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Abstracts Axiom sets and their extensions are viewed as functions
from the set of formulas in the language, to a set of four
truth-values t,f, s for undefined, and k for contradiction. Such
functions form a lattice with 'contains less information' as the partial
order &, and 'combination of several sources of knowledge' as the
l.u.b. operation U. We demonstrate the relevance of this approach by
giving concise proofs for some previously known results about normal
default rules. For non-monotonic rules in general (not only normal
default rules) we define a stronger version of the minimality
requirement on consistent fixpoints, and prove that it is sufficient for
the existence of a derivation of the fixpoint.

1. Introduction and overview.

Non-monotonic logic may be studied either in terms of
non-monotonic inference rules (Reiter 1980, Goodwin 1984) or in
terms of non-monotonic operators in the language such as the Unless
operator (Sandewall 1972, McDermott and Doyle 1980). In this paper
we pursue the former approach.

The concept of fixpoints b central to the study of non-monotonic
logic: for a given set v of propositions and a given set of rules, we are
looking for an extension Le. a set s' of propositions which contains v
as a subset, and which is a fixpoint of the set of rules. Fixpoints are
also used in the denotational semantics approach to the theory of
programming languages (Scott 1970; see also e.g. Manna 1974, Stoy
1977, Blikle 1981). There, the recursive definition of a function is
viewed as a functional, i.e. an operator on partial functions, and the
function b viewed as the fixpoint of the same functional

In thb paper we propose that the functional approach that is taken
in denotational semantics, can be adapted and serve conveniently for
the study of non-monotonic logic. This b attractive since logical
inference b often viewed as a high-level form of computation, and
since computational inference often needs to be non-monotonic. The
power of thb approach b demonstrated through simple proofs of
some of Reiter's (1980) results for normal default theories. Other
results in the paper apply to non-monotonic rules in general.

Although several fixpoints may exbt in the monotonie case, the
criterium of being « minimal fixpoint (i.e. all other fixpoints are
'Iarger1) is a sufficient one, and there b only one minimal fixpoint,
which b then the lea$t fixpoint. Other, larger fixpoints contain
spurious information which b not warranted by the given facts and
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inference rules. In the case of non-monotonic rules, there is of course
in general no single least fixpoint, and the criterium of fixpoints being
minimal is not sufficient: there may be minimal fixpoints which have
the given set of propositions as a subset, but which still can not be
reached or approached (in the sense of a limit) by any derivation
using the given set of rules. In this paper we define a concept of
approachable fixpoint, which is stronger than the concept of minimal
fixpoint, and which is proven to be a sufficient condition for the
existence of a derivation that reaches or approaches the fixpoint.

The following formal machinery is used. We start from two domains,
a domain L whose elements are called formulae and a domain J of
truth-values. V is the domain of valuationsi.e. continuous functions
from L to J.

A set of axioms is seen as a valuation that maps some formulas (the
axioms) to t (for true) and "all" other formulas to u (for undefined).
(Exception is made for the top element of the domain L). Derivation
of theorems is done by proceeding from the initial valuation to others
where some formulas change value from a to t or/ (for false). A set of
inference rules corresponds therefore to a binary relation on
valuations, i.e. a subset of V x V, which we shall call a deduction.
A derivation using a deduction Fis a sequence of valuations,

o O

where*

<c‘,u >elF
11
foreach 2> 0,

Deductions in this sense can be used for characterizing both proofs
and semantics, provided that there are syntactic functions and
predicates on L which characterise the abstract syntax of the
language. This includes predicates which indicate whether a formula
is a conjunction, a disjunction, an implication, atomic, etc., as well as
functions e.g. for composing the conjunction of two other formulas.
The conventions for calculating the truth-value of a propositional
expression may then be seen as a dednction F where F{l,l'} eg. in
the case where:

we) =t

i =t

Ty TR

laAb =i

v'fs} = »fz)  for all other formulas &
Here a A b refers of course to the formula obtained by composing the
formula a, the conjunction operator, and the formula 6.

The concepts and results of conventional logic can easily be
re-phrased along these lines. In the case of non-monotonic logic,



there is however a particular advantage with doing so: a
non-monotonic rule

s A Onlennfb) — ¢

can now be seen as a deduction F which a |l o'{'p"} g . in the
case where

va) =1
o) =«
sfe] =u
') =7
o'fc) =4
*'(z) = vz}

In other words, one derivation step using F will change the
truth-values of the two formulas b and e at the same time. This is
different from the viewpoint in ordinary logic, where the intuition is
that each formula or proposition has 'its' truth-value, so that rules
of inference may contribute additional information about 'the' truth
of a proposition. In non-monotonic logic, we must be prepared to
recognise multiple extensions of the given axioms, or multiple
fixpoints of what is here called a deduction. It therefore makes sense
to correlate assignments of truth-values in the way just described.

otherwise.

Suppose now, in the above example, that b has already been assigned
the value t (maybe by an ordinary rule that does not use Unless),
and therefore we have v(b) - t. In order to deal with such cases it is
convenient to consider two deductions F and G as follows. For G
there is no v'such that G{t,t'}., This expresses the intended meaning
of Unless. For F we take the view that information has now
accumulated both that b is t and that it is f. A new truth-value k is
introduced for this purpose, and there is a v'such that v/(b) = k and

Ffur').

We therefore obtain a four-valued logic, with the truth-values t, f,
u, k. This logic has previously been studied by Belnap (1977). One
can think of these truth-values as the ones assigned by committees
(cf. Borgida et al, 1984): if some members of the committee assign
the value t to a proposition and the others assign the value «, then
the committee assigns t, but if some members assign t and others
assign /, then the committee assigns the value k to the the
proposition. 'Committees' are a convenient metaphor whenever there
are several parallel sources of knowledge, such as when several
inference rules are being used.

The deductions G and F are in general related so that G E F. and
the difference occurs in cases like the one just discussed, where G
'refuses' to use a rule if it means that the non-monotonic antecedent
(the formula given as argument to Unless) then obtains the
truth-value k

This has been an outline of the key ideas of the paper. We now
proceed to the systematic treatment.

2. Monotonlelty and fixpoints for relations.

The domain J contains the elements {u,tfk} as already discussed,
with the partial order & described by the following figure:

k
x ¢

w
Thus it is a flat lattice with m as the bottom element and k as the top

element.

The flat domain L is called a language and its elements are called
formulas, with Ib as the bottom element and /t as the top element.
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A seluabion i3 & function # from L to J which satisfies

which in particular guarantees that valoations are continoous {and
therefore monotone) functions. A valuation is comsistent if no
formula other than { is mapped to £ Valuations form a lattice with
the partial order C defined in the following way:
e o i (¥e)ofz) C o'fs)

We say then that v’ is an extension of v, and that »'is ebowe » (with
reapeet to C). A valuation v is finite [f ofl) = u except for a finite
oumber of formulas i

A deduclion is & binary relation on V, i.e. s subset of ¥V x V. The
operation U and the relation C is therefore defined on deductions.
The partial order C conld also be extended to deductions, but that
will oot be needed ip this paper.

A deduction Fls conservative ift
Fiae'] - sE ¢

which ean now be written
FcC

A chain is a sequence of valuations where

r Lo C ..

e™ 7
It i well known that each suck chain bas & lLo.b. in & laitice. A
derisation from » to »" wing & conservative deduction F i» a chain
where

(F ]

[ ]
Ffe,v ) foralli> 0
LIRS )
p'is the Lu.b. of the chain.

Notice that we say a derivation — to v' — even in the case of an
infinite sequence where V' is never reached, just approached as a
limit.

A deduction Fis monotonic iff

oC o' A Flog)— (3yHFfe'w}A¥C )

It is linear iff

Flog} =~ Flsu s yu 5
Clearly every linear deduction is also monotonic.

A valuation v'is a fixpoint of a deduction F iff

Thusﬂﬂ"p!a'n!icﬁlé'r' ¥ ?s' a fixpoint if F does not allow any 'successor'
Y For a given valuation v and deduction F, we shall be interested in
fixpoints of F above v, i.e. fixpoints of Fwhich are @ v.

A fixpoint of F above v is minimal iff no 'smaller' E] fixpoint
exists for the same Fand v.

What has been described so far uses some of the tools of denotational
semantics, but in a diffferent fashion than usual. The differences are
dictated by our desire to deal with logic using these tools. The reason
for that, again being the wish to consider non-monotonic deduction.
Anyway, the obvious properties of the monotonic case follow easily,
in particular

Proportion 1. a) A conservative, monotonic deduction has a unique
least fixpoint above each f.

b) The Lu.b. of any derivation from v is G the least fixpoint.
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Proof, a) Consider a set {vj of fixpoints of F above v. We wish to
prove that ¥’ = N ".hnhoaﬁxpointofr. Suppose

Ffv's}
By mozotonicity, for each L/ there exists  valuation s, soch that

F{a'. :J
1L L
Since aach i‘.h a fixpoint, we bave
v=1.
[ ¥
and therefore
sC¥f=ns}
and since F is conservative,
V=3 f)
b) Let Yy tp be & derivation using F, and et #* be the least
foxpoint of F above ' By induction, it is easily proven that
" coe
for ench i [}

The following concept is also of interest iz the nop—mosotopiec case:

A valuation v by masimally consistent w.r.t. a deduction Fiff
Fn,¢') = » = v’V [¢' is inconsistent]

3. Linearity and compactness.

There are two significant properties for deductions formed nsing a

sumber of rules: lmearity and compactuess. This section stndies

consequences of those properties. Linearity was defiped in the

previous section

Proposition £, I F s a conservative, linear deduction, azd there

exists a dertvation from ¢ 40 »' uving F, then for every yauch that
sl gy

there exists a detivation from y to v’ using F.

Proof. Let the detivation from vto #'be
L e

where Ve The sequence
LuUnr Uy .

is & derivation using 7, and by the assumptions we have
rus=gy

and the lu.b. of the soquence b ¢". []

Propovition 3. If F is » conservative, linear deduction, and there are
derivations from v to ¢’ and from » to »" wsing F, then there b a
dettvation from wto 9'U ¢” using F.

Proof. Let the derivations of v'and v" be:

y Vo
gy Vg

where l" = "' = v, Since Fis linear, the sequeace

Yo '
L] » L »
i'Lll' s '.IJI‘,
L] . ] »
I'L.It., "Ul'

in & derivation from » waing F, and it has o’ U #" ap its Luob. {]

The proof of proposition 3 gpeneralizes emsily:

Proposition §. It F is a conservative, linear deduction, and there are
dertvations using F from » to each member of a non—empty (poasibly
infinite} s2t W of valuations, then there is & derivation from » to the
Lab. of W.

Proof (outline): use the same technique a3 in the previous proof, but
seloct some ordering of the members of W {presumed denumerable),
and comstruct the aew derivation in a trisngular fashion, so that it
may use the first § terme of the derivation for the first member of W,
the first j - I terms of the derivation of the second member, ete. []

The otker important property 1 compactness. A deduction F s
compact ilf whenever Ffu,»'} there exist some fnite valuations y, '

such that

gC ¢ (which of course means ¥ =y 5}

" s ’ u ”
We shall see In & moment that the deductions obtained from
‘ordinery’ rules of inference are compact, but first let us identify &
consequence of compaciness:

Propowition 5. If F is & conservative, hinear and compact deduction,
and there are derivations using F from v éo v’ and from o' to »", then
there I also one from vto »".

Proof. Let the derivation from » to ' be

', 0, ..
Y

and Jet the derivation from #" to #* be
l’., l;,

where for ench i > 8 there are some finite ’, :‘mch that
F{'., I‘J
5L t"

Torr T MY

Cowstruct now » sequeace of valuations as follows:

l., l‘, -

s. LI:'. '. o u l',... la u :.,
[ ’ ]

3.1 Uus A Lt e

-y

where the u‘muhctodnotln
'cs )
AL

1
for { > 0. By compactiess vach s sequence must exist, and by the



linearity the sequence is a derivation using F, and its lu.b. is clearly

[

We can now proceed to introducing the counterparts in our system of
inference rules.

A kernel is a pair €#,#"> where v and V' are finite valuations, and t

[t A

Kernels may be used for expressing how the truth-value of a
composite expressions follows from the truth-value of its
component(s), or vice versa. One such example was given in the
introductory section. For another example, the rule that if a is true
then - is false, is expressed by the kernel <,#% where

vfa) = »'fa) =1

vf~8) =4

v'(~s) =

The direct realization of a kernel <v,v> is the deduction formed as
{esu g vuys|ye V)

In other words, the direct realisation of a kernel «#, #*» is the set of
all possible pairs €p, " such that # T g and §' = y L ¥’ Each
such pair characterizes a derivation that is allowed by the kernel, i.e.
if the preconditions v are satisfied in y then the conclusions v' may be
accumulated to y giving y"

The direct realization of a set of kernels is defined to be the union
(using U) of the direct realizations of the individual kernels. This has
the effect that from each valuation v there are several successors,
corresponding to the choices of which derivation step to take. From
this definition it follows:

Proportion 6. The direct realization of a set of kernels is
conservative, linear and compact.

4. NM-Rules.

We shall now characterize those deductions which correspond to
(what we intuitively think of as) a set of non-monotonic inference
rules.

Following Goodwin (1984) approximately, an NM-rule is a triple
<M ,N,C> of finite sets of formulas, where

M is the monolonic sntecedents,

N is the mon-manotonic sniecedents,

Cis the conseguents.

The idea is that if each member of M is true, and each member of N
is false or undefined, then each member of C can be inferred to be
true. At the same time, the assumption is made that all members of
N are false.

Each of At, N, and C may be the empty set. If Nis empty we have a
monotonic rule. If Cis empty we have what Reiter (1080) calls a
normal default rule.

The kernel that corresponds fo an NM—pule <M, N, C> is the pair
<7,9"> where

sim} =v'fmj =t forsllmin M
vfu)=) forallnin ¥
vie)xt foralleim C

and all other values are a.

Thus non-monotonic rules differ from monotonic ones, partly by
causing several formulas to change their truth-value as one inference
step is performed. A possible objection against this way of dealing
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with non-monotonic antecedents, is that the resulting valuation
should differentiate explicitly between that information which has
been obtained as a consequent, and that which was 'merely* assumed
in order to be able to apply the rule, i.e. the assignment to the
non-monotonic antecedent(s). We however view that as a
book-keeping issue, which need not concern the formal treatment of
the deduction as such.

The direct realization of an NM-rule is the direct realization of its
corresponding kernel

We let H be that deduction which performs the obvions deductions of
conventional, propositional logic. Thus if a valuation » satisfies
sfand) =1
then the valuation H*fv] which is the least fixpoint of H over »
(proposition 1), satisfies
H*fv)fs) = B*(0)f3) = ¢
{usless a contradiction oconrs in whick ease H*{i) = & for all f). We
work presently on s more wpecific definition and analysts of this
deduction B,

We want the direct realization of a set of NM—roles to be the
dedoction which has as subsets the realizations of each of the rules,
but which is also able to do trivial derivations of truth—values. We
therefore formally define the direct realization of s set of NM—rules
as B U (the union using U of the direct realiration of ench of the
rules). Clearly the direct realization of n set of NM—rules in linear,
conservative, and compact.

The restricicd vealization of an NM—rule <M, N, C> in & subset of the
direct realization of the same rale. It iy obtained by excluding all
those pairs <4,0"> whete #'fn) = kfor some & € N. Notice that paim
<, ' where w'fo) 2= k for some ¢ € C are not excluded, ngless
some ¢'fn) is also k. The restricted realization of a set of NM—rules Is
obtained as the npion (using U) of H and the restricted realization of
each of the NM—rules. The pestricted realization is conservative and
compact but not monotonic (and therefore not linear).

An example may be useful ot this point. For the examples we sasume
that the language consiats of the formulan {a,b,e,...}. A valuation will
be written as [5,p,..] meaning the valuation » where wfa) = 5
wd} = ¥, ete. I either of the sets in & rule b o singleton, then the
curly brackeis around it will be omitted, and the empty wet will be
written as & dash, Thus <4, -, £> b an example of & rule, meaning
the same a3 <{s}, {}, {e}>.

Ezampie 1. Suppose we have the following rules:
< 8 B>
<b -, &>
Informally, this sayn: & holds unless & b» kuown to be true; if b then o
The restricted realication G of thiv set of rules satisfies:
Glju x4, [£4,4])
(this uses the rule "& unless &")
Glist.s, 1)
(this uses the rule *if b thea ")
and [f.1,4 is abo a fixpoint for G over [v,u,9).

If we start iastead from & valuation where s is kmows to be true, e.f.
v = [Lug, there i no valuation »' such that Gfwe') The direct
reafization F of the same set of rales holds of course for the same
argumept pairs as G, but also
Kt [b])

since the direct realitation will proceed even H# it jotroduces a
coutradiction. The valnation [I,u,¢ iy therefore n fixpoint for G, but
not for F. However, it is a maximally consistent exteasion of [f,u,4]
wirt. F
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5. Correct extensions, Approachability.

Throughout this section, we assume that v is a valuation, and R b a
set of NM-rules whose direct realization is F and whose restricted
realization is G.

A valuation V' b termed a correct extenrion of v w.r.t. R iff:

1. V' is a fixpoint of G above v (meaning in particular that

e ¥

2. v'is consistent

3. there b some derivation from v to v' using G.
(Remember that the phrase [l' is an extension of lf means simply
that #* 2 U]- The notion of correct extensions expresses stringently
what are the desirable fixpoints for given v and G. If v' b not a
fixpoint then some additional derivation steps remain to be
performed. If v' is inconsbtent it b for either of the following reasons:
a) v is inconsistent
b) the set of NM-rules implies an inconsbtence {e.x. it l‘{l} = t and
one of the rules b €« =, ~a>)
c) some non-monotonic antecedent was assumed to be /early during
the derivation, and later in the derivation we had an NM-rule with
the same proposition as a consequent, which invalidated the
assumption.

Finally, if there b no derivation from v to v' then V' is 'unfounded’,
like a non-minimal fixpoint in the monotonic case.

The third condition in the definition corresponds to Goodwin's
requirement of well-founded ness. The above formulation b however
problematic in that it refers to the exbtence of a derivation. By
contrast, the minimality requirement on a fixpoint need not refer to
derivations: it just states that no 'smaller' fixpoint exbts. We would
similarly like to have a static condition, which guarantees the
exbtence of a derivation, instead of having to prove its existence
whenever needed. The remainder of thb section will give such a
result.

Although the definition of correct extensions uses (7, the deduction F
provides a partial characterization of them, and will be used as a
tool*

Proportion 7. Each consistent fixpoint of G above v is a maximally
consistent extension of # w.r.t. F.

Proof. Follows easily from the definition of G from F, since
Flo,e') A ~Cfoe’)

implies that v 'b inconsbtent.

The converse does not hold, i.e. there are maximally consistent
extensions of t w.r.t. F which are not fixpoints of G over v. Thb
happens in those cases where a truth maintenance system has to shift
IN nodes to OUT status. Consider

Example t. Suppose we have the following NM-rules:
<, 8 >
ey =y B>
Then U, iq a maximally consbtent extension of [l, Il w.r.t. F, but

av, 4. ix 4).

Not every set of NM-rules has a correct extension:

Example 3. Consider the NM-rules
<, 8 0>
<b, -, 2>
Then of conrse
G([w9l.L1.5)
ofif. i)

and [u,u] does not have any correct extension w.r.t. these NM-rules.

Some of the propositions in earlier sections can now be extended to
apply to the realizations of NM-rules. The basic idea b to first use
those results for F, and then to transfer the result to G by
introducing a consistency requirement.

Proportion 2A. If ' b a correct extension of v w.r.t. R, then for
every y such that

tLyC Y

there exbts a derivation from p to v' uslug u.

Proof. According to proposition 2 thb holds for F. However, it
follows from the definition of G that if F(z,z) and z' b consbtent,
then G(zz). Since V' is consbtent, so must all intermediate steps in
the derivation from p be, because G b conservative. Therefore we
have a derivation from y to v' using G. []

Corollarp  ("minimality of extensions" - Reiter). If v' and Vv" are
correct extensions of v w.r.t R, then
e = ="

Proportion SA. If there are derivations from rto f'and from v to v"
using G, and v' U v" is consbtent, then there b a derivation from v
to v' u v" using G.

Prooffollows directly from proposition 3.

Corollarp. If v'and v" are dbtincl correct extensions of v w.r.t. R,
then »" U ¥* b inconsbtent.

Thb corollary subsumes Reiter's (1980) "orthogonality of extension"
theorem. - Proposition 4 of course extends similarly.

Let us return now to the issue of the third criterium in the definition
of a correct extension. Thb requirement can not be omitted, since
that would allow fixpoints for which there is no support. For
example, the valuation [t,u,u) b a consbtent fixpoint of G in example
1 above. In the monotonic case, such fixpoints are eliminated by the
requirement to be minimal, but that requirement b not sufficient
here since [f,u,u| is indeed a minimal fixpoint in the example (no
'smaller' fixpoint exists). However, we can substitute instead of the
third requirement another one which b similar in spirit to
minimality, as follows.

A fixpoint v'of G over v b called approachable from v iff

tCp< o' = (3)(w< '€ v'A Giry'))
For lack of adequate characters in the font,= lis used for strict E i.e.
excluding equality. Intuitively, thb says that whenever we are on the
path from v to V', there b some step allowed by G that will take us
closer to v'.

Thb concept b a strengthening of the concept of least fixpoint, since
the definition directly implies:

Proportion 8. If v' b an approachable fixpoint of G over t, then it b
minimal.

It b easily seen that the least fixpoint [t,u,u] in example 1 is not
approachable. Thb approach ability condition can replace the third
condition in the definition of the correct extension, since:

Proportion 9. If v' is a consbtent fixpoint of G over v, and V' b
approachable from v, then it b a correct extension of t w.r.t. R.

Proof. v' immediately satisfies the first two conditions for being a
correct extension. It remains to show that there b a derivation from v
to v'using G.

Suppose this were not the case, i.e. every chain from t whose
members are : 'y (the existence of at least one such chain b



guaranteed by the definition of 'spproachable') has & Lub. g < »'
Let o" be the Lub. of all such 5 By proposition 4 there is a
detivation frem o to o" If mow #" < ¥, comsider ¢he p' whose
existence is guaranteed by the wpproschability, such that

cfs", v)

"< y'C o
The derivation step from " to 3" must beve been obtained using the
extension of & kernel <3, 3> such that z C »*, and 2'isnot C »".
By compactness, in any derivation,

By,

of " there must be some element 5 such that x C L But then
there is also a derivation of 3 u £, which is not C »* Thin is a

contradiction. (]

In this way we have obtained the desired counterpart of the fixpoint
criterium of the monotonic case.

8. Normal default rules.

Reiter {1080) introduces the concept of mormal defssit ruler. He
shows that every normal theory has an extension (in our terms: a
correct extension), and proves semi-monotonicity, i.e. a larger set of
normal default rules has a larger extension. Hia resulis, which are
given with fairly complicated proofs, can now be obtained more easily
from the material presented above.

A normel defaslt rule is an NM~-rule of the form <M, {n}, {}>.

M vis & valuation then #7 is the (obviously unique} least fixpoint of H
over v Clearly the * operation Is morotonic. The valuation vis fully
consisient if v° is connistent.

A valuation v is setursted w.t.t, & formuia s iff ofs} = v¥fa}.

Let ( be the restricted realization of a set of normal default rules. A
derivation using G is caslions iff in each derivation step <w,0°> that
uses a rule <M, {n}, {}>, »is saturated w.r.t. . The idea is that in
a cautious derivation it is mot poasible to have the following scenario.
Let the formula ¢ be ~a. Start from the valuation [u, «, /|, ie. ~a Iy
false but the conclusion that a is true Las not been drawn. Use the
extension of the NM—rule <., & b> to derive |f, ¢, . After that,
use the deduction & which administeates simple truth—value
ealeulations, to derive [k, t, J. The cases that we exclude by being
cautious in this sense mre the ones where an implementation would
bave to backirack, or (in a truth-maintensuce system) shift
propositions from IN to OUT status, betause » non—monotonic
antecedent which was temporarily accepted because no proof had
been bound so far, later had to be retracted when a proof was found.

Since H does derivation steps according to propositional logic, one
can derive » valuation that is saturated w.r.t. n jo a finite number of
steps. It follows:

Proponition 10. Let v be & consistent valuation, and let G be the
restricted realization of a set of normal defsnlt rules. Each step in &
cautions derivation from ¢ osing &, s fully connisient,

Proof. We finst prove that any step is consistent. By the definition of
restricied realizations, a derivation step using a norma! default rule
can not introduce k into the valuation. Suppose a derivation step
according to & in a eantious detivation does go from s consistent to
an izconsistent valuation. Let » be the non-monotonic antecedent of
the most recent derivation step, »' to ", that uses an NM—rule. We
must have w'fn) = & ¥"{x) = £, and v'l) = v*(i] for all other
formelaa L (By the definition of restricted realizations, we could not
buve bad #’fn] = ¢, o*(a} = &)} But by a familiar result of
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propositional logic, if there was a derivation wing H from #” to &
contradiction, there must have beea a derivation using K from o'to s
valuation y where yfs} = f, whick mesas ¢’ was pot properly
saturated. Contradiction,

The full consistency follows eanily, which completea the proof, {|

Cuorollary. If there ia & cantious derivation trom » to »' using &, then
v’ is fully consistent.

Proporition 11, If G jn the restricted realieation of & set of pormal
default rules, and there is a derivation from a valuation o to a fully
copaintent valuation y muing @, then there is & enutions detivation
using G from » to some p'such that y C ¢’ C g*

Proof. We prove hy induction on the derivation of y, nsing the
monotonicity of F, that there is & derivation wsing F from » to some
such y° {Just saturate sufficiently before applying each rule). But
since y* is connisteat, 5o is y’ and the derivation using Fis also a
derivation using G. {]

The main result i now:

Proponition 12. It v fa a fully consistent valustion, and & is the
restricted realization of & set of normal defanlt rules, then » has &
correct extensiog w.r.t. G.

Proof. Let W be the set of Lu.b, of esutions derivations from » wring
G. By the corollary of proposition 10, each member of W is fully
consistent. A subset ¥ C W i called mesimally connstext iff the
Lu.b. of its membera is fully coneistent, hut the Lub. of every strict
superset of Y which is still a subset of W, isn't fully consistent.
Consider some maximally consistent ¥V {it is clear that some exiat,
slthough maybe ¥ = W). Let y be the lub. of ¥, Clearly yis s
fixpoint of B, i.e. y = y* According to proposition 4, there in a
derivation from ¥ to y, and by proposition 11 there is then a cantions
derivation from v to some p’ which is beiween y and g*, 30 ' = p.
There can bowever not be any derivation from gy using G, except the
trivial detivation consisting only of y, since otherwise ¥ wonld not be
maximal. Therefore yia a fixpoint for G and a eorrect extension, ||

Proponition 13 [semi—monotonicity): Let # be o fully consistent
valuation; let R* C R” be two sets of normal default rules; and let
G' € G" be the restricted realizations of 'and R". If #'is & correct
extension of # w.r.t. G', then there £xists some correct extension »” of
sw.rt. G"for which #' C »°,

Proof let y be a correct extension of v’ w.rt. G°. Since using G*
there s a derivation from ¢ 1o 2, and a derivation from ¥’ ko J, there
is also s derivation from ¥ to y (proposition 5). Let W be the set of
lu.b. of cautious derivations using G" from # to, or passing through
# Proceed as in the previous proof. |].

Reiter's proohs for the last two results are considerably more
involved, The functional approsch tmken in this paper makes it
posaible to reason more abatractly, and therefore more concisely,

7. Conclusion.

The functional view, starting with the lattice of four truth-values
(including & for coatradiction) makes it possible to deal with
acn—monotonic logic on & high level of abstraction, avoiding tedious
proofs, and at the same time offers the strong intuitions of partial
arders, lattices, and fixpoints.
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