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Abstracts Axiom sets and their extensions are viewed as functions 
from the set of formulas in the language, to a set of four 
truth-values t,f, s for undefined, and k for contradiction. Such 
functions form a lattice with 'contains less information' as the partial 
order and 'combination of several sources of knowledge' as the 
l.u.b. operation We demonstrate the relevance of this approach by 
giving concise proofs for some previously known results about normal 
default rules. For non-monotonic rules in general (not only normal 
default rules) we define a stronger version of the minimality 
requirement on consistent fixpoints, and prove that it is sufficient for 
the existence of a derivation of the fixpoint. 

1 . I n t r o d u c t i o n a n d overv iew. 

Non-monotonic logic may be studied either in terms of 
non-monotonic inference rules (Reiter 1980, Goodwin 1984) or in 
terms of non-monotonic operators in the language such as the Unless 
operator (Sandewall 1972, McDermott and Doyle 1980). In this paper 
we pursue the former approach. 

The concept of fixpoints b central to the study of non-monotonic 
logic: for a given set v of propositions and a given set of rules, we are 
looking for an extension Le. a set s' of propositions which contains v 
as a subset, and which is a fixpoint of the set of rules. Fixpoints are 
also used in the denotational semantics approach to the theory of 
programming languages (Scott 1970; see also e.g. Manna 1974, Stoy 
1977, Blikle 1981). There, the recursive definition of a function is 
viewed as a functional, i.e. an operator on partial functions, and the 
function b viewed as the fixpoint of the same functional 

In t hb paper we propose that the functional approach that is taken 
in denotational semantics, can be adapted and serve conveniently for 
the study of non-monotonic logic. This b attractive since logical 
inference b often viewed as a high-level form of computation, and 
since computational inference often needs to be non-monotonic. The 
power of t hb approach b demonstrated through simple proofs of 
some of Reiter's (1980) results for normal default theories. Other 
results in the paper apply to non-monotonic rules in general. 

Although several fixpoints may exbt in the monotonie case, the 
criterium of being • minimal fixpoint (i.e. all other fixpoints are 
'larger1) is a sufficient one, and there b only one minimal fixpoint, 
which b then the lea$t fixpoint. Other, larger fixpoints contain 
spurious information which b not warranted by the given facts and 
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inference rules. In the case of non-monotonic rules, there is of course 
in general no single least fixpoint, and the criterium of fixpoints being 
minimal is not sufficient: there may be minimal fixpoints which have 
the given set of propositions as a subset, but which still can not be 
reached or approached (in the sense of a l imit) by any derivation 
using the given set of rules. In this paper we define a concept of 
approachable fixpoint, which is stronger than the concept of minimal 
fixpoint, and which is proven to be a sufficient condition for the 
existence of a derivation that reaches or approaches the fixpoint. 

The following formal machinery is used. We start from two domains, 
a domain L whose elements are called formulae and a domain J of 
truth-values. V is the domain of valuations i.e. continuous functions 
from L to J. 

A set of axioms is seen as a valuation that maps some formulas (the 
axioms) to t (for true) and "a l l " other formulas to u (for undefined). 
(Exception is made for the top element of the domain L) . Derivation 
of theorems is done by proceeding from the init ial valuation to others 
where some formulas change value from a to t or / (for false). A set of 
inference rules corresponds therefore to a binary relation on 
valuations, i.e. a subset of V x V, which we shall call a deduction. 
A derivation using a deduction F is a sequence of valuations, 

where* 

Deductions in this sense can be used for characterizing both proofs 
and semantics, provided that there are syntactic functions and 
predicates on L which characterise the abstract syntax of the 
language. This includes predicates which indicate whether a formula 
is a conjunction, a disjunction, an implication, atomic, etc., as well as 
functions e.g. for composing the conjunction of two other formulas. 
The conventions for calculating the t ru th-va lue of a propositional 
expression may then be seen as a dednction F where e.g. in 
the case where: 

for all other formulas & 
Here a A b refers of course to the formula obtained by composing the 
formula a, the conjunction operator, and the formula 6. 

The concepts and results of conventional logic can easily be 
re-phrased along these lines. In the case of non-monotonic logic, 
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there is however a particular advantage with doing so: a 
non-monotonic rule 

can now be seen as a deduction F which a l l o w s e . g . in the 
case where 

otherwise. 

In other words, one derivation step using F will change the 
truth-values of the two formulas b and e at the same time. This is 
different from the viewpoint in ordinary logic, where the intuition is 
that each formula or proposition has 'its' t ruth-value, so that rules 
of inference may contribute additional information about 'the' truth 
of a proposition. In non-monotonic logic, we must be prepared to 
recognise multiple extensions of the given axioms, or multiple 
fixpoints of what is here called a deduction. It therefore makes sense 
to correlate assignments of truth-values in the way just described. 

Suppose now, in the above example, that b has already been assigned 
the value t (maybe by an ordinary rule that does not use Unless), 
and therefore we have v(b) - t. In order to deal with such cases it is 
convenient to consider two deductions F and G as follows. For G 
there is no v'such that , This expresses the intended meaning 
of Unless. For F we take the view that information has now 
accumulated both that b is t and that it is f. A new truth-value k is 
introduced for this purpose, and there is a v'such that v'(b) = k and 

We therefore obtain a four-valued logic, with the truth-values t, f, 
u, k. This logic has previously been studied by Belnap (1977). One 
can think of these truth-values as the ones assigned by committees 
(cf. Borgida et al, 1984): if some members of the committee assign 
the value t to a proposition and the others assign the value «, then 
the committee assigns t, but if some members assign t and others 
assign /, then the committee assigns the value k to the the 
proposition. 'Committees' are a convenient metaphor whenever there 
are several parallel sources of knowledge, such as when several 
inference rules are being used. 

The deductions G and F are in general related so that and 
the difference occurs in cases like the one just discussed, where G 
'refuses' to use a rule if it means that the non-monotonic antecedent 
(the formula given as argument to Unless) then obtains the 
t ruth-value k 

This has been an outline of the key ideas of the paper. We now 
proceed to the systematic treatment. 

2 . Mono ton le l t y and f i xpo in t s fo r re lat ions. 

The domain J contains the elements {u,t,f,k} as already discussed, 
with the partial order described by the following figure: 

Thus it is a flat lattice with ■ as the bottom element and k as the top 
element. 

Notice that we say a derivation — to v' — even in the case of an 
infinite sequence where v' is never reached, just approached as a 
limit. 

A deduction F is monotonic iff 

It is linear iff 

Clearly every linear deduction is also monotonic. 

A valuation v' is a fixpoint of a deduction F iff 
Thus in particular v' is a fixpoint if F does not allow any 'successor' 
v" For a given valuation v and deduction F, we shall be interested in 
fixpoints of F above v, i.e. fixpoints of F which are v. 
A fixpoint of F above v is minimal iff no 'smaller' (by fixpoint 
exists for the same F and v. 

What has been described so far uses some of the tools of denotational 
semantics, but in a diffferent fashion than usual. The differences are 
dictated by our desire to deal with logic using these tools. The reason 
for that, again being the wish to consider non-monotonic deduction. 
Anyway, the obvious properties of the monotonic case follow easily, 
in particular 

Proportion 1. a) A conservative, monotonic deduction has a unique 

least fixpoint above each f. 

b) The Lu.b. of any derivation from v is the least fixpoint. 

The flat domain L is called a language and its elements are called 
formulas, with lb as the bottom element and It as the top element. 
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Proof, a) Consider a set {vi} of fixpoints of F above v. We wish to Proof. Let the derivations of v'and v" be: 
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linearity the sequence is a derivation using F, and its lu.b. is clearly 

We can now proceed to introducing the counterparts in our system of 
inference rules. 

A kernel is a pair where v and v' are finite valuations, and t 

Kernels may be used for expressing how the truth-value of a 
composite expressions follows from the truth-value of its 
component(s), or vice versa. One such example was given in the 
introductory section. For another example, the rule that if a is true 
then is false, is expressed by the kernel where 

The direct realization of a kernel < v , v > is the deduction formed as 

In other words, the direct realisation of a kernel is the set of 
all possible pairs such that and Each 
such pair characterizes a derivation that is allowed by the kernel, i.e. 
if the preconditions v are satisfied in y then the conclusions v' may be 
accumulated to y giving y'. 

The direct realization of a set of kernels is defined to be the union 
(using U) of the direct realizations of the individual kernels. This has 
the effect that from each valuation v there are several successors, 
corresponding to the choices of which derivation step to take. From 
this definition it follows: 

Proportion 6. The direct realization of a set of kernels is 
conservative, linear and compact. 

4 . N M - R u l e s . 

We shall now characterize those deductions which correspond to 
(what we intuitively think of as) a set of non-monotonic inference 
rules. 

Following Goodwin (1984) approximately, an NM-rule is a triple 

The idea is that if each member of M is true, and each member of N 
is false or undefined, then each member of C can be inferred to be 
true. At the same time, the assumption is made that all members of 
N are false. 

Each of At, N, and C may be the empty set. If N is empty we have a 
monotonic rule. If C is empty we have what Reiter (1080) calls a 
normal default rule. 

and all other values are a. 

Thus non-monotonic rules differ from monotonic ones, partly by 
causing several formulas to change their t ruth-value as one inference 
step is performed. A possible objection against this way of dealing 

with non-monotonic antecedents, is that the resulting valuation 
should differentiate explicitly between that information which has 
been obtained as a consequent, and that which was 'merely* assumed 
in order to be able to apply the rule, i.e. the assignment to the 
non-monotonic antecedent(s). We however view that as a 
book-keeping issue, which need not concern the formal treatment of 
the deduction as such. 

The direct realization of an NM- ru le is the direct realization of its 
corresponding kernel 
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5. Cor rec t extensions, App roachab i l i t y . 

Throughout this section, we assume that v is a valuation, and R b a 
set of NM-ru les whose direct realization is F and whose restricted 
realization is G. 

A valuation v' b termed a correct extenrion of v w.r.t. R iff: 
1. v' is a fixpoint of G above v (meaning in particular that 

2. v ' is consistent 
3. there b some derivation from v to v' using G. 

(Remember that the phrase is an extension of means simply 
that The notion of correct extensions expresses stringently 
what are the desirable fixpoints for given v and G. If v' b not a 
fixpoint then some additional derivation steps remain to be 
performed. If v' is inconsbtent it b for either of the following reasons: 
a) v is inconsistent 
b) the set of NM-ru les implies an inconsbtence and 
one of the rules b 
c) some non-monotonic antecedent was assumed to be /ear ly during 
the derivation, and later in the derivation we had an NM- ru le with 
the same proposition as a consequent, which invalidated the 
assumption. 

Finally, if there b no derivation from v to v' then v' is 'unfounded1, 
like a non-minimal fixpoint in the monotonic case. 

The third condition in the definition corresponds to Goodwin's 
requirement of well-founded ness. The above formulation b however 
problematic in that it refers to the exbtence of a derivation. By 
contrast, the minimality requirement on a fixpoint need not refer to 
derivations: it just states that no 'smaller' fixpoint exbts. We would 
similarly like to have a static condition, which guarantees the 
exbtence of a derivation, instead of having to prove its existence 
whenever needed. The remainder of thb section wil l give such a 
result. 

Although the definition of correct extensions uses (7, the deduction F 
provides a partial characterization of them, and wil l be used as a 
tool* 

Proportion 7. Each consistent fixpoint of G above v is a maximally 
consistent extension of # w.r.t. F. 

Proof. Follows easily from the definition of G from F, since 

implies that v 'b inconsbtent. 

The converse does not hold, i.e. there are maximally consistent 
extensions of t w.r.t. F which are not fixpoints of G over v. Thb 
happens in those cases where a t ruth maintenance system has to shift 
IN nodes to OUT status. Consider 

Example t. Suppose we have the following NM-ru les: 

Then is a maximally consbtent extension of w.r.t. F, but 

Not every set of NM-ru les has a correct extension: 

Example 3. Consider the NM- ru les 

and [u,u] does not have any correct extension w.r.t. these NM-rules. 

Some of the propositions in earlier sections can now be extended to 
apply to the realizations of NM-ru les. The basic idea b to first use 
those results for F, and then to transfer the result to G by 
introducing a consistency requirement. 

Proportion 2A. If •' b a correct extension of v w.r.t. R, then for 
every y such that 

there exbts a derivation from p to v' uslug u. 

Proof. According to proposition 2 thb holds for F. However, it 
follows from the definition of G that if F(z,z') and z' b consbtent, 
then G(z,z'). Since v' is consbtent, so must all intermediate steps in 
the derivation from p be, because G b conservative. Therefore we 
have a derivation from y to v' using G. [] 

Corollarp ("minimality of extensions" - Reiter). If v' and v" are 
correct extensions of v w.r.t R, then 

Proportion SA. If there are derivations from r t o f' and from v to v" 
using G, and v' U v" is consbtent, then there b a derivation from v 
to v' u v" using G. 

Proof follows directly from proposition 3. 

Corollarp. If v 'and v" are dbt incl correct extensions of v w.r.t. R, 
then b inconsbtent. 

Thb corollary subsumes Reiter's (1980) "orthogonality of extension" 
theorem. - Proposition 4 of course extends similarly. 

Let us return now to the issue of the third criterium in the definition 
of a correct extension. Thb requirement can not be omitted, since 
that would allow fixpoints for which there is no support. For 
example, the valuation [t,u,u) b a consbtent fixpoint of G in example 
1 above. In the monotonic case, such fixpoints are eliminated by the 
requirement to be minimal, but that requirement b not sufficient 
here since [f,u,u| is indeed a minimal fixpoint in the example (no 
'smaller1 fixpoint exists). However, we can substitute instead of the 
third requirement another one which b similar in spirit to 
minimality, as follows. 

A fixpoint v' of G over v b called approachable from v iff 

For lack of adequate characters in the font, is used for strict i.e. 
excluding equality. Intuitively, thb says that whenever we are on the 
path from v to v', there b some step allowed by G that wil l take us 
closer to v'. 

Thb concept b a strengthening of the concept of least fixpoint, since 
the definition directly implies: 

Proportion 8. If v' b an approachable fixpoint of G over t, then it b 
minimal. 

It b easily seen that the least fixpoint [t,u,u| in example 1 is not 
approachable. Thb approach ability condition can replace the third 
condition in the definition of the correct extension, since: 

Proportion 9. If v' is a consbtent fixpoint of G over v, and v' b 
approachable from v, then it b a correct extension of t w.r.t. R. 

Proof. v' immediately satisfies the first two conditions for being a 
correct extension. It remains to show that there b a derivation from v 
to v'using G. 

Suppose this were not the case, i.e. every chain from t whose 
members are (the existence of at least one such chain b 
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