
Recognition Algorithms for the Connection Machine 

Anita M. Flynn and John G. Harris 

MIT Artificial Intelligence Laboratory 

ABSTRACT 

This paper describes an object recognition algorithm both on 
a sequential machine and on a SIMD parallel processor such as the 
MIT Connection Machine. The parallel version is shown to run 
three to four orders of magnitude faster than the sequential version. 

I. INTRODUCTION 

Many problems in early vision appear to be inherently local 
and exploitable on parallel computer architectures. Can algorithms 
for higher perceptual functions also be mapped onto the coming 
wave of massively parallel machines? This paper examines the 
process of recognising an unknown object and matching it to a data 
base model given only sparse sensory data points. The algorithm 
presently used on a sequential machine is first explained, and then 
various algorithms for parallel computation are explored. 
Tradeoffs in space-time efficiency are discussed in terms of 
implementation on a Connection Machine [5]. 

I I . SEQUENTIAL A L G O R I T H M 

The problem considered here is that of recognizing an object 
and determining its position and orientation [2, 3]. Sensory data 
can be acquired from a variety of modalities, such as tactile sensors, 
or laser or sonar rangefinders, but the algorithm is independent of 
the specific type of sensor used. It assumes that only a few data 
points are available, and uses local constraints intrinsic to the shape 
of the object to prune the search space of possible interpretations. 

As an example, suppose we had a rectangularly shaped figure 
with opposing sides of length three and four, Figure 1. The object 
is lying on a table, and we also have a description of it in a data 
base. Imagine a three fingered robot hand equipped with tactile 
sensors touching the object at the points marked P1, P2 and P3. 
From this data only, we would like to determine whether or not 
these three points could possibly be resting on the faces of our test 
object, and if so, where the object lies with respect to the robot 
hand. 

Support for the laboratory's Artificial Intelligence rcscaich is provided in part 
by the Advanced Research Projects Agency of the Department of Defense under 
Office of Naval Research contract N00014-80-C-0505. the Office of Naval 
Research under contract number N00014-77-C-0389, and the System 
Development Foundation. 

Figure 1:A four sided object with three data points. 

A tree of possible matchings of points to faces is shown in 
Figure 2. The first level of the tree represents the fact that P1 could 
lie on one of the four faces of the object. Similarly, the second level 
shows that P2 could lie on any one of four faces given P1's 
assignment For three data points, there are 64 possible matchings 
of data points to object faces. Each possibility must be checked to 
see if the object can be rotated in some way, so that the points 
actually do fall on the faces of the object 

For an object with n faces and k data points, there are nk 

possible rotations to check. That involves quite a lot of 
computation for a multi-faceted object The basic idea of the 

Figure 2:The Interpretation Tree 



58 A. Flynn and J. Harris 

algorithm described in [2], is to prune the interpretation tree so that 
fewer rotations, or model tests, need be performed. 

One constraint used to narrow the search space is the distance 
constraint between faces of the object. For the example object, we 
know that the minimum distance between face2 and face3 is zero 
and the maximum distance is five. Figure 3 shows the range of 
possible distances between pairs of faces on our lest object The 
first number is the minimum distance and the second number is the 
maximum distance. 

Figure 3:Distance Ranges Between Objects 

As can be seen, any experiment which measures the distance 
between P3 and P2 to to be 6.2, renders inconsistent any branch of 
the tree which assigns Thus, those 
branches of the tree can be pruned and need never be model tested. 

To continue the example, suppose we measure the distances 
between all possible pairs of our three data points and determine 
that the distances are: By 
consulting our table, we find that " cannot both be assigned to 
f2 or both to f4. It also cannot be the case that is consistent 
with an assignment to f2f4 (or vice versa). 

The second measurement is inconsistent with a pairing of 
The third measurement similarly 

cannot assign The number of 
possible interpretations of the data is reduced from 64 to 33, as 
shown in Figure 5. Other constraints can be used to further prune 
the tree before model testing need be done. 

At present, this algorithm, running on a sequential machine, 
is set up to do a depth first search, pruning when it can. For an 
object with about a dozen sides and several data points, the 
program takes on the order of a few seconds. Recently, an 
algorithm has been proposed by Grimson and Lozano-Perez which 
allows the search space to be explored in parallel on a Connection 
Machine [4]. After outlining that algorithm, we describe a new one 
that captures more parallelism in the problem and therefore runs 
faster. 

Figure 4:Possible interpretations pruned. 

I I I . PARALLEL BIT ARRAY A L G O R I T H M 

The MIT Connection Machine is a massively parallel 
machine, containing 256,000 processors connected together both in 
two-dimensional nearest-neighbor fashion and also through a 
global routing mechanism whereby any processor can talk to any 
other processor arbitrarily. Each processor contains 4K bits of 
memory. 

The algorithm proposed in [4] exploits the router feature of 
the Connection Machine because there is no inherent locality to the 
recognition problem. The interpretation tree is a data abstraction, 
in contrast to the pixel-based locality characteristic of early vision 
problems. 

This algorithm generates and prunes new levels of the tree in 
parallel by having Connection Machine processors hold bit arrays 
which represent consistent pairings of points to faces. Figure 
6 shows three processors holding the consistency arrays for our 
previous example. The zeros represent pairings of data points with 
the data base model that were inconsistent Imagine ones in all the 
empty boxes. 

Generation and pruning of new branches in the tree is done 
in parallel when adding the constraint imposed by a new data 
point. The algorithm for updating, say P1P2 with respect to P3, is to 
do a data base merge on the P1P3 and P2P3 consistency arrays and 
then AND the resulting array back into the P1P2 array. A data base 
merge is similar to a matrix multiply except that one array is 
transposed and the logical operations of AND and OR are used 
instead of multiplications and additions. What all this 
accomplishes, is a propagation of constraints and a generation of a 
new level of the tree. For an n-sided object and k data points, there 



A. Flynn and J. Harris 59 

Figure 5:Consistency Arrays 

will be k -k nxn arrays of possible pairing of points to faces. Each 
one of these arrays (in this case, six) is updated in parallel but each 
of these processors is multiplying two nxn matrices which is an 
order n3 operation. 

Unfortunately, the norm in most recognition problems that 
use a robot hand and tactile sensors is for n (the number of faces of 
the object) to be quite large, while k (the number of data points) is 
usually small. For an object with n = 100, and assuming a 
conservative 1 second clock, it has been determined that this 
algorithm would take roughly two seconds. Our parallel algorithm 
here isn't buying us much. It would be much better to be doing n 
operations in parallel, with each processor taking k -k steps (six, in 
our example here). 

IV. STATIC ALGORITHM 

If we use nk hardware we can do the computation in nearly 
constant time. We allocate a separate processor to represent each 
element in a three-dimensional consistency array of possible 
pairings of to appropriate faces of the object This 
representation, shown in Figure 4, which can be extended to 
arbitrary dimensions for more data points, does away with the need 
for database merges or constraint propagation. 

Figure 6:Slices of a Three Dimensional Consistency Array 

Each processor contains in its own state variables the 
appropriate part of the distance constraint table for the faces it 
represents. The processor marked A, because of its location in the 
array, is to mark the truth or falsehood of whether or not the 
p a i r i n g t o is consistent. Before run time, it must have 
in its state variables the appropriate distance constraints between 
these faces. At run time, as each distance measurement is broadcast 

to all the CM processors, each processor checks if that 
measurement falls within the allowed range. 

All the processors' flag bits have previously been initialized to 
one. If any broadcast measurement does not fall in the specified 
range, the flag is ANDed with zero. After all data is broadcast any 
processors still marked one are valid interpretations. The time to 
do this is order k2 since there are [k2-k]/2 distance measurements to 
broadcast. Assuming 16 bit precision, it would take 16 cycles for a 
processor to read in a broadcast measurement Comparison with 
the upper and lower ranges would lake 2x16 cycles, plus 2 cycles to 
AND the results with the flag. These 50 cycles are repeated 

limes. The number of processors needed is nk and 
memory per processor is registers plus 1 bit for flags. For 3 
data points and a 1 /xsecond cycle time, this process could be 
completed in 150 /iseconds, using n3 processors, where each 
processor needs six registers and one bit of memory. This is 
roughly four orders of magnitude faster than the sequential 
algorithm on a Lisp Machine. 

For some objects, with n large, there may not be enough 
processors available. State variables for several processors can then 
be grouped into one. where that processor sequentially checks its 
constraints. If G processors are grouped into one processor, then 
the time to run the algorithm becomes order Gk2, the number of 
processors needed will be n k /G, and the memory per processor 
becomes Gk(k-l) 16-bit registers plus G bits for flags. 

In general, we'd like to have many objects in the data base. If 
there are enough idle processors, we can put all the objects in the 
CM array and again do the search in order [k(k-l)]/2 time. If there 
aren't enough processors, different objects can be worked on 
sequentially, or G processors can be grouped into one so that all 
objects fit into the CM array. Either way, it takes the same amount 
of time and space per processor. For 250 objects, each with 10 
sides, and 3 data measurements, we would need 250,000 processors. 
The recognition algorithm would still run in 150 jiseconds and each 
processor would again need six registers and one flag bit However, 
we still aren't fully utilizing our machine. Only 100 bits out of the 
4K available is in use in each processor. If we put the data for 40 
more objects in each processor, wc will have 40 times as many 
objects in the data base. The search will then be 40 times as long. 
This means that we can recognize an object from a data base of 
10,000 objects, each with 10 sides in 6ms. 

All of this assumes that the constraint table has been loaded 
into the processor array at compile time. In actuality, the' time to 
load the table is much longer than the time to recognize the object 
Even so, for 250 ten-sided objects, one-time loading takes only half 
of a second. 

A better way of getting the constraint information into the 
processors is not to compute the table offline and then load it in, 
but to have each processor compute the appropriate information. 
This way the table (which has to be computed anyway) is now 
computed in parallel. In addition, the loadup cost is significantly 
reduced. We simply have to broadcast the coordinates of the 
vertices of the faces of the object Broadcasting the vertices takes 



60 A. Flynn and J. Harris 

order n time, whereas our earlier scheme of broadcasting an 
already computed distance constraint table, would take order n2 

time because we'd have to broadcast to each processor in the array. 

After having received the broadcast vertices, each processor 
will calculate the distances between the faces appropriate for that 
processor and the corresponding maximum and minimum. If there 
are enough processors available, this computation of the distance 
constraint table is done in a time independent of n. The time is a 
small constant, the number of cycles it lakes to calculate the 
maximum and minimum of the four possible distances between 
any two sides. 

We've taken an algorithm that would be unthinkable on a 
sequential machine and brute force implemented it on a SIMD 
array. Instead of generating and pruning the interpretation tree 
level by level, we have simply assigned processors to all the leaves 
of the expanded tree and actually completed one pruning step in 
constant time. The Connection Machine is used here as if it were a 
content addressable processor, and no use is made of the router. 

We call this method the static algorithm, because all possible 
processors in the Connection Machine have been allocated before 
we start the search. This means that the machine must be big 
enough for the problem. Specifically, the number of processors 
needed, [nk]/G, must be less than 256,000, and the amount of 
memory per processor required, 16Gk(k-l) + G, must be less than 
4K bits. When using tactile sensors, the number of data points, k, 
is small and this static algorithm is adequate. 

V. DYNAMIC ALGORITHM 

However, when using laser rangefinders, more data points are 
generated, and k often becomes as large as 100. Furthermore, 
when the objects are more complicated, they may have as many as 
50 faces. The problem quickly gets too big even for our 256,000 
processor machine. The solution is to use a dynamic algorithm 
which generates enough levels of the tree to fill the machine, does a 
pruning step, generates new levels of the tree to again fill the 
machine, and repeats. These ideas are the subject of future 
research. 

This dynamic algorithm requires that the machine be able to 
find unused processors to represent the new branches of the tree. 
The machine must also be able to deallocate processors that no 
longer represent consistent pairings. The deallocated processors 
are then able to be reused for future pruning steps. The 
Connection Machine, with its global communication ability is able 
to support these mechanisms [6,1]. A strictly content addressable 
processor could not support this dynamic pruning algorithm. 

VI SUMMARY 

A well-established sequential algorithm for object recognition 
was explained and fast Connection Machine algorithms were 
devised. First, a static parallel algorithm was discussed, in which 
the entire tree of possible interpretations is loaded into the 
Connection Machine before run time. The search is then done in 
one step and therefore in constant time. 

For problems which are too large to fit in the array, a 
dynamic algorithm was devised. In this algorithm, the Connection 
Machine is loaded with as many levels of the tree as can f i t Then a 
pruning is done in parallel as in the static algorithm. However, 
processors that still represent consistent pairings must find unused 
processors which are assigned the new branches of the tree. This is 
similar to the way the sequential algorithm, first described, prunes 
the search space. Processors that are pruned are deallocated and 
reused on the next iteration. The router mechanism of the 
Connection Machine, which is not used in the static algorithm, is 
necessary here to support dynamically allocating and deallocating 
processors. 

ACKNOWLEDGMENTS 

This work was aided by contributions from Tom Knight, Eric 
Grimson and Phil Agre. 

References 

[1] 
Christman D. P. 
Programming the Connection Machine. 
Master's thesis, MIT, January, 1984. 

[2] 
Gaston, P.C.. Lozano-Perez, T. 
Tactile Recognition and Localization Using Object Models: 

The Case of Polyhedra on a Plane. 
Technical Report A.I. Memo 705, MIT, March, 1983. 

[3] 
Grimson, W.E.L, Lozano-Perez, T. 
Model-Based Recognition and Localization From Sparse 

Range or Tactile Data. 
Technical Report A.I. Memo 738, MIT, August, 1983. 

[4] 
Grimson, W.EL., and Lozano-Perez, T. 
Parallel Algorithms for Computer Vision. 
In Winston, P. H.. editor, A Research Proposal to DARPA, 

chapter Parallel Recognition Algorithms. MIT, 1984. 

[5] 
W. Daniel Hillis. 
The Connection Machine. 
Technical Report A.I. Memo 646, Massachusetts Institute of 

Technology, September, 1981. 

[6] 
Kramer, G. A. 
Brute Force and Complexity Management: Two 

Approaches to Digital Test Generation. 
Master's thesis. MIT, May, 1984. 


