkpat r i ck , C. D. Gelat t , and M. P.
Vecchi. Optimization by Simulated Annealing. Science 220,
1984, pp. 671-680.

[Gordon et al., 1985] D. Gordon, I. Koren and G. M. Si lberman.
Fault-Tolerance in VLSI Hexagonal Arrays. Prepr int .

[Mar t i n , 1981] A. J. M a r t i n . The Torus: An Exercise in Con
structing a Surface. Proceedings of the Second Caltech Con
ference on VLSI, 1981, pp. 527-536.

[Patterson and Sequin, 19881] D. A. Patterson, C. H. Seguin.
RISC 1: A Reduced Instruction Set Computer. Proceedings
of the Eighth International Symposium on Computer Architec
ture, 1981, pp. 443-458.

[Prsybylski et a/., 1984] S. A. Pryzybylsk i , T. R. Gross, J. L.
Hennessy, N. P. Jouppi , C. Rowen. Organization and VLSI
Implementation of MIPS. Journal of VLSI and Computer Sys
tems, Vol. 1, Number 2, 1984, pp. 170-208.

[Rees et al., 1984] J. A. Rees, N. I. Adams, J. R. Meehan The T
Manual. Yale University, Fourth Ed i t ion , 1984.

[Seits, 1984] C. L. Seitx. The Cosmic Cube. To appear C A C M .
[Seitz, 1979] C. L. Seitz. System Timing. In Introduction to VLSI

Systems, Chapter 7, McGraw-H i l l , 1979.
[Shapiro, 1983] E. Shapiro. A Subset of Concurrent Prolog and

its Interpreter. TR-003, Inst i tu te for New Generation Com
puter Technology, , 1983.

[Smith, 1982] A. J. Smi th . Cache Memories. Computing Surveys
14, 3, 1982, pp. 473-530.

[Stolfo, 1983] S. J. Stolfo, et al. Architecture and Applications of
DADO, A Large-Scale Parallel Computer for Artificial In
telligence. Proceedings of the Eighth International Joint Con
ference on Artificial Intelligence, Kar lsruhe, West Germany,
August , 1983, pp. 850-854.

[Stopper, 1985] H. Stopper. A Wafer with Electrically Pro
grammable Interconnections. Proceedings of the 1985 I E E E
Internat ional Solid-State Circui ts Conference, 1985, pp.
268-269.

[Symbolics, 1984] Symbolics, Inc. it Symbolics 3600 Technical
Summary. Symbolics, 1984.

