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ABSTRACT

The behavior of Dempster's rule of combination in
typical situations is examined. Particularly, it is shown
that assessing a zero value or a very small value may
lead to very different results. Moreover a comparison
with a possibility theory-based approach in case of con-
flicting information is provided. The general problem of
representing uncertainty with one or several numbers is
addressed. Lastly, the propagation of uncertainty from a
fact and "if...then..." rule is discussed in the framework
of belief functions.

| - INTRODUCTION

The treatment of uncertain information in knowled-
ge engineering has encountered an increasing interest a-
mong Al researchers in the recent years. Roughly spea-
king, there are at least two basic problems when reaso-
ning with uncertain facts or rules ; namely the combina-
tion problem and the propagation problem. The combina-
tion problem refers to the aggregation of uncertain pieces
of information issued from different sources dealing with
the same matter. The propagation problem deals with the
aggregation of the uncertainty concerning the satisfaction
of the condition-part of a rule with the uncertainty of
the rule itself in order to deduce the uncertainty perva-
ding the conclusion of the rule. Two theoretical frame-
works have recently emerged for discussing these pro-
blems : the Dempster-Shafer theory of evidence [4] and
Zadeh's possibility theory ; see Prade [ 3 ] for a
comparative overview. In the following we examine how
Dempster's rule of combination behaves in typical situa-
tions and how the result given by this rule may depend on
the assessment of the values of the basic assignment. Then
the propagation problem is briefly discussed in Shafer's
framework.Comparisons are made with the possibilistic ap-
proach as well as with the treatment of uncertainty in in-
ference systems such as MYCIN. The key question of the
representation of the uncertainty of a fact or of a rule by
more than one number is discussed throughout the whole
paper.

Il - COMBINATION PROBLEM
In Shafer's approach an uncertain body of evidence
is represented by a so-called basic probability assignment
m which is a set-function from the set §& of possible ele-
mentary events to the real interval [0,1] such that
m@ =0; I mA) =1
Ach
The quantity m(A) is supposed to represent our part of
belief in the occurrence of A exactly. See Garvey et al.
(IJCAI-81, pp 319-325) for an application-oriented presen-
tation. Dempster's rule combines two probability assign-
ments my and m, pertaining to two sources of informa-
tion, and obtains a new basic probability assignment m
satisfying (1), which is defined by ¥ (¥@, (<2, m(l) =

(A g cm1 (A).mz(BJ)/(mgﬂmﬂn).mz(B)) (2)
ne=

(1

Moreover this rule is associative.

1) The case of two alternatives

In the following we completely investigate the case
where £ only contains two known alternatives, each one
being regarded as opposite to the other one, i.e. R={anal.
This case is interesting in the scope of expert systems be-
cause it is found when general rules enable the same con-
clusion a to be derived with various levels of uncertainty,
and as such, is often encountered in applications. In this
case a basic probability assignment m is defined by the
three numbers mia), m(=a), m{f) which have to satisfy
the constraint (1). Then the degree of belief in the alter-
native a is given by Bel(a) = m(a) while the plausibility of
a is computed as Pl{a)=rmia}+m(f)=1-Bel(na), from the ge-
neral formulas [ 4]

Bel(A) = I m(B) ; PL(A) = 1-Bel(A) = I m(@Y (3)
BCA Angy
where the overbar denotes the set-complementation. Al-
ternative a may be regarded as probable to a degree
which belongs to the interval [Bel{a},Pl{a)]<[m{a}),m{a)+
m{Q}] while the probability of the opposite alternativeia
lies in the interval [1-m{a)}-m{&),?-m(a}]. The quantity
m(§) corresponds to the amount of ignorance. Note that
in general we need two numbers, m(a) and m{), for ex-
pressing the uncertainty pertaining to alternative a. How-
ever if m{{)=0, the uncertainty of a is expressed by a
single number, its probability ; when mia)+m{§)=1 or when
m(a)=0, the useful information about an alternative lies in
its degree of belief or in the degree of belief attached to
the opposite alternative, respectively. In that case, the
plausibility function is a possibility measure in the sense
of Zadeh [ 6].

Indeed, when the collection of subsets A of { such
that m{A)>D is nested with respect to set inclusion, the
betief and plausibility functions defined by (3} are respec-
tively nothing but necessity and possibility measures in
Zadeh's sense, see [3] In the case of two alternati-
ves a and ta, we are in such a situation as soon as mila)=
0 or m{za)=0 since obviously {alcf and falcR,

With Betj(a)=mj(a)=s; and Plj(a}=mjla}+mj(R)=t;, whe-
re i=1,2, Dempster's rule of combination yields
mEa)>= (sqta+sptq-sys2)/d ,

m(Ha} = (1-sq9=52+satq+sqta~tq.t2)/d

m{{)) = (t1-s])(§2-§2;/d1 A
with d = 1-sq(t=t3)-52(1-tq}

The formulas L&) encompass 4 noticeable particular cases :

{4)

i) si=t; . In this case we have just to combine two ordi-
nary Probability distributions since mi{Q)=0. We get
ma)=(sy.s2)/(1-54~-52+287.52) ; m{va)=1-m{a) , (5)

a formula used by Kayser [2] for combining uncertain pie-
ces of information, alse a symmetric sum %Silvert, IEEE
Trans. SMC,9, pp 637-659, 1979), When sy=¢ and sp=1-¢
(i.e. there is a conflict which is all the more severe as €
is nearer 0 or i), we get ¥ >0, m{a)=m{va)=4, =0 is
forbidden as well as € = 1.
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ii) ty=tz=) : In this case, both sources of information a-
gre& that the plausibility of the alternative a is equal to
t and thus my(ral=matra)=0, Then (%) gives

m{a) = sq+sp=sq.sp ; mia) = 0 &
We recognize the formula used in MYCIN [1] for combi-
ning two non-conflicting pieces of evidence.

iii) ty=1, s2=t3 : This case is an hybrid of i and ii. () gives
m{a)=s3/{1-51(1-52)) ; mra)=1-m(a} ¥p!

iv) =1, 59 = 0 : In this case the basic probability assign-
mE&MT ] cxpresses that we believe in the completely
plausikle alternative a with the degree sy while on the
contrary maexpresses a belief inva (considered as com-
pletely plausible since s3=0) with a degree equal to 1-t3,
We have thus a conflict between the two bodies of evi-
dence. Formulas (4} give

stz (=312 (1=tp)

m{a) = =5 5 mia) = 705 8
and PL{a)sm(a}+m{id= tp 7{1~5¢(1=t2}) "

In these & particular cases, the basic probability
assignments mq and my are such that either mj{Q)=0 then
m; is an ordinary probability allocation or mi(af=0 or
mit1a)=0 (then Pl; is a possibility measure). In cases i)
and iii), the result of the combination is an ordinary pro-
bability allocation, and the weight of alternative a is al-
ways reinforced in iii). In case ii}, two consistent possibi-
lity measures are combined and yield a possibility measu-
re. Contrastedly, case iv} combines two conflicting possi-
bility measures, and what is obtained is neither a proba-
bility measure nor a possibility measure. In other words,
two numbers, distinct from & or 1, are needed here for
representing the uncertainty pervading the result of the
combination in case of a conflict.

N.B. If we extend the combination formula (6) of two or-
dinary probability distributions {Indeed (6) is nothing but
Prob{a}=Prob(a).Proby (a}/(Prob(a).Proba{a)+Prob(na),
Proby{ra)) Mrom scalar values to interval values of the
form [Belj{a),Pli(a)], then this kind of sensitivity analysis
yields results which are generally more imprecise those
obtained from Dempster's rule of combination in cases ii,
lii or iv. For instance in situation iv, we get the whole
interval [0,1] instead of the interval [m{a),PKa)} defined
by (8)-(9).

Since in cases ii and iv we deal with possibility
measures, we may then also use a possibilistic rule of
combination. For sake of brevity we only consider such a
rute when {I has two elements a andta in the following,
In this particular case a possibility distribution is a pair
of plausibility values (Pl{a),Pl(ra)) such that

max{Pl{a) PiL(ra}) = 1 102
(since m{a)=0 or mha)=0). Then the intersection of two
possibility distributions, viewed as fuzzy sets [6 ][ 3], is
given by  (Pl{a),PHra))=(min(Pl (a),Pla(al/d,

min(Pllha),P?zha}).-’d) with
d=max(min{P1y{a),P15(a)),min(Pl{bra),Ply~a))) (11)
The normalization in (11) maintains constraint (10). Then
applying (11) to cases ii and iv respectively gives
ii) ty=Plj{a)=ta=Piga)-1
m{aJ=T-Pllqal=T-minlT-s1,1-52)=max(s{,52)
since s;=1-Pli{1a) ; moreover m{a)=0.
iv) t1=Pljla)=1 ; sp=1-Ply{a)=0
min{l-s9,1)  max{0,s1+t2~1) (
wax(t2, =877 - T-min(sy,1~tg) 13
miza) = 0 ; PL{a)=t3/(1-min{sy,1=t2)) 14
The expressions (12), %13) and (14} have a structure simi-

lar to the one of formulas (6), (8) and (9) respectively,
Indeed both the probabilistic sum and the operation maxi-

(12)

mi{ad=1-

mum extend the disjunction in multiple-valued logic, whi-
le the product, the operation min and max{0,x+y-1} are
the main extensions of the coniunction i1n this logic. What
it is important in (13)-(14) is that the obtained result is
of the same nature as the combined items, which was no
longer the case with (8)-(9), Particularly, m{1a)0 in (&)
Moreover if we replace the min operations in (11) by the
product, then we recover (6} exactly, while (13} and (#4)
remain unchanged. The apparent advantage of (6) is that
in case of several pieces of positive evidences (in favor
of a) there is a reinforcement of our belief in a, due to
the asymptotic behavior of (6} towards 1. However this
reinforcement can be only justified with an independence
hypothesis which is difficult to check ; thus (12) may ap-
pear as a more cautious rule,

Lastly, let us examine the ditference of behaviors
of (8)-(9) and of (13)-(14) in case of a strong symmetric
conflict such as :
milad=s, mqtra)=0,
mz(ad=0, mpfra)=s, ma()=1-5 . Then {R)-(9) yields
[Bel(a),Pl(a)]=ETi—s-,Tl—s] = [Bel (ra),PlL(ra)d] (15)
which is an interval centered around 3 and which shrinks
as s becomes nearer to 1 (strong cenflict). Contrastedly
(13)-(14) then gives [Bel(a),Pl{a)]=[0,1]). At first glance the
results look very different, but both of them express that
a and— a are equally believable, plausible, possible. Note
that when the conflict is nothing but an absolute contra-
diction (s=1), {15} reduces to the value § which is the
probabifistic view of total ignorance,

my{fd=1-5

2 - Highly improbable is not impassible

Let us now consider the particular case where we
have three mutually exclusive alternatives in 2, Le. 0=
{a,b,c}, in order to study the sensitivity of {2) to slight
modifications of my and 3, First let us consider the si-
tuation discussed by Zadeh (Al Magazine,5(3),pp81-83,1984)

myla)=0, mq(b}=k, mq{cy=1=k | k>0

mz{a¥=t-%, mplbd=k, mp{c)=0 *
Note that here my and my reduce to ordinary probability
distributions on £. When k is a smail number , there js
a strong conflict between the two assignments since the
first one regards a as completely impossible and ¢ as al-
most certain, while the second one holds the opposite po-
sition ; both assignments only agree on the point that b
is quite improbable. However, whatever the value of k,
(2) yields m{a)=0, m{b)=1, mic)=0 due 1o the norma-
lization effect. Suppose now we modify my and m3 in the
following way, € being a very small amount :

m(ad=e, mj(b)=k, m (c)=1-k=¢
my{ad=1-k-e, malbl=k, mplci=e . Then, {2) gives
m(a)zm(c)=ﬂi . k

\Zsze (ko) " ° B
For k=0.1 and ¢ = 0.01 , we obtain m(a)=m{c)=0,32 ;
mib}=0.36. For k=0.1 and e=0.001, we obtain m{a)=mic)=
0.008 ; m{b)=0.84. Clearly, lim m(a)=lim m(c)=0 and

e+0 e+0
lim mib)=1, Thus we observe that when mj{a) and ma{c)
]
are not strictly zero but remain small in comparison with
k, which is itself small in comparison with 1-k-g, we may
obtain results by (2), which are extremely different from
the case where my(a)=malc)=0. In this latter case my
{resp. m3) expresses the complete certainty that a (resp.
c) is impossible ; then the alternative b, although quite
improbable, remains the only possible alternative, Contras-
tedly when a non-zero, even very small, valye is assigned
to an alternative, this alternative is not definitely ruled
out although highly improbable ; it tacitely expresses that
this value may be revised in the light of new information.



Thus assigning a zero value or a very small one may lead
to very different conclusions in some Instances.

Note that the acceptance of some unforeseeable
outcome may be betier expressed by assessing a small va-
lue ' to the whole set Q rather than assessing & non-
zero value to each alternative in . Indeed it is someti-
mes difficult to identifying them, Let

m (2)=D0, my(b)=k, my(cd=l~k-¢, mq(D=e
mz(a)=1-k-€, ma(b)=k, mg(c);ﬂ, ma{fy=e , we get
m(a)=m{c)= M’,m(b):-'i-%,mm:—g—

with d_k2+2+:(l~e). Note that we get results which only
shghtly differ from those obtained with mj{a)=m»{c)=e and
my(R)=ma(R)=0, which 1s satisfactory,

I - PROPAGATION PROBLEM

In the following some proposals are made in order
to deal with the propagation probiem in Shafer's frame-
work. There already exists an interesting attempt (Lu et al.
ARAI-84,pp216-221) but which seems in need of justifications.

A belief function always satisfies the following ine-
qualities ¥ Acf, Bel(AnB)>Bel(A)+Bel(B}-Bel(AuB) >
max(0,Bel{A)+Bel(B)-1) (16)
Applying {16} to B={AuB)n{AUB), we get Bel(B) >
max(0,Bel(AuB)s Bel(AuB)- | )>max(0,Bel{AUB}+Bel(A)-1). Thus
since AUB 15 the material implhcation A+B, we can prove
the validity of

BelA+B) > r {17
BellA) > s

= . Th -
BelB) > max(GrsT) 15 pattern can be pro

ved equivalent to some mn (Garvey et al, JJCAIL-B1, pp
319-325) , but is expressed here in terms of the implica-
tion connective. The lower bound of Bel(B} we have in (17)
is the same as can be obtained using probabilities instead
of belhief functions. An improved lower bound 1s cbtained
when the beliel function 15 a npecessity measure, see

{3). Contrastedly, with probability, which corresponds to
the remarkable particular case where plausibility function
and belief function are equal, an improved lower bound
cannot be obtained and this i1n spite of the additivity
axiom. To the modus ponens-like pattern of reasoning {17)
corresponds a modus tollens-like pattern of reasoning

Bel{A+B) > r'
PIB) <t (18)
PHA) < min{l,l-r'+t)

combining (17) and (18) we obtain
BellA+B) > r
Bel{(B+A) > r*
s < Bel(A], PHA) < t

max(0,r+s-1KBel(B}, PUB)Xmin(1,1-r'+t)
Thus, if we characterize the uncertainty of the rule "if A,
then B" by the two numbers BellA+B} and Bel(B~A), it is
possible from a lower bound of the belief in A and from
an upper bound of the plausibility of A to derive lower
and upper bounds respectively of the belief in B and the
plausibility of B, Bel(A+B) may be viewed as a degree of
sufficiency of having "A true" for deriving "B true", while
Bel(B+A) is a degree of necessariness of having "A true”
for deriving "B true", Thus the pattern {19) provides a
toa] for using belief functions in deductive schemes.

Another approach, partially used in(Ginsberg,AAAL-84,
pp 126-129), is to view belief and plausibility degrees as
lower and upper bounds of probabilities and to perform a
sensitivity analysis on the formula
Prob(B)-Prob(B | A),Prob(A)+Prob(B | A.Prob(X) (20)
This method is in the spirit of C.A.B. Smith's view [5] of
iower and upper probabilities rather than_Dempster/Shafer's.
With Prob(A) € [Bel(A),PHAN=[s,t] ; Prob(A) € [1-t,1-s]
Prob(B |A) € [,F] and Prob(B|A) € [r',F'], we get

(19)
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Prob(B) € [min(rs+£'(l-gFter'(1-1)), max{Fs+F‘(l-s},‘mr‘((}-t)})]

21
When Prob(B|A)} 1s completely unknown, ve. [r',F']-[0,1]
(21) reduces to Prob(B) € [rs,1-5+Ts] (22)
Note that the information pertaining to the uncertainty
of the rule "if A, then B" 1s represented here in terms
of conditional probabilities by the 4 numbers r, F, r', .
This approach seemingly provides stronger results than
the previous one since the lower bound obtained in (22)
is greater than the one obtained by (19).

However, the upper bounds in (19} and (22) are of
different nature, since in {19) the upper bound is obtai-
ned from lower bounds on Bel(B~A) and Bel{A), while in
(22) the upper bound 1s computed from lower bounds on
Prob(B|A) and Prob(A). However lower bounds in (19) and
{22} look similar, since in both caves it is a conjunctive
combination {in different multi-valued logics) of lower
bounds on Bel{A) and Bel(A=B) in {19}, and of lower bounds
on Prob(A) and Prob(B|A} in (22), Upper bounds correspond
to multivalued implications. Thus the differences between
{19) and (22} are due to different views of the rule (in
terms of implication or in terms of conditionning) and to
the absence af information in {22) regarding the uncertain-
ty of the rule "if B, then A" or if we prefer "if not A,
then not BY, Besides_from Bel(A+B)>r and Bel(A)>s we can
establish that Bel{A+B)<2-(r+s) § but from this latter ine-
quality and Bel{A)>s no non-trivial lower bound on Bel(B)
{(i.e. no upper bound on PI(B)} can be obtained. Thus we
need the complementary information on Bel(B-A) for get-
ting an upper bound on PI(B) in (19).

Lastly we may think of intreducing conditional be-
Lief and plausibility functions for dealing with the propa-
gation problem. This might be done using a conditional ba-
sic probability assignment (Ishizuka et al.,Inf.Sci., 28 (1982)

179-206). IV - CONCLUDING REMARKS
The intended purpose of this paper was a careful

examination of the bebavior of Dempster's rule of com-
bination in typical cases. It appears that assigning an ex-
tremely small value rather than a zero value may lead to
very different results, Moreover Dempster's rule applies to
situations which are probabilistic 1n nature {m{R)=0 in case
of two alternatives) as well as to situations which are pos-
sibilistic in nature {m{a)+m{Q)=1 or m{ra}rm{Q)=1 in case
of two alternatives) where a possibilistic rule of combina-
tion might be more suitable. Dempster's rule of combina-
tion remains an appealing tool but it should not be used
in a blind manner without caution. Besides we discussed
two ways of dealing with the propagation problem using
belief functions, These two approaches are not equivaient
and we have to take care of the intended meaning of the
numbers we use for encoding the uncertainty. Particularly
we may think of an "ii...then..." rule in terms of an im-
plication or in terms of conditioning. Moreover viewing
plausibility degrees as upper and lower bounds of probabi-
lity degrees and then using a sensitivity analysis, or direc-
tly dealing with degrees of belief do not lead to the same
result, Lastly, the two appreaches to propagation which
were briefly discussed are not learning processes as Baye-
sian inference is ; the extension of Bayesian inference
in the Dempster/Shafer framework is still a topic for fur-
ther research
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